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In this paper, we consider a backscatter communication (BackCom)-based cognitive network that consists of one primary
transmitter, one primary receiver, multiple secondary transmitters (STs), and one secondary receiver (SR). Each SToperates in the
BackCom or energy harvesting model. Our goal is to jointly optimize the energy harvesting and backscatter time, the transmit
power of the primary transmitter, and the power reflection coefficient of each ST to maximize the sum throughput of all the STs
under a nonlinear energy harvesting model while satisfying multiple constraints, i.e., the energy causality of each ST, the quality of
service of the primary transmitter, etc. ,e formulated problem is nonconvex due to the coupled variables and is hard to solve. In
order to address this problem, we decouple partially coupled variables by using the properties of the objective function and
constructing auxiliary variables, and the remaining coupled variables are decoupled via successive convex approximation (SCA).
On this basis, a SCA-based iterative algorithm is developed to solve the formulated problem. Simulation results are provided to
support our work.

1. Introduction

Increasing demands for intelligent services have boosted the
attention of Internet of,ings (IoT), where massive tiny IoT
devices should be deployed for connecting the physical
environment and cyberspace seamlessly [1]. ,is poses an
urgent need for developing a high spectrum efficient
communication technology in the era of IoT networks. In
this context, cognitive radio has been proposed, where the
IoT nodes are allowed to share the spectrum with the pri-
mary users [2, 3]. Despite the improvement of spectrum
efficiency for tiny IoT nodes, most of them still suffer from
the short life span as they are powered by a limited battery
capacity [4]. In order to address this challenge, wireless
powered hybrid active-passive communication [5, 6] has
been integrated into the cognitive radio, yielding a wireless
powered cognitive hybrid active-passive communication
network [7, 8].

Until now, there are considerable works on the design of
resource allocation schemes for wireless powered cognitive
hybrid active-passive communication network. In [9], the

authors proposed to maximize the rate of an IoT node by
jointly optimizing the energy harvesting time, the back-
scattering time, and the active communication time, while
satisfying that the consumed energy of an IoTnode does not
exceed the harvested energy. Subsequently, this work was
extended into a scenario with multiple IoTnodes [10], where
the main focus was to find the optimal tradeoff among the
energy harvesting time, the backscattering time, and each
IoT node’s active communication time. In the above two
works [9, 10], the rate of the considered backscatter com-
munication was assumed to be a constant. In [11], the
authors considered another wireless powered cognitive
hybrid active-passive communication network, where two
different backscatter communications are introduced, and
proposed an optimal time allocation scheme tomaximize the
throughput of the IoT node. Considering that energy effi-
ciency is an important performance metric in wireless
communications, the authors in [12] maximized the energy
efficiency of an IoT node while considering the primary
interference and imperfect spectrum sensing constraints. In
[13], the authors considered multiple IoT nodes and
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proposed to maximize the energy efficiency of all the IoT
nodes by jointly optimizing the time and power resources,
subject to the minimum throughput requirement of each
IoT node and the energy causality constraint of each IoT
node.

Although the above works have provided a solid
foundation for understanding the resource allocation in
wireless powered cognitive hybrid active-passive commu-
nication networks, some gaps still exist. First, the above
works mainly ignored the interference introduced by the IoT
node. More specifically, for the backscattering time, the
interference from the IoT node to the primary was ignored.
Second, fairness among IoT nodes has not been considered.
,ird, in the practical energy harvester, the output power is a
nonlinear function with respect to the input power [14],
while this nonlinearity has been ignored in most of the
existing works. Motivated by the above observations, in this
paper, we study the throughput fairness in a wireless
powered cognitive hybrid active-passive communication
network that consists of multiple backscatter devices (BDs)
and backscatter receivers (BRs), one primary transmitter
(PT), and one primary receiver (PR). ,e main contribu-
tions are summarized as follows:

(i) A throughput fairness problem is formulated. In
particular, this problem maximizes the minimum
throughput that achieved all IoT nodes by jointly
optimizing the transmit power and time of the
primary transmitter (PT), the BDs’ time sharing
among energy harvesting (EH), backscatter com-
munication (BackCom) and active communica-
tions, and the power reflection coefficient and
transmit power of each BD subject to the quality of
service (QoS), energy causality, and transmit power
constraints.

(ii) We develop an iterative algorithm to solve the
formulated problem. More specifically, we first
derive the optimal transmit power of the PT in a
closed form via contradiction and then construct a
series of auxiliary variables to decouple the coupled
variables. Lastly, successive convex approximation
(SCA) is leveraged to address the nonconvex QoS
constraint. On this basis, an efficient iterative al-
gorithm is proposed to solve the formulated
problem.

(iii) We provide computer simulation to verify the quick
convergence of the proposed algorithm and dem-
onstrate that the fairness throughput can be ensured
by our proposed scheme.

