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For precise detection and positioning of weapons and equipment under complex ground backgrounds and weather-changing
aerial backgrounds. Compared with the traditional convolutional neural networks, the Capsule Network (CapsNet) is more
suitable for identifying weapons and equipment in complex backgrounds because it uses vectors as input for the first time,
which can well retain the characteristic information such as the direction and the angle of the target. Therefore, this paper
proposes a radar target classification algorithm based on the combination of CapsNetv2 and infrared lidar, which simplifies the
convolutional layer of the traditional 9× 9 capsule network through a 1× 1 reduction layer and a 3× 3 convolution kernel, and
adopts a double-layer capsule layer. Two prediction frames are obtained to improve the recognition accuracy; at the same time,
the output volume retains the direction and the angle, which can more accurately classify the radar targets in various complex
backgrounds. Applying the method proposed in this article to the MSTAR dataset shows that the radar target positioning is
accurate. The rate increases to 99.5%. Finally, compared with the AlexNet and the YOLOv4 methods designed by Alex
Krizhevsky, the proposed radar target recognition method can accurately and quickly identify weapons and equipment from
complex backgrounds. The results obtained from the CapsNetv2 are accurately compared with other methods’ in complex
backgrounds. The proposed method significantly improves the efficiency of military inspections.

1. Introduction

Radar technology plays an important role in the field of
modern target detection. It is widely used in military and
civil transportation fields due to its all-weather and omni-
directional work characteristics. Target recognition is one
of the basic tasks in computer vision. Identifying the target
area and obtaining the accurate position of the target lay
the foundation for the next information processing of the
carrier and improve the perception ability of machine recog-
nition. The current main model is to process the visible light
image accordingly. However, the visible light image is sus-
ceptible to environmental lighting. Under low light, dark
or shadow conditions blocked by surrounding interference,
the processing data becomes more complicated. To achieve
high-reliability classification and recognition effects, modern
pattern recognition theories and methods are usually used
for classifier design, such as statistical-based pattern classifi-
cation methods, feature extraction methods, and neural
network-based pattern classification methods.

Statistics-based classification and recognition algorithms
use probability models to obtain the feature vector distribu-
tion of each category and classify the unknown samples. For
example, Shen Yanyan obtained the likelihood function by
extracting the ocean wave radar echoes and used Bayesian
classifiers for classification [1]. Liu Jingrui and others estab-
lished a weather radar warning system using probability sta-
tistical models to distinguish between strong and weak
rainfalls [2]. However, the weather environment is complex
and changeable, and there are many interference factors,
making the actual task of processing the radar signals much
more difficult than processing and identifying the visible
light images.

The traditional feature methods mainly match the
known features by extracting the feature points of the target.
Commonly used feature matching methods include the his-
togram of oriented gradient (HOG) feature [3], the scale-
invariant feature transform(SIFT) feature [4], and the
speed-up robust features (SURF) feature [5]. In 2001, the
American company ENSCO developed the Visual Identity
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System (VIS) track video detection system to realize real-
time detection of the working status of PandaPal fasteners
[6]. In 2005, the German railway engineering company
GBM Wiebe developed the GeoRail-Xpress comprehensive
inspection vehicle that was able to perform a real-time
inspection of the entire railway electrical equipment system
[7]. However, because it is necessary to extract and classify
multiple regions of the image, the recognition speed was
slow, and it was difficult to meet the requirements of real-
time detection.

In recent year, the target recognition algorithms based
on deep learning have made significant progress compared
with the traditional target detection algorithms. The repre-
sentative algorithms include R-CNN [8], Fast-RCNN [9]
and Faster-RNN [10]. However, the detection steps of these
methods are more complicated, and the real-time effect is
poor. The AlexNet [11] and YOLO [12] that have appeared
one after another can meet the requirements of real-time
detection, but often require a lot of data for neural network
training, and the training weights are easy to overfit. More-
over, the technical requirements for the equipment are rela-
tively high. In 2017, Hinton proposed that the Capsule
Network, referred to as CapsNet, would possibly replace
the traditional CNN network, bringing new opportunities
to the field of deep learning [13]. For example, the literature
[14] used the capsule network to classify handwritten digits.
Due to the single characteristics of the digits, the recognition
rate is high. However, the radar targets are generally
weapons and equipment with complex structures and are
easily affected by the conditions such as illumination and
angle.

