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The rapid development of the logistics industry leads to an urgent need for intelligent equipment to improve warehouse
transportation efficiency. Recent advances in unmanned logistics vehicles (ULVs) make them particularly important in smart
warehouses. However, the complex warehouse environment poses a significant challenge to ULV transportation path planning.
Multiple ULVs need to transport cargoes with good coordination ability to overcome the low efficiency of a single ULV. The
ULVs also need to interact with the environment to achieve optimal path planning with obstacle avoidance. In this paper, we
propose a supervised deep reinforcement learning (SDRL) approach for logistics warehouses that enables autonomous ULVs
path planning for cargo transportation in a complex environment. The proposed SDRL approach is featured by (1) designing
the supervision module to imitate the behaviors of experts and thus improve the coordination ability of multiple ULVs, (2)
optimizing the generator of the imitation learning based on the proximal policy optimization to boost the learning performance,
and (3) developing the policy module via deep reinforcement learning to avoid obstacles when navigating the ULVs in
warehouse environments. The experiments over dynamic and fixed-point warehouse environments show that the proposed
SDRL approach outperforms its rivals regarding average reward, training speed, task completion rate, and collision times.

1. Introduction

The past few years have witnessed the emerging applications
of mobile edge computing in smart industries with the con-
vergence of sensing, communication, and computing [1–3].
With the rapid development of the intelligent logistics
industry, smart devices are introduced in smart warehouses
[4, 5]. Inspired by the success of unmanned vehicles in the
field of agriculture [6], object detection [7], and IoT [8],
unmanned logistics vehicles (ULVs) are employed to trans-
port goods in a warehouse environment [9]. Since the ULVs
need to be driven autonomously, path planning is of great
importance in improving transportation efficiency [10].

Some warehouses adopt a fixed path solution for
simplicity, but it is vulnerable to complex warehouse envi-
ronments due to the inflexible movement of the ULVs.
And the low efficiency of a single unmanned logistics vehicle
makes it difficult to satisfy the requirements of intelligent
warehouses. Moreover, in a real logistics warehouse environ-

ment, multiple ULVs are often needed to cooperate to com-
plete transportation tasks. Therefore, it is worth designing
the promising approach to make multiple unmanned vehi-
cles cooperatively carry out the logistics and transportation
tasks of the entire warehouse. For example, Faigl et al. model
the multigoal path planning as a generalized traveling sales-
man problem with neighborhoods and design a feasible
solution via heuristic algorithms [11]. Zuo et al. combine
the artificial fish swarm algorithm and particle swarm opti-
mization algorithm to address multiagent cooperative work
and path planning problem [12]. Hu et al. propose a multi-
objective optimization approach based on the COLREGs
and Hi-NDS rules for path planning of autonomous surface
vehicles [13]. Zhao et al. focus on the software-defined
vehicular networks and propose a prediction-based temporal
graph routing algorithm [14] and an intelligent digital twin-
based hierarchical routing scheme [15]. Recently, reinforce-
ment learning (RL) [16] has attracted increasing interest in
multiagent collaboration and path planning problems.
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Wang et al. map the raw sensory measurements of
unmanned aerial vehicles (UAVs) into control signals for
autonomous navigation based on the RL framework, which
enables the UAVs to execute navigation tasks in large-scale
complex environments [17]. Semnani et al. focus on the
problem of distributed motion planning in dense and
dynamic environments and develop a hybrid algorithm by
integrating the advantages of deep reinforcement learning
(DRL) and force-based motion planning [18]. In [19], the
proximal policy optimization (PPO) is utilized to address
the multiagent formation control with obstacle avoidance.
Phiboonbanakit et al. develop a hybrid optimization model
via RL and a complementary tree-based regression method
to solve the vehicle routing problem in transportation logis-
tics [20]. An improved Dyna-Q algorithm is proposed to
deal with the mobile robot path planning in an unknown
environment [21], in which the action-selection strategy, ε
-greedy policy, and heuristic reward function and actions
are utilized to enhance the performance. The RL-based
approaches provide practical solutions to the path planning
problem of unmanned vehicles. However, they fail to
perform well in complex warehouse environments due to
the inability to respond to dynamic changes in complex
warehouse environments adaptively. Therefore, developing
an optimal path planning approach in a complex warehouse
environment is urgently in demand.