2. System Model

2.1. Basic Settings of the Considered Network. In this paper,
the wireless powered cognitive hybrid active-passive com-
munication and the wireless powered cognitive network
with hybrid active-passive communications are used in-
terchangeably, which is shown in Figure 1. Specifically, the
whole network consists of one PT, one PR, K BDs, and their
receivers, where the PT broadcasts its signals to the PR for

the primary transmission, and the PT’s signals are also
exploited by the K BDs for energy harvesting (EH) and
BackCom. We note that when the PT is idle, each BD can
also use its harvested energy to transmit its information by
active communications. ,at is to say, each BD can back-
scatter its received signals for passive communications when
PT is busy and use its harvested energy for active com-
munications when PT is idle. We note that each BD only
harvests energy from the energy signals from the PT since
the energy harvested from other nodes during active and
backscatter communications is very weak. All the devices are
assumed to be equipped with a single antenna and always
work in the half-duplex mode.,e reasons are as follows: we
note that both EH and BackCom are particularly applicable
to wireless sensor networks for each sensor node’s infor-
mation transmission, where it may be difficult for low-cost
small wireless sensor nodes to have multiple antennas and
work at the full-duplex mode. Meanwhile, all devices with a
single antenna have also been assumed in many related
recent works. All the BDs are energy constrained, where
each BD uses its harvested energy in each transmission block
to support its energy consumption so that the operation time
of each BD is prolonged. We assume that all channels are
quasistatic fading. Let hp and gk (k ∈K � 1, 2, . . . , K{ })

denote the channel gains from the PT to the PR and the k-th
BD, respectively. We denote the channel gains from the k-th
BD to its receiver and the PR as fk and fp,k. ,e channel
gain from the PT to the k-th BD’s receiver (BR) is expressed
as hk. In the beginning of each transmission block, the
channel estimation is adopted by the PT so as to perfectly
know the channel state information (CSI) of all links, and
then the PT can determine the optimal resource allocation
scheme according to the achieved CSI, and the optimal
resource allocation scheme can be performed successively.
In this work, we clarify how to obtain all the channel gains of
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Figure 1: BackCom-based cognitive networks and its frame
structure.
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all links as follows: the channel gain from the PT to the PR
(or the k-th BR) can be obtained by performing the existing
advanced channel estimation methods, e.g., least-square
estimation, etc. ,e value of the product of the forward
channel gain and the backward channel gain from the k-th
BD to the PT (or the k-th BR, the PR) can be obtained by
performing least-square estimation. Due to the channel
reciprocity, the forward channel gain equals the backward
channel gain, and hence, the channel gain from the k-th BD
to the PT (or the k-th BR, the PR) can be obtained.

2.2. Frame Structure. As shown in Figure 2, let T denote the
duration of each transmission block. For the primary
transmission, the whole block can be divided into two
phases. In the first phase, the PT performs information
transmission. Let β with 0≤ β≤T denote the transmission
time of the primary transmission. In this phase, K BDs first
work in the EHmode, where all the received signals are used
to harvest energy and then take turns to work in the
BackCom mode. In particular, let te be the EH time for all
BDs and tk be the backscattering time for the k-th BD.,en,
we have te + 􏽐

K
k�1 tk ≤ β. We note that in the subphase tk, the

k-th BD performs BackCom, while the other BDs still work
in the EH mode in order to improve its harvested energy. In
the second phase with duration T − β, the PT stops its in-
formation transmission, and all the BDs can use their
harvested energy to transmit their information. In order to
avoid co-channel interference among BDs, all the BDs take
turns to perform information transmission. Let τk denote
the transmit time of the k-th BD in this phase.,en, we have
􏽐

K
k�1 τk ≤T − β.
In the following part, we will clarify how the system

works from both the primary transmission and BDs’
transmissions. In the subphase te, we denote P0 as the
transmit power of the PT. ,en, the received signals at the
k-th (k ∈K � 1, 2, . . . , K{ }) BD can be given by

y
k
BD �

����
P0gk

􏽰
xp + NBD, (1)

where xp with E[|xp|2] � 1 expresses the information
transmitted by the PT to the PR, and NBD is the additive
white Gaussian noise (AWGN) at the k-th BD with mean
zero and variance σ2.