This paper proposes a radar target recognition and loca-
tion algorithm based on CapsNetv2. For the characteristics
of weapons and equipment, light intensity, position, defor-
mation, angle, texture, and position information should be
considered. Therefore, these six features are selected as the
input vectors, and then a 1× 1 reduction layer combined
with a 3× 3 convolutional layer is used to simplify the tradi-
tional Capsule 9× 9 capsule neurons. Then the MSTAR
dataset is trained and learned through the double-layer cap-
sule network, and two prediction boxes are obtained, one
large and one small, to complete the recognition under dif-
ferent complex backgrounds. Finally, the improved CV
model and the infrared Lidar uses edge detection to accu-
rately locate the location of hazardous enemy weapons and
equipment.2 Structure.

A paper for publication can be subdivided into multiple
sections: title, list of all the authors and their affiliations, a

concise abstract, keywords, main text (including figures,
equations, and tables), acknowledgement, references, and
appendix.

2. Capsnetv2

In 2011, Hinton proposed the concept of capsule [15].
Unlike the traditional scalar neurons, the capsule network
is a vector composed of many neurons. The vector length
of the capsule neuron model indicates the possibility of the
existence of the target passed by the upper network, and its
direction represents the actual state of the entity, that is,
“Instance parameters”, as shown in Figure 1 [16].

The dynamic routing algorithm (Squash) solves the
problem by the output value of the capsule.

The update formula is:

cij =
exp bij

� �
∑kexp bikð Þ ð1Þ

bij = bij +Ui ⋅ V j ð2Þ
where cij is the dynamic routing coupling coefficient and k is
the number of initial similarity weights bij.

The capsule output Sj is obtained from the lower-level
capsule inputs Ui and cij:

Sj =〠
i

cijUi ð3Þ

where Ui is derived from Ui =Wijui,
Wij is the weight of the capsule network.
The output V j should be expressed as a probability.

Thus, the output value should be controlled between [0, 1],
which can be obtained by nonlinear compression:

V j =
Sj

�� ��2
1 + Sj

�� ��2 ×
Sj
Sj

�� �� ð4Þ

The principle of CapsNetv2 is roughly the same as that
of the capsule network. The image is first input to the convo-
lutional layer (ReLu), and a basic capsule layer is obtained
through the convolution operation. Then the data of the
basic capsule layer is transmitted to the image through the
dynamic routing algorithm (squash). The capsule layer then
transfers the image capsule layer data to the feature capsule
layer, and finally uses the fully connected layer to reorganize
and model the feature capsule layer data. However, the
CapsNetv2 consists of two image capsule layers and two fea-
ture capsule layers. If training is performed when the data of
one layer of the capsule layer has over-fitting, it can ensure
the success of the training of the other capsule layer. The
structure of the CapsNetv2 is shown in Figure 2.

The radar target image is composed of 3 categories,
which are set as BTR70(armored transport vehicle),
BMP2(infantry fighting vehicle), and T72(tank). The moduli
of the three types of target vectors are calculated and the
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Figure 1: Capsule neuron model.
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vector with the largest modulus value is the category with
the highest possible target probability.

The AlexNet, Yolov4 and the traditional capsule network
are used to compare the performance of the CapsNetv2 and
classify the image dataset. Table 1 compares the Top-1% and
Top-5% classification performance of each model for the
same dataset, where the GPU model is Titan X, and the
CPU model is Intel I7-10700(4GHz).

As shown in Table 1, CapsNetv2 has higher classification
accuracy in Top-1% and Top-5% compared with AlexNet,
Yolov4 and CapsNet. Moreover, the recognition time of
GPU and CPU is less, indicating that the CapsNetv2 has bet-
ter performance.

3. Principles of Radar
Target positioningSubheadings

3.1. Radar Image Preprocessing. In the radar target recogni-
tion technology, the collected radar image contains various
disadvantages such as noise, jitter, and weak light due to

its complex background, weather and other factors that will
affect the model training and recognition results. Therefore,
it is necessary to pre-process and correct the collected origi-
nal image and then extract the feature value of the target and
separate the target from the background.

The pre-processing steps include grayscale change,
binarization, noise reduction, filtering and edge extraction.
The specific flow chart of pre-processing is shown in
Figure 3.

(1) Perform grayscale processing on images of different
categories in the mSTAR dataset. The results are
shown in Figure 4(a);

(2) Binarize the grayscale processed image to remove the
influence of complex background, that is, set the
pixel point to 0 or 255, where the target gray value
is 255, and the other background is 0 as shown in
Figure 4(b);

(3) Noise will reduce the quality of the image, and the
collected radar target image is usually accompanied
by auxiliary equipment and anti-jamming equip-
ment that contain a lot of Gaussian noise. Therefore,
this article uses Gaussian filtering to process the
image, as shown in Figure 4(c);

(4) By comparing the radar target recognition effect with
Robert, Sobel or LOG operator, the edge of the target
detected by the Canny algorithm is more complete.
Therefore, this paper uses the Canny algorithm to
extract the edge of the radar target as shown in
Figure 4(d).