In this paper, we propose a supervised deep reinforce-
ment learning approach for the ULVs path planning, termed
SDRL for short, which enables the multiple ULVs to
complete the delivery task via interactive cooperation. By
introducing imitation learning, the proposed SDRL
approach imitates the behavior of experts through the posi-
tive guidance of the expert data, making the multiple ULVs
cooperate and identify task targets quickly. Also, the genera-
tor of imitation learning is optimized by the PPO to enhance
the learning performance of the SDRL. In addition, the pol-
icy module based on DRL is designed to offer an optimiza-
tion strategy for ULVs’ movement with obstacle avoidance
by capturing the feedback from the warehouse environment.

The remainder of this paper is organized as follows.
Section 2 discusses the proposed SDRL approach, including
the problem definition and challenges and the SDRL model.
Section 3 gives the experimental results and analysis, which
is followed by the conclusion in Section 4.

2. The Proposed Approach

This section details the problem definition and challenges and
the SDRL model with the supervision and policy modules.

2.1. Problem Definition and Challenges. The path planning of
the ULVs is greatly affected by the environment in a com-
plex warehouse. In a warehouse with a fixed environment,
for example, the ULVs perform the picking task through a
manually preset path, which leads to increased labor costs
and weak robustness. And rigid predesigned paths make
the ULVs not accomplish cargo transportation tasks or
handle emergencies in a dynamic warehouse environment.
In addition, the coordination of multiple ULVs involves

the problem of scheduling and avoiding collisions with
obstacles or other ULVs.

The path planning of multiple ULVs in warehouse envi-
ronment can be described by a turple <s, a, e,w,R > , where
s = ðs1,⋯, snÞ is the observations of n ULVs, a = ða1,⋯, anÞ
is the actions, e is the warehouse environment, w is the
rewards during the task processing, and R means the opti-
mization model. The proposed SDRL aims to learn a value
function Vρ

c ðs, a ; θÞ that enables multiple ULVs to achieve
the maximum rewards when completing the task of cargo
transportation, that is

argmax
a~ρ

Vρ
c s, a ; θð Þ, ð1Þ

where a ~ ρ and θ means the parameters of the value
function.

Based on the definition above, there are several chal-
lenges when designing the SDRL model. First, the logistics
warehouse is more complex than the conventional reinforce-
ment learning training environment, which makes the path
planning of multiple ULVs more difficult. The DRL cannot
deal with the dynamic changes of the entire environment
adaptively. Secondly, complex warehouse space interferes
with ULVs’ task recognition, which causes the ULVs to stag-
nate in the corner due to the long-term inability to obtain
positive rewards during the training process. It is challenging
for the agent to learn the task target quickly and efficiently
through the DRL. Therefore, it is necessary to introduce
the supervised information to provide positive guidance for
pretraining and thus enable the ULVs can quickly identify
task targets. In addition, when multiple ULVs perform tasks
together in the same logistics warehouse environment, the
difficulty of path planning is further increased due to the
expansion of the joint action space.

2.2. The SDRL Model. To address the challenges described
above, we employ the DRL to cope with dynamic changes
in a complex warehouse environment. In the pretraining
process, positive guidance should be introduced to teach
the ULVs how to accomplish a task, just like teaching kids
to imitate our behavior to perform an assignment. There-
fore, we design a supervised DRL model by integrating the
merits of the DRL and imitation learning. Figure 1 shows
the architecture of the proposed SDRL model which consists
of the supervision module and policy modules. Given the
recorded successful path data as expert data, the supervision
module offers internal rewards by imitating the expert
behaviors. The ULVs interact with the environment to
generate external rewards, and the policy module combines
the internal and external rewards to provide optimization
strategies for path planning.

2.2.1. The Supervision Module. To offer positive guidance to
help the ULVs identify task targets, we design the supervi-
sion module based on generative adversarial imitation learn-
ing (GAIL) [22]. The GAIL is to compare the imitation data
with the expert data through the generative adversarial
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network (GAN) [23, 24] so that the agent can learn the
policy directly from the expert data.

Given the generator G and the discriminator D, the
network calculates the loss function between the imitation
data generated by G and the expert data. Thus, a well-
trained generator can generate imitation data with the same
characteristics as the expert data. According to the study in
[25], the PPO-based generator performs well, so we optimize
the GAIL by using the PPO as the generator, and the value
function of the discriminator D can be described by

Eρ log D s, að Þð Þ½ � + EρE
log 1 −D s, að Þð Þ½ � − γH ρð Þ, ð2Þ

where D and ρ are approximated by the discriminator func-
tion Dμ : S ×A ⟶ ð0, 1Þ with the weight μ, and the policy
ρθ, respectively. ρE means the expert policy, HðρÞ represents
the causal entropy of ρ, and γ is the discount factor of H.
The optimization of the value function is achieved by
performing gradient boosting on μ by the optimizer in the
discriminator and gradient descent on θ by the policy in
the policy module.