In this work, a nonlinear EH model proposed in [14] is
considered to characterize the nonlinearity of practical EH
circuits accurately. ,e reason of considering this nonlinear
EH model is as follows: firstly, according to [14], the
nonlinear EH model proposed in [14] is very accurate, even
more accurate than the existing nonlinear EH models.
Secondly, the use of the nonlinear EH model proposed in
[14] removes the difficulty caused by the nonlinear EH
model since we can prove that the nonlinear EH model
proposed in [14] is concave by using the properties of
practical EH circuits, which greatly reduces the difficulty of
solving the formulated optimization problem. ,en, the
harvested energy at the k-th BD in this subphase can be
calculated as

E
k
e � teϕk P0gk􏼂 􏼃, (2)

where ϕk[x] � ((akx + dk)/(x + vk)) − (dk/vk), ak, dk, and
vk are the given parameters of the considered nonlinear EH
model at the k-th BD and may be different for different BDs.

For the primary transmission, the received signals at the
PR can be expressed as

y
e
PR �

����
P0hp

􏽱
xp + NPR, (3)

where NPR is the AWGN at the PR with mean zero and
variance σ2. Correspondingly, the achievable throughput at
the PR in this subphase can be calculated as

C
p
e � teW log2 1 +

P0hp

σ2
􏼠 􏼡􏼠 􏼡, (4)

where W is the bandwidth of the whole system.
In the subphase tk, let αk with 0≤ αk ≤ 1 denote the

power reflection coefficient of the k-th BD, which decides
how many signals are received at the k-th BD to be back-
scattered.We note that the rest signals will be flowed into the
EH circuit of the k-th BD for EH. Accordingly, the received
signals at the BR in the subphase tk can be represented as

y
k
BR �

��������

αkP0gkfk

􏽱

xpxb,k +

����

P0hk

􏽱

xp + NBR, (5)

where xb,k with E[|xb,k|2] � 1 is the information transmitted
by the k-th BD, and NBR is the AWGN at the BR with mean
zero and variance σ2.

It can be observed from (5) that each BD’s transmission
suffers from the co-channel interference to the primary
transmission, leading to a reduction in the achievable
throughput of the k-th BD via BackCom. Besides, owing to
the double path loss fading of the BD’s transmission, the
signal power from the PT is always higher than that from the
BD. In order to decode xb,k successfully, the successive
interference cancellation (SIC) technology is performed at
the k-th BR. Specifically, the BR should decode the PT’s
transmitted information xp first by treating��������
αkP0gkfk

􏽰
xpxb,k as interference and then cancel the in-

terference
����
P0hk

􏽰
xp since both hk and xp are known by the

BR. On this basis, the transmitted information of the k-th
BD xb,k can be decoded.

Based on (5), we can express the signal to interference
plus noise ratio (SINR) at the BR for decoding xp as
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Figure 2: Frame structure for the considered network.
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c
p

b,k �
P0hk

αkP0gkfk + σ2
. (6)

In order to ensure that the BR can decode xp success-
fully, the following inequality should hold, given by

c
p

b,k ≥ cth, (7)

where cth is the given threshold for decoding xp, indicating
the minimum SINR requirement for decoding xp.

When c
p

b,k ≥ cth holds, we can perform the SIC tech-
nology, and then the signal to noise ratio (SNR) at the BR for
decoding xb,k is given by

cb,k �
αkP0gkfk

ϵP0hk + σ2
, (8)

where ϵ with 0≤ ϵ≤ 1 denotes the interference cancellation
factor.

Correspondingly, the achievable throughput at the k-th
BR in this subphase can be calculated as

Cb,k � tkW log2 1 + ξcb,k􏼐 􏼑

� tkW log2 1 +
ξαkP0gkfk

ϵP0hk + σ2
􏼠 􏼡,

(9)

where ξ denotes the performance gap reflecting the real
modulation [5, 6].

For the k-th BD, its harvested energy is given by

E
b
k � tkϕk P0gk 1 − αk( 􏼁􏼂 􏼃. (10)

,en, in the end of the first phase, the total harvested
energy at the k-th BD can be computed as

Ek � β − tk( 􏼁ϕk P0gk􏼂 􏼃 + tkϕk P0gk 1 − αk( 􏼁􏼂 􏼃

� β − tk( 􏼁
akP0gk + dk

P0gk + vk

−
dk

vk

􏼠 􏼡

+tk

akP0gk 1 − αk( 􏼁 + dk

P0gk 1 − αk( 􏼁 + vk

−
dk

vk

􏼠 􏼡.

(11)

As for the primary transmission, it also suffers from the
co-channel interference from the k-th BD, and the received
signals at the PR in the subphase tk are expressed as

y
k
PR �

����
P0hp

􏽱
xp +

����������
αkP0gkfp,k

􏽱
xpxb,k + NPR. (12)

Since the signal power of the PT is higher than that of the
k-th BD, the PR will decode xp first by treating����������
αkP0gkfp,k

􏽱
xpxb,k as interference. Accordingly, the SINR

at the PR for decoding xp is given by

c
p

k �
P0hp

αkP0gkfp,k + σ2
. (13)

,en, the achievable throughput at the PR in the sub-
phase tk is determined by

C
p

k � tkW log2 1 + c
p

k􏼐 􏼑

� tkW log2 1 +
P0hp

αkP0gkfp,k + σ2
⎛⎝ ⎞⎠.