3.2. Improved CV Model. The Chan-Vese(CV) model is used
to divide the fuselage and barrel of the T72 tank. The energy
function of the CV model is [17]:

E C, c1, c2ð Þ = μ ⋅ L Cð Þ + λ1

ð
i Cð Þ

μ0 x, yð Þ − c1ð Þ2 + λ2

ð
i Cð Þ

μ0 x, yð Þ − c2ð Þ2

ð5Þ
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Figure 2: Schematic diagram of the CapsNetv2 structure.

Table 1: Performance comparison of different models.

Model Top-1% Top-5% GPU/ms CPU/S

AlexNet 57.0 90.0 2.5 0.30

Yolov4 63.0 92.0 2.7 0.26

CapsNet 70.0 92.5 1.8 0.66

CapsNetv2 72.0 93.5 1.3 0.18

Gray changeInput radar
target image Binarization

Gaussian filteringEdge extractionOutput image

Figure 3: Flow chart of hanging string image pre-processing.
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c1 =
Ð
Ω
μ x, yð ÞHε ϕð ÞdxdyÐ
Ω
Hε ϕð Þdxdxy ð6Þ

c2 =
Ð
Ω
μ x, yð Þ 1 −Hε ϕð Þ½ �dxdyÐ

Ω
1‐Hε ϕð Þ½ �dxdxy ð7Þ

In the formula, μ is the CV model constant; LðCÞ is the
arc length of the curve C; μ ⋅ LðCÞ is the length term, which
can smooth the evolution curve; λ1 and λ2 are the weight
coefficients, both greater than 0; μ0ðx, yÞ is the image pixel
gray value; c1 and c2 are the average gray values of the pixels
outside and inside the image evolution curve, respectively,
and HεðϕÞ is the regularization step function.

Considering that targets such as armored vehicles or
tanks are regular models with regular shapes and horizontal
symmetry, adding the level set method can better correct the
contour topological changes. The level set evolution Euler-
Lagrangian equation is:

∂ϕ/∂t = δ1 μdiv ∇ϕ/ ∇ϕj jð Þ − λ1

ð
i Cð Þ

μ0 x, yð Þ − c1ð Þ2
" #

+ λ2

ð
i Cð Þ

μ0 x, yð Þ − c2ð Þ2
ð8Þ

where δ1 is the global function, as the impulse function of

the CV model; div is the divergence operator and div ð∇ϕ/j
∇ϕjÞ is the curvature of the evolution curve.

This paper selects the T72 heavy tank with obvious bar-
rel characteristics as the segmentation object. The rectangle
is set as the initial contour line through the CV model.
The image needs to be corrected by Hough to accurately
locate the damaged location.

Figure 5 shows the original image (a), the initial circular
contour (b), the level set function (c) and the ellipse contour
positioning result corrected by Hough transform (d). It can
be seen that for the barrel with obvious characteristics on
the tank, the rectangular initial contour of the CV model is
modified by Hough change. The elliptical contour can better
locate the whole part of the tank compared with the circular
initial contour. Therefore, this article adopts Hough change.
The revised CV model is used for the positioning of the T72
tank.

3.3. Infrared Lidar Positioning. Suppose Tcamera
lidar is calibrated

as the conversion matrix from the lidar coordinate system to
the camera coordinate system, and the formula is as follows:

Pcamera X, Y , Zð Þ = Tcamera
lidar plidar X, Y , Zð Þ ð9Þ

According to formula (9), the relative three-dimensional
coordinates of the target in the camera can be obtained.