2.2.2. The Policy Module. In addition to imitating expert data,
the proposed SDRL model reacts to dynamic environmental
feedback and optimizes the ULVs generation path continu-
ously. The policy module is designed based on deep reinforce-
ment learning, which offers an optimization strategy for the
ULVs’ movement in a complex warehouse environment.

The proposed policy model consists of a decision maker
and a value function. The decision maker generates actions
based on feedback, and the value function processes the
collected internal and external rewards. Given the policy ρ,
the value function of the policy module is given by

Vρ
c s, a ; θð Þ = E wσ s, að Þ + κEa′~ρ Vρ

c s′, a′
� �h ih i

, ð3Þ

where θ is the parameter of function Vρ
c , κ ∈ ð0, 1� is the

discount factor for the rewards, and wσ is defined by

wσ s, að Þ = η ·win s, að Þ + 1 − ηð Þ ·wex s, að Þ, ð4Þ

where η ∈ ð0, 1Þ is the confidence weight of the expert data,
wex is the reward function from the external environment,
and win is the reward function of the imitation learning
model, which is used to measure the similarity between the
imitation data and the expert data.

Algorithm 1 gives the training process of the proposed
SDRLmodel. During the training, the SDRLmodel recursively
optimizes the discriminator D in the supervision module to
reduce the difference between the imitation data and the
expert data. With the rewards of internal and external, the
value function Vρ

c of the policy module can be updated. After-
ward, the policy ρ is updated to achieve the highest cumulative
value while completing the given task. Based on this, a well-
trained model enables the multiple ULVs to accomplish the
cargo path planning in warehouse environments.

3. Experimental Results and Analysis

In this section, we first present the experimental configura-
tion, including the simulation environment, parameter
setting, and evaluation metrics. Then, the experimental
results are discussed to demonstrate the effectiveness and
efficiency of the proposed approach.

3.1. Experimental Configuration. In this paper, we employ the
Unity3D simulation platform to build the warehouse environ-
ment for performance evaluation. As shown in Figure 2, the
white balls represent the target cargoes, the green squares
represent the ULVs, and the dark grey rectangles represent
the obstacles. Based on the path optimized by the proposed

Policy
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data

Value
function Action

External reward

Internal reward

TD error

Environment

Discriminator

Observations

Policy module Supervision module

Expert action

Expert observation
information

Figure 1: The architecture of the proposed SDRL model.
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SDRL model, multiple ULVs aim to efficiently complete the
task of picking up cargoes with obstacle avoidance.

Table 1 summarizes the external rewards configuration
used for setting the model’s environmental scores. Consider-
ing that the ULVs have bumpers and the walls have sponges
or protectors, we set a low negative value for the ULV hitting
the wall. Since the collision of the ULVs with each other may
cause damages to the transported cargoes, the penalty is
twice that of the wall collision. In addition, the rewards from
the target can motivate the ULVs to learn the target task
quickly, so we set positive rewards for the collected cargoes
and the ULVs approaching the target. Similarly, for the
ULV to achieve the goal in the shortest path, we set a nega-
tive reward for each step of the ULVs, so that the ULVs can
take the least steps to accomplish the task under negative
feedback. When all tasks are completed, the ULV will receive
a positive reward.

Four existing algorithmic models are included in the
experiment as performance comparison baselines, namely,
the GAIL model [22], the PPO network model [26], the soft
actor-critic (SAC) network model [27], and the behavior
cloning (BC) network model [28]. In the experiments, we
utilize the same parameter setting for each model, including
the maximum number of steps per agent, the reward value,
and the simulation environment.

During the training process, we set the maximum num-
ber of steps per agent at 100,000 because the ULVs could not
find the task direction and would stagnate in the corner in
the early training process. The simulation environment will
be reset if all target cargoes are picked up. In addition, we
build ten replicates of the simulation environment so that
each agent can learn from all the replicates simultaneously,
thus significantly increasing the training speed. In the exper-
iments, four metrics are defined to evaluate the training
performance of the models.

(i) Average reward. Given a unit time, we record the
rewards per episode of each ULV during a unit
time. The average reward can be calculated by wavg
=wacc/λ, where wavg is the accumulative rewards
in a unit time, and λ is the number of episodes in
a unit time. The higher the wavg is, the better the
training performance is

(ii) Training steps to complete each episode. In the
experiments, we monitor the number of steps the
agent moves in each training set. When the agent
reaches the maximum number of steps or completes

all mission objectives, reset the number of steps. In
this way, the training effect of the agent can be
observed by changing the number of steps in each
episode

(iii) Task completion rate. In one episode, the task com-
pletion rate is defined as the ratio of the number of
cargoes picked to the total number of cargoes,
which is used to see if the agent can complete the
task well

(iv) Collision times. We monitor the number of agent
collisions per episode in the simulation environ-
ment, including collisions with walls, obstacles,
and other agents, which is used to see if the agent
can learn obstacle avoidance

In the following sections, we give the experimental
results in the dynamic environment and fixed-point envi-
ronment to evaluate the performance.