(14)

When the PT is idle, each BD uses its harvested energy to
transmit information. Let pk denote the transmit power of
the k-th BD in the subphase τk. ,en, the achievable
throughput of the k-th BD in the subphase τk is given by

Ca,k � τkW log2 1 +
pkfk

σ2
􏼠 􏼡. (15)

3. Throughput Fairness for Wireless
Powered Cognitive Hybrid
Active-Passive Communications

In this section, we study the throughput fairness among
different BDs for wireless powered cognitive networks with
hybrid active-passive communications by designing an
optimal resource allocation scheme. In particular, we for-
mulate a throughput fairness optimization problem by
jointly optimizing the transmit power and time of the PT,
the EH time, the BackCom time, and power reflection co-
efficients of BDs, and the transmit power and time of each
BD, subject to multiple constraints, i.e., QoS, energy cau-
sality, transmit power, and power reflection coefficient
constraints. ,en, an efficient iterative algorithm is devel-
oped to solve it.

3.1. Problem Formulation

3.1.1. Optimization Objective. ,e optimization objective is
to guarantee the throughput fairness among different BDs.
Toward this end, a max-min approach is adopted [6, 15].
,us, we determine the optimization objective as maxi-
mizing the minimum achievable throughput of each BD. For
the k-th BD, its total achievable throughput in the whole
transmission block can be computed as

C
k
tot � Cb,k + Ca,k

� tkW log2 1 +
ξαkP0gkfk

ϵP0hk + σ2
􏼠 􏼡 + τkWlog2 1 +

pkfk

σ2
􏼠 􏼡.

(16)

On this basis, the optimization objective is determined
by minkCk

tot.

3.1.2. QoS Constraint for the Primary Transmission. ,is
constraint is to ensure that the achievable throughput of the
PT is not less than its minimum required throughput. Based
on (4) and (14), the achievable throughput of the PT can be
computed as
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Cp � C
p
e + 􏽘

K

k�1
C

p

k

� teWlog2 1 +
P0hp

σ2
􏼠 􏼡

+ 􏽘
K

k�1
tkWlog2 1 +

P0hp

αkP0gkfp,k + σ2
⎛⎝ ⎞⎠.

(17)

Let Cmin denote the minimum required throughput of
the primary transmission. ,en, the QoS constraint for the
primary transmission can be expressed as

Cp � teWlog2 1 +
P0hp

σ2
􏼠 􏼡

+ 􏽘
K

k�1
tkWlog2 1 +

P0hp

αkP0gkfp,k + σ2
⎛⎝ ⎞⎠≥Cmin.

(18)

3.1.3. Energy-Causality Constraint for the BD’s Transmission.
,is constraint is to ensure that each BD only uses its
harvested energy to support the energy consumption for the
passive and active communications so that the energy early
stored in its battery is saved. Following reference [6], a fixed
power consumption model is considered for BackCom,
where the power consumption for the k-th BD is fixed as a
constant, denoted by Pb,k. ,en, the total energy con-
sumption for BackCom at the k-th BD is given by Pb,ktk. Let
pa,k denote the constant circuit power consumption for
active communications at the k-th BD.,en, the total energy
consumption for active communications at the k-th BD can
be computed as pkτk + pa,kτk. On this basis, the energy-
causality constraint for the k-th BD can be represented as

Pb,ktk + pkτk + pa,kτk ≤Ek

� β − tk( 􏼁ϕk P0gk􏼂 􏼃 + tkϕk P0gk 1 − αk( 􏼁􏼂 􏼃, ∀k.

(19)

3.1.4. 8e Minimum Required SINR Constraint for Decoding
xp. ,is constraint is to ensure that the BR can decode xp

successfully. Without this constraint, the BRmay not decode
xb,k, leading to Cb,k � 0. ,us, this constraint is necessary for
the considered network. Accordingly, the minimum re-
quired SINR constraint for decoding xp is given by

c
p

b,k ≥ cth,∀k,⇔
P0hk

αkP0gkfk + σ2
≥ cth, ∀k. (20)

3.1.5. Transmit Power Constraint for the PT. Let Pmax ex-
press the maximum allowed transmit power for the PT.
,en, the transmit power constraint for the PT is given by

0≤P0 ≤Pmax. (21)

3.1.6. 8roughput Fairness Optimization Problem. Based on
(16), (18), (19), (20), and (21), the throughput fairness op-
timization problem is formulated as

P1: max
P0 ,te,β, tk{ }

K

k�1 , αk{ }
K

k�1 pk{ }
K

k�1 , τk{ }
K

k�1

min
k

C
k
tot

s.t.C1: (18),

C2: (19),

C3: (20),

C4: (21),

C5: te + 􏽘
K

k�1tk ≤ β, 􏽘
K

k�1τk ≤T − β,

0≤ β≤T, te, tk, τk ≥ 0, ∀k,

C6: 0≤ αk ≤ 1, ∀k,

(22)

where C1 expresses the QoS constraint for the primary
transmission, C2 denotes the energy-causality constraint for
each BD, C3 is theminimum required SINR for decoding xp,
C4 constrains the maximum transmit power of the PT, C5 is
the constraint for the EH time, the BackCom time, etc., and
C6 is the constraint for the power reflection coefficient of
each BD.