(a) Gray change (b) Binarization

(c) Gaussian filtering (d) Edge extraction

Figure 4: Processing results of the T72 tank.
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Let O − x − y − z be the coordinate system of the camera,
where O is the optical origin, and a point PðX, Y , ZÞ in space
corresponds to a point P′ðX, Y , ZÞ on the image plane, then:

Z
f
= X

X ′
= Y

Y ′
ð10Þ

where f is the focal length of the camera.
Let O − u − v be the pixel coordinate system, u and v axes

are parallel to x axis to the right and y axis down, respec-
tively. If the pixel coordinates are scaled α times on the u
axis and β times on the v axis, the relationship between the
coordinate P′ and the pixel coordinates ½u, v�T is:

u = αX ′

V = βy′

(
ð11Þ

Let αf = f x, βf = f y , be rewritten into a matrix form
through a homogeneous linear equation as:

u

v

1

2
664

3
775 = 1

z

f x 0 0
0 f y 0
0 0 1

2
664

3
775

X

Y

Z

2
664

3
775
def

= 1
Z
KP ð12Þ

where K is the parameter matrix in the camera.
By formula (12), the real coordinates of the target in

space can be obtained, and then it can be combined with

the CapsNetv2 to realize the recognition and positioning of
the radar target.

4. Algorithm Implementation

Figure 6 shows the specific process of the proposed radar
target image recognition and positioning model based on
the CapsNetv2.

(1) Input target images such as BTR70, BMP2 and T72
in the MSTAR dataset as different output vectors
into the CapsNetv2

(2) The primary capsule layer is obtained through the
convolution operation of the 1× 1 reduction layer
and the 3× 3 convolution layer. Then the two image
capsule layers are, respectively, trained and predicted
to obtain 8× 8×255 and 16× 16×255 two prediction
boxes

(3) The dynamic routing algorithm iterative formula (1)
is updated to obtain the characteristic capsule layer

(4) According to formula (4), the maximum probability
of the vector output modulus can be obtained, and
the classification with the maximum probability of
the radar target is obtained, and the two prediction
boxes are mutually verified

(5) A clear and complete edge line is obtained through
edge extraction of the identified target classification
image

(a) (b)
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Figure 5: Accurate positioning results of T72.
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(6) By improving the CV model and the precise posi-
tioning of the infrared lidar, the real three-
dimensional coordinates of the target can be
obtained

5. Experimental Verification

The method proposed in this paper is implemented using
MATLAB R2014b and TensorFlow software. The 6000 radar
target images with complex backgrounds in the MSTAR
dataset are used as the training set, and 20% of the training
set is randomly selected as the test set to verify the accuracy
of the classification.

Example target images are shown in Figure 7. Among
them, (a) and (b) are the T72 tanks in the sand and forest
environments, (c) and (d) are the BTR70 armored vehicles
in the sand and forest environments, and (e) and (f) are
the BMP2 tank in the sand and forest environments.

Figure 7 shows that the CapsNetv2 can accurately iden-
tify radar targets in different complex backgrounds and has
good robustness.

5.1. Different Network Training Effects. To verify the practi-
cability and recognition accuracy of the CapsNetv2, the

radar target images with different complex backgrounds
were used for training, and the performance of the Caps-
Netv2 was compared with that of the deep learning models
of AlexNet and YOLOv4. The learning rate and the step
length were changed and their performances were compared
to select the best value of the parameter. The learning rate
was 0.5, and the total number of steps was equal to 3000 as
the optimal parameter. The training results are represented
by the loss values, as shown in Figure 8.

Figure 8 shows the loss functions of AlexNet, YOLOv4
and CapsNetv2. The following conclusions can be drawn:

(1) The Loss value has shown an overall downward
trend in the training of the three networks, and the
first half of the decline is very fast. However, com-
pared with the AlexNet and YOLOv4 networks, the
initial loss value of the CapsNetv2 is only 0.9. This
is because the AlexNet needs to scramble every time
it reads the data, while in YOLOv4, the MSE loss
itself has certain problems and needs to be replaced
by IOU loss

(2) After the step size reaches 3000, the final loss func-
tion value of the CapsNetv2 is equal to 0.00015,

Input radar 
target 
image

Begin

CapsNetv2 for 
training and 

prediction

Target 
classificati

on

Misidentifi
cation

No

Edge 
detection

Improve CV 
model for 
positioning

Infrared lidar for 
positioning 
correction

End

Yes

CapsNetv2 
classification process

Targeting process

Figure 6: Flowchart of the proposed radar target recognition and positioning.
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which is about ten times smaller than the loss value
of AlexNet. This is because the CapsNetv2 uses a
simpler convolutional layer and a protocol layer,
and two image capsule layers for training. At the
same time, a model can be selected that has not been
trained over-fitting, so that the model has good
robustness

(3) Since there are no corner feature points in the Alex-
Net, and training on a small sample dataset cannot
make the model more stable, once the loss value
reaches 0.5, the model training becomes jittered

and the training is terminated early. However, the
CapsNetv2 retains different features information
and training is more stable, which highlights the
superior performance of the CapsNetv2

In order to verify and improve the learning perfor-
mance of the capsule network, a database was used to ran-
domly select the image data and compared with several
other different algorithms. The results are shown in
Figure 9.