3.2. Experimental Results in Dynamic Environment. In this
section, we build a dynamic environment for performance
evaluation, in which one ULV, two obstacles, and ten cargo
targets are scattered. The cargo locations are randomly
generated, and the entire environment will be reset if either
all cargoes are picked up every time or the ULV reaches
the maximum number of steps. It is noted that the initial
positions of the ULV and cargoes are random in a dynamic
environment, which means that the optimal route for each
episode is uncertain. We prefer that the ULV can learn
how to obtain the maximum reward value, so the system will
generate a penalty when a collision occurs instead of reset-
ting the environment.

The average rewards are given in in Figure 3. We can see
that the proposed SDRL, PPO, and BC finally converge, but
the GAIL and SAC do not. And obviously the SDRL has a
higher convergence speed and stronger stability in compari-
son with its rivals. It is noted that the GAIL model only
copies the expert path to complete the task and fails to
choose an optimal path to increase the reward of each epi-
sode. Since the SAC model [27] is designed for continuous
action settings and does not apply to discrete action settings
[29], it fails to complete the cargo transportation task in any
episode, leading the moving step to reach the maximum
number of steps, i.e., 100,000, in each episode, as shown in
Figure 4. Because we optimize the generator of the GAIL
model with the PPO in the proposed approach, the SDRL
not only imitates the expert paths as GAIL does but also

Input: Expert data, initial parameters μ and θ;
for episode i = 1 toψ do

Update the discriminator D by ascending the stochastic gradient;
Update the internal rewards win and external rewards wex;
Update the value function Vρ

c by wσ;
Update the policy ρ of the DRL by Vρ

c ;
end

Algorithm 1: The Training Procedure of the SDRL.
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takes the influence of the external environment of the PPO
network into account, leading to a higher average reward
than the baseline models.

Figure 5 compares the training steps for completing one
episode of the four models. It can be seen that the proposed
SDRL reduces the average steps below 10,000 steps after 350
episodes and tends to converge gradually. In comparison,
the average steps of the other three models can slowly
decrease with the increase of episodes, but their stability is
poor. The SDRL shows a small fluctuation at the beginning
because the target locations of the simulated environment
are randomly generated, and target cargoes far away require
more steps to complete one episode.

Figure 6 shows the comparison results of the task com-
pletion rate. Compared with the other three models, the
SDRL can reach convergence quickly and maintain good
stability. Due to the designed supervision module, its agent
can select the path by imitating the recorded expert path in
the early stage and then accelerate the learning speed. The
GAIL model can imitate the expert path; however, since
there is no interaction with the environment, the agent
cannot obtain any benefit from the feedback of the environ-
ment. As shown in Figure 6, the completion rate of the GAIL
model is high at the beginning of training, but it shows a big
fluctuation with the increase in training times, leading to
poor convergence. The PPO model generates action paths
based on the environmental reward feedback through
continuous training. The agent can summarize the experi-
ence of the previous operation after a couple of training

times. As a result, the completion rate of the PPO is very
low at the beginning, but it gets bigger as the number of
training increases. The BC model shows the poorest perfor-
mance in task completion rate.

The collision times per episode are shown in Figure 7, in
which the SDRL and PPO models achieve low collision
times. This is because both models consider the feedback
from the external environment. In contrast, the GAIL model
only imitates the expert path without the environmental
feedback, so its collision time is significantly larger. Simi-
larly, the BC model is only based on the path recorded by
imitation, and the agent fails to adjust the training procedure
according to the feedback of the environment. Through
multiple training, although the collision time can be reduced
with the increase of training episodes, its convergence speed
is still relatively low.

3.3. Experimental Results in Fixed-Point Environment. In
this section, we evaluate the performance in a fixed-point
warehouse environment where the initial positions of the
target cargoes and ULVs are fixed. This environment mimics
the real warehouse scenario, where the cargoes are placed in
the designated locations, and the logistics vehicles need to be
trained many times to obtain the optimal path. In the exper-
iment, we prefer that the ULVs can quickly find the unique
optimal path without any collision. Once a collision appears,
the environment should be reset to restart a new trial. There-
fore, when one of the following conditions satisfies, the
warehouse environment will be reset: (1) a collision occurs,
and (2) all the target cargoes are picked up.