As for P1, it is highly nonconvex and hard to solve. ,e
reasons are as follows: firstly, the min function is involved in
the objective function, which makes the objective function
more complex and difficult to handle. Secondly, both the co-
channel interference and the remaining part due to im-
perfect SIC exist, bringing the difference of convex (DC)
structures in both the objective function and constraint C1
and leading to highly nonconvex objective function and C1.
,irdly, the use of the nonlinear EH model makes C2 more
complex, which brings a new challenge to solve P1. Finally,
except the above difficulties, several coupled relationships
among multiple optimization variables exist, i.e., Pt, tk, and
αk, leading to the nonconvex objective function and con-
straints, e.g., C1, C2, etc.

3.2. Solution. ,is subsection is provided to solve P1 effi-
ciently. Firstly, in order to remove the min function in the
objective function and simplify the objective function fur-
ther, we introduce an auxiliary variable λ into P1 by letting
λ � min

k
Ck
tot. ,en, we can rewrite P1 as

P2: max
P0 ,te,β,λ, tk{ }

K

k�1 , αk{ }
K

k�1 pk{ }
K

k�1 , τk{ }
K

k�1

λ

s.t.C1 − C6,

C7: Cb,k + Ca,k ≥ λ.

(23)

As for P2, it is still nonconvex since the DC structures,
the nonlinear EH model, and the coupled relationships still
exist. In order to handle the DC structure in Cb,k, we provide
the following proposition to determine the optimal transmit
power of the PT P∗0 .

Proposition 1. In the considered network, the minimum
throughput of each BD is maximized when the PT transmit its
information with its maximum allowed transmission power,
e.g., P∗0 � Pmax.
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Proof. Here, we prove Proposition 1 by means of contra-
diction. We assume that P∗0 , t∗e , β∗, λ∗, t∗k􏼈 􏼉

K

k�1, α∗k􏼈 􏼉
K

k�1,􏽮

p∗k􏼈 􏼉
K

k�1, τ∗k􏼈 􏼉
K

k�1} is the optimal solution to P2, where both
P∗0 <Pmax and λ∗ � min

k
t∗k W log2(1 + ((ξα∗k P∗0gkfk)/

(ϵP∗0hk + σ2))) + τ∗k W log2(1 + (p∗k fk/σ2)) hold. ,en, an-
other solution can be constructed, given by P+

0 � Pmax, t+
e �

t∗e , β+ � β∗, t+
k � t∗k , α+

k � α∗k , p+
k � p∗k , τ+

k � τ∗k . Obviously, the
constructed solution is a feasible solution which satisfies all
the constraints of P2. Accordingly, we can compute λ+

as minkt+
k W log2(1 + ((ξα+

k P+
0gkfk)/(ϵP+

0hk + σ2))) + τ+
kW

log2(1 + ((p+
kfk)/σ2)). Since P+

0 � Pmax >P∗0 holds, we can
prove that λ+ > λ∗ is satisfied. ,e reasons are as follows: let
Fk(P0) � tkW log2(1 + ((ξαkP0gkfk)/(ϵP0hk + σ2))).

,en, the first-order derivative of Fk(P0) with respect to P0
is given by

zFk P0( 􏼁

zP0
�

tkWξαkfkgkσ
2

ϵP0hk + σ2􏼐 􏼑 ϵP0hk + σ2 + ξαkfkgkP0􏼐 􏼑In2
.

(24)

Since (zFk(P0)/zP0)> 0 always holds, Fk(P0) will in-
crease with the increasing of P0. ,at is to say, λ+ > λ∗ holds,
which contradicts the assumption that P∗0 <Pmax. ,erefore,
P∗0 � Pmax holds when the minimum throughput of each BD
is maximized for the considered network. Hence, the proof is
complete.