It can be seen from Figure 9 that the recognition rate of
the CapsNetv2 is higher than that of AlexNet and YOLOv4.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Identification effect.
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Through continuous learning, the recognition accuracy
reaches 99.5%. This is the result of learning by multiple vec-
tor capsules and retaining different feature vectors (such as
amplitude and angle). At the same time, the two image cap-
sule layers can be predicted separately, which reduces the
phenomenon of over-fitting and the possibility of
misclassification.

Table 2 compares the recognition times of different algo-
rithms. It can be seen from the table that compared with
AlexNet and YOLOv4, the CapsNetv2 has a shorter classifi-
cation time and is more suitable for detecting radar targets
in different complex backgrounds.

5.2. Target Positioning in a Complex Background. The
improved CV model is used to locate the radar target image
identified in the CapsNetv2. From Steps 4 to 6 in Figure 6,
the precise positioning of the radar target includes edge
extraction, CV model positioning and infrared lidar posi-
tioning correction. The positioning results are shown in
Figure 10.

It can be seen from Figure 10 that the improved CV
model proposed in this paper and then corrected by the

14

12

10

8

6

4

2

0 500 1000 1500 2000
Step

Lo
ss

2500 3000

AlexNet
YOLOv4

0

(a) The loss of AlexNet and YOLOv4

CapsNetv2

1

0.8

0.6

0.4

0.2

0 500 1000 1500 2000
Step

Lo
ss

2500 3000
0

(b) The loss of CapsNetv2

Figure 8: Loss values of different training models.
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Table 2: Identification times of different algorithms.

400∗600 600∗800 800∗100
AlexNet 7.6 8.2 12.4

Yolov4 8.4 8.9 11.6

CapsNetv2 2.5 2.9 4.3
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infrared lidar can accurately locate the radar target images in
different backgrounds.

From the different types of radar targets identified by the
CapsNetv2, a group of 20 images were randomly selected for
precise positioning of the radar target, and compared with
the infrared imaging method and the local feature analysis

method [18]. Table 3 compares the positioning accuracies
of different methods.

Table 3 shows that the proposed radar target recognition
and positioning method that combines the CapsNetv2 and
the CV model is more suitable for small sample learning
and has better training effects. Thus, the proposed method
has higher positioning accuracy than the other methods
and is suitable for different complex backgrounds.

6. Conclusion

With the continuous improvement of military warfare tech-
nology, the real-time detection of different radar targets
under different complex backgrounds is particularly impor-
tant. This paper proposes a radar target detection model
based on the CapsNetv2 and the improved CV model mod-
ified by infrared lidar. The proposed model can identify
radar targets in complex backgrounds and accurately locate

(a) The loss of AlexNet and YOLOv4 (b) The loss of CapsNetv2

(c) CV model positioning of the BTR70 (d) Infrared lidar positioning correction of the BTR70

(e) CV model positioning of the BMP2 (f) Infrared lidar positioning correction of the BMP2

Figure 10: The results of radar target positioning.

Table 3: Comparison of positioning accuracies of different
methods.

Positioning method
Target precise positioning

accuracy rate/%

The CV model+ infrared lidar
positioning

97.5%

Infrared lidar imaging 92.6%

Local feature analysis 90.2%
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their positions. The target positioning algorithm is simulated
and experimentally verified. The following conclusions can
be drawn:

(1) The CapsNetv2 has strong self-learning and adaptive
capabilities, and has a good training effect for small
sample sets. It can effectively detect different types
of radar targets and suppress interference caused by
complex backgrounds. The recognition rate reaches
as high as 99.5%. The reason is that the input of
CapsNetv2 is a vector, which retains the feature
information of the target to the greatest extent, and
through the double-layer image capsule layer for
training, it effectively reduces the over-fitting phe-
nomenon and can more accurately classify different
radar targets

(2) The radar target image identified and classified by
CapsNetv2 is segmented by the improved CV model,
and finally corrected by the infrared laser mine,
which can accurately locate the position of the target.
The accuracy rate of the proposed method reaches
97.5%, which is more suitable for the precise posi-
tioning of radar targets than the other methods

The method proposed in this paper can better realize the
radar target recognition under complex background and can
provide accurate location information to meet the require-
ments of real-time inspection. However, the training time
of the CapsNetv2 for a large number of images is relatively
long. Thus, reducing the training time of the capsule net-
work will be the focus of future research.
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