3.3.1. Simple Warehouse Environment. Different from the
dynamic cargo experiments in previous sections, in the
fixed-point experiment, the position of each cargo is fixed.
After multiple training, the ULV path will be continuously
optimized, and an optimal fixed path can be obtained. As
shown in Figure 8, this section builds a simple warehouse
environment, in which one ULV, four cargoes, and several
obstacles are distributed in the space.

According to the results shown in Figure 9, both the
SDRL model and the PPO model tend to converge eventu-
ally. The GAIL model starts with the highest average reward,

ULVs
Cargoes
Obstacles

Figure 2: Example of warehouse simulation environment.

Table 1: External rewards configuration.

Reward item Reward value

The ULV reaches the goal +30

The ULV completes all tasks +30

The ULV collides with an obstacle -15

The ULV collides with a wall -15

The ULV collides with another agent -30

The ULV moves a step -0.1

The ULV moves (a step) closer to the target +0.6
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but the training effect worsens as the number of training
steps increases. This is because the GAIL model is greatly
affected by expert paths in the early stage. However, when
the collision with the obstacles happens, the GAIL cannot
get any feedback to optimize the path even if the environ-
ment is continuously reset. By contrast, the SDRL model
and PPO model can summarize previous experiences to

avoid obstacles according to the feedback of the environ-
ment and thus obtain a path with a higher reward.

Figure 10 shows the task completion rate in a simple
fixed-point environment. As shown, the task completion
rate of the three models can reach 100%. When the training
episode is about up to 200, the SDRL accomplishes the goal,
but other models do not. In terms of convergence speed and
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Figure 3: Comparison of average rewards in a dynamic warehouse environment.
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stability, the SDRL model is significantly better than the
other two models.

3.3.2. Complex Warehouse Environment. Figure 11 shows
the simulation environment of a fixed-point complex ware-

house scenario, in which 5 ULVs, 20 target cargoes with
fixed positions and many obstacles are scattered. By adding
the number of the obstacles, we aim to evaluate the perfor-
mance in complex warehouse scenario. Here, we give the
results of the SDRL, PPO, and GAIL models.
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Figure 5: The steps for completing one episode in a dynamic environment.
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Figure 6: The task completion rate in a dynamic environment.
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Figure 12 shows the results of average reward in a
complex fixed-point environment. There are 5 ULVs in
the complex environment, and the average reward is the
average of 5 ULVs rewards. Due to the fixed positions of
target cargoes, the ULVs can choose an optimal fixed path
after training episodes, leading to more stable average
rewards in comparison with the results in a dynamic envi-
ronment. It can be seen that the average rewards of the

three models increase as the number of moving steps
increases. Compared with the results in previous scenarios,
the PPO and GAIL models need much more steps to
achieve the convergence. However, the SDRL model per-
forms well with the highest average reward values and
the fastest convergence speed.

In addition, the task completion rate is shown in
Figure 13. When the episode is up to 5000, the SDRL model
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Figure 7: The collision times per episode in a dynamic environment.
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Figure 8: Simulation environment of a simple fixed-point warehouse scenario.
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Figure 9: Average reward in a simple fixed-point environment.
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almost completes the tasks, but the PPO needs more training
episodes to achieve the 100% task completion rate. More-
over, the PPO model entirely relies on the summary of past
experience to optimize the paths. At the beginning of the
movement, the PPO needs to keep trying to gain experience,
resulting in the lowest completion rate. The GAIL model
lacks interaction with the environment, and the agent

cannot optimize the path through the feedback, showing
the poorest performance in task completion rate. Based on
this, we can see that the proposed SDRL model outperforms
its rivals in complex fixed-point environment.

In summary, the proposed SDRL model shows a better
performance in both dynamic and fixed-point warehouse
environments in comparison with the baselines.

ULVs
Cargoes
Obstacles

Figure 11: Simulation environment of a complex fixed-point warehouse scenario.
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4. Conclusion

In this paper, a supervised deep reinforcement learning
(DRL) approach, i.e., SDRL, is proposed for unmanned
logistics vehicles (ULVs) to automatically plan paths with
obstacle avoidance when transporting cargoes in warehouse
environments. By designing the supervision module, the
agent imitates the behaviors of expert data and offers effec-
tive internal rewards. The policy module based on DRL eval-
uates the feedback from the environment via internal and
external rewards. In this way, an optimized path with obsta-
cle avoidance can be obtained. The experiments conducted
in different warehouse environments show the proposed
SDRL model outperforms the baselines.
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