Based on Proposition 1, we substitute P0 � Pmax into P2
and reformulate P2 as

P3: max
te,β,λ, tk{ }

K

k�1 , αk{ }
K

k�1 , pk{ }
K

k�1 , τk{ }
K

k�1

λ

s.t.C1′: 􏽘

K

k�1
tkW log2 1 +

Pmaxhp

αkPmaxgkfp,k + σ2
⎛⎝ ⎞⎠

+ teWlog2 1 +
Pmaxhp

σ2
􏼠 􏼡≥Cmin,

C2′: Pb,ktk + pkτk + pa,kτk ≤ β − tk( 􏼁ϕk Pmaxgk􏼂 􏼃

+ tkϕk Pmaxgk 1 − αk( 􏼁􏼂 􏼃,∀k,

C3′: 0≤ αk ≤min
Pmaxhk − cthσ

2

Pmaxfkgkcth

, 1􏼠 􏼡,∀k,C5,

C7′: tkWlog2 1 +
ξαkPmaxgkfk

ϵPmaxhk + σ2
􏼠 􏼡

+ τkWlog2 1 +
pkfk

σ2
􏼠 􏼡≥ λ,∀k,

(25)

where C3′ is the combination of C3 and C6.
It can be observed from P3 that P3 is still a nonconvex

problem. To deal with the coupled relationships among
different variables, i.e., αk and tk, pk and τk, the following
auxiliary variables, xk � αktk, yk � pkτk,∀k, are introduced
in P3 to replace variables αk, pk,∀k. ,en, P3 is reformulated
as

P4: max
te,β,λ, tk{ }

K

k�1 , xk{ }
K

k�1 , yk{ }
K

k�1 , τk{ }
K

k�1

λ

s.t.C1″: 􏽘

K

k�1
tkW log2 1 +

Pmaxhptk

xkPmaxgkfp,k + tkσ
2

⎛⎝ ⎞⎠

+ teWlog2 1 +
Pmaxhp

σ2
􏼠 􏼡≥Cmin,

C2″: Pb,ktk + yk + pa,kτk ≤ β − tk( 􏼁ϕk Pmaxgk􏼂 􏼃

+ tkϕk

Pmaxgk tk − xk( 􏼁

tk

􏼢 􏼣,∀k,

C3″: 0≤xk ≤ tk × min
Pmaxhk − cthσ

2

Pmaxfkgkcth

, 1􏼠 􏼡,∀k,C5,

C7″: tkWlog2 1 +
ξxkPmaxgkfk

tk ϵPmaxhk + σ2􏼐 􏼑
⎛⎝ ⎞⎠

+ τkWlog2 1 +
ykfk

τkσ
2􏼠 􏼡≥ λ,∀k,

(26)

where αk � (xk/tk), pk � (yk/τk), ∀k. □

Proposition 2. As for P4, the objective function and all the
constraints except C1″ are convex.

Proof. It can be observed that the objective function and the
constraint C3″ are linear, which are also convex. For the
constraint C7′′, using the fact that the perspective function
can preserve convexity, we can conclude that the convexities
of functions tkW log2(1 + ((ξxkPmaxgkfk)/(tk(ϵPmaxhk+

σ2)))) and τkW log2(1 + (ykfk/τkσ2)) are the same as those
of W log2(1 + ((ξxkPmaxgkfk)/(ϵPmaxhk + σ2))) and W

log2(1 + (ykfk/σ2)). Since both W log2(1 + ((ξxkPmax
gkfk)/(ϵPmaxhk + σ2))) and W log2(1 + (ykfk/σ2)) are
concave functions, tkW log2(1 + ((ξxkPmaxgkfk)/(tk

(ϵPmaxhk + σ2)))) and τkW log2(1 + (ykfk/τkσ2)) are also
concave. ,us, C7″ is a convex constraint.

For the constraint C2″, its convexity depends on the
convexity of tkϕk[(Pmaxgk(tk − xk))/(tk)]. According to the
perspective function, the convexity of tkϕk[(Pmaxgk (tk −

xk))/(tk)] is the same as that of ϕk[Pmaxgk(1 − xk)]. As
pointed out in [6], ϕk[Pmaxgk(1 − xk)] can be proved to be
concave by using the properties of practical EH circuits.
,us, the constraint C2′′ is convex.

Based on the above analysis, Proposition 2 is achieved,
and the proof is complete.

We note that the nonconvexity of C1′′ is due to the
existence of the DC structure, i.e., 􏽐

K
k�1 tkW log2(1+

((Pmaxhptk)/(xkPmaxgkfp,k + tkσ2))). To address this
problem, we use the SCA method to deal with the non-
convexity of C1′′. Specifically, we first replace 􏽐

K
k�1

tkW log2(1 + (Pmaxhptk)/(xkPmaxgkfp,k + tkσ2)) with its
first-order Taylor expression so that C1′′ can be turned into
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a linear constraint, which is always a convex constraint.
,en, we can use the existing convex tools to solve the
convex subproblem by changing P4 with the first-order
Taylor expression. Finally, an efficient iterative algorithm is
proposed based on the SCA method to solve P4, where the
above subproblem is solved in each iteration.

Let Gk[αk] denote tkW log2(1 + ((Pmaxhp)/(αkPmax
gkfp,k + σ2))). ,en, 􏽐

K
k�1 tkW log2(1 + ((Pmaxhptk)/(xk

Pmaxgkfp,k + tkσ2))) can be denoted by 􏽐
K
k�1 Gk[αk]. By

taking the first-order derivative of Gk[αk] with respect to αk,
we have

zGk αk􏼂 􏼃

zαk

�
− Pmax2hpgkfp,kWtk

αkPmaxgkfp,k + σ2 + Pmaxhp􏼐 􏼑 αkPmaxgkfp,k + σ2􏼐 􏼑In2
. (27)

Accordingly, the first-order Taylor expression of Gk[αk]

on a given value α0k can approximate Gk[αk] as

Gk αk􏼂 􏼃 ≈
zGk α0k􏼐 􏼑

zα0k
αk − α0k􏼐 􏼑 + Gk α0k􏽨 􏽩

�
− Pmax2hpgkfp,kWtk αk − α0k􏼐 􏼑

α0kPmaxgkfp,k + σ2 + Pmaxhp􏼐 􏼑 α0kPmaxgkfp,k + σ2􏼐 􏼑In2
+ Gk α0k􏽨 􏽩

�
− Pmax2hpgkfp,kW xk − α0ktk􏼐 􏼑

α0kPmaxgkfp,k + σ2 + Pmaxhp􏼐 􏼑 α0kPmaxgkfp,k + σ2􏼐 􏼑In2
+ Gk α0k􏽨 􏽩,

(28)

where α0k will be updated in each iteration based on αk

obtained in the previous iteration.
Based on (28), the following subproblem can be obtained

from P4, given by

P5: max
te,β,λ, tk{ }

K

k�1 , xk{ }
K

k�1 , yk{ }
K

k�1 , τk{ }
K

k�1

λ

s.t.C1‴: 􏽘
K

k�1

− Pmax2hpgkfp,kW xk − α0ktk􏼐 􏼑

α0kPmaxgkfp,k + σ2 + Pmaxhp􏼐 􏼑 α0kPmaxgkfp,k + σ2􏼐 􏼑

×
1
In2

+ Gk α0k􏽨 􏽩 + teWlog2 1 +
Pmaxhp

σ2
􏼠 􏼡≥Cmin,

C2″,C3″, C7″.

(29)

□

Proposition 3. P5 is convex and can be efficiently solved by
using the existing convex tools.

Proof. It can be observed that C1‴ is a linear constraint,
which is obviously convex. Combining with Proposition 2,
P5 is convex, which can be efficiently solved by using the
existing convex optimization tools. □

3.3. Iterative Algorithm. In this subsection, we propose an
efficient iterative algorithm to solve P4, as shown in Algo-
rithm 1. In particular, the subproblem P5 is optimally solved
under given α0k,∀k in each iteration, and the values of α0k,∀k

are updated based on the optimal power reflection coeffi-
cients α∗k ,∀k obtained in the previous iteration. We note that
for the first iteration, the values of α0k,∀k are predefined. ,e
optimal solution to P4 is achieved when the algorithm
converges, namely, the stop condition |α∗k − α0k|≤ ε with the
maximum tolerance ε is satisfied.

We provide the analysis of the computational complexity
of Algorithm 1 as follows: we assume that the interior point
method is applied to solve P5 with given α0k,∀k. Let m1 and
Nu denote the number of the inequality constraints of P5
and the number of iterations for Algorithm 1, respectively.
,en, the computational complexity of Algorithm 1 can be
calculated as NuO(

���
m1

√ log(m1)) [16].
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4. Numerical Results

In this section, we use computer simulations to verify the
superiority of our proposed resource allocation scheme and
the effectiveness of the proposed algorithm. Unless other-
wise specified, the basic simulation parameters are set, as
shown in Table 1 [11, 13]. According to [14], we set
ak � 2.463, dk � 1.635, and vk � 0.826,∀k to characterize the
used nonlinear EH model clearly. Besides, all the channels
are set as follows: Following the standard channel fading
model, the channel gain is the product of the small-scale
fading and the large-scale fading. Let gk

′, fk
′, hk
′, fp,k
′,and hp

′
denote the small-scale fadings of the PT-the k-th BD link, the
k-th BD-its receiver link, the PT-the k-th BR link, the k-th
BD-the PR link, and the PT-PR link, respectively. We denote
D1,k, D2,k, D3,k, D4,k, and Dp as the distances of the PT-the
k-th BD link, the k-th BD-its receiver link, the PT-the k-th
BR link, the k-th BD-the PR link, and the PT-PR link, re-
spectively. ,en, we have gk � gk

′D− ζ
1,k, fk � fk

′D− ζ
2,k,

hk � hk
′D− ζ

3,k, fp,k � fp,k
′D− ζ

4,k, and hp � hp
′D− ζ

p , where ζ de-
notes the path loss exponent. Here, we set ζ � 3, D1,1 � 11
m, D1,2 � 12 m, D1,3 � 15 m, D1,4 � 14 m, D2,1 � 40 m,
D2,2 � 35 m, D2,3 � 32 m, D2,4 � 35 m, D3,1 � 35 m,
D3,2 � 32 m, D3,3 � 40 m, D3,4 � 35 m, D4,1 � 50 m,
D4,2 � 55 m, D4,3 � 53 m, D4,4 � 52 m, and Dp � 30 m.

In order to illustrate the superiority of the proposed
scheme, we compare the performance under the proposed
scheme with that of the following benchmark schemes:
backscatter-assisted cognitive networks and wireless pow-
ered cognitive networks. For the backscatter-assisted cog-
nitive networks, each BD only backscatters its information to
its receiver, while for the wireless powered cognitive net-
works, each BD first harvests energy from the PT’s signals
when PT is busy and then uses its harvested energy to
transmit its information to its receiver. We note that both
backscatter-assisted cognitive networks and wireless pow-
ered cognitive networks can be regarded as special cases for
the considered network and can be obtained after a few
changes on the considered network. For example, let pk � 0
and τk � 0 and the backscatter-assisted cognitive networks
can be achieved. ,at is to say, the proposed algorithm can

also be used to obtain the optimal schemes under back-
scatter-assisted cognitive networks and wireless powered
cognitive networks.

Figure 3 shows the convergence of Algorithm 1, where
different settings of Pmax are considered. Here, we set Pmax as
0.5W, 0.8W, and 1W, respectively. It can be seen that
Algorithm 1 can always converge to a certain value after only
a few iterations, i.e., 2 iterations, which illustrates the
convergence of Algorithm 1 and shows that Algorithm 1 is
computationally efficient. Besides, we can also see that with a
larger Pmax, the minimum throughput achieved by BDs also
increases. ,is is because the optimal transmit power of the
PT is determined by Pmax and a larger P0 brings a higher
throughput.

Figure 4 shows the minimum throughput achieved by
BDs versus the maximum allowed transmit power of the PT
Pmax, where Pmax is varied from 0.5W to 2.5W. In order to
demonstrate the superiority of the proposed scheme, we
compare the performance under the proposed scheme with
that of backscatter-assisted cognitive networks and wireless
powered cognitive networks. It can be seen that the mini-
mum throughput achieved by BDs increases with the in-
creasing of Pmax since a larger Pmax means a higher P0, which
brings a higher throughput for each BD. Besides, comparing
with backscatter-assisted cognitive networks and wireless
powered cognitive networks, we can also find that the
proposed scheme outperforms the other schemes as the
proposed scheme has more flexibility to use resources ef-
ficiently, which also illustrates the advantages of the pro-
posed scheme.

Figure 5 shows the minimum throughput among BDs
versus the minimum required throughput for the PT, Cmin,
where Cmin is ranged from 1Mbyte to 1.5Mbytes. From this
figure, it can be seen that the minimum throughput achieved
by BDs decreases with the increasing of Cmin, as a larger Cmin
means a higher QoS requirement for the PT’s transmission,
and more resources will be allocated to the PT, leading to a
reduction to the throughput achieved by each BD. By
comparisons, we can see that the proposed scheme can
achieve higher throughput than the other schemes, verifying
the advantages of the proposed scheme.

Algorithm 1: An efficient iterative algorithm for solving P4.
(1) Set the maximum tolerance ε and the maximum number of iterations Imax;
(2) Set the iteration index i � 1 and the initial given values α0k,∀k;
(3) repeat
(4) Solve P5 with given α0k,∀k via CVX, to obtain its optimal solution, denoted by t∗e , β∗, λ∗, t∗k􏼈 􏼉

K

k�1, x∗k􏼈 􏼉
K

k�1, τ∗k􏼈 􏼉
K

k�1, y∗k􏼈 􏼉
K

k�1􏽮 􏽯;
(5) Compute α∗k as (x∗k /t

∗
k ),∀k and p∗k as (y∗k /τ

∗
k ),∀k;

(6) if |α∗k − α0k|≤ ε then
(7) Set Flag � 1;
(8) else
(9) Set Flag � 0 and i � i + 1;
(10) Update α0k as α0k � α∗k ,∀k;
(11) end if
(12) until Flag � 1 or i � Imax.
(13) Output the optimal solution to P4 as t∗e , β∗, λ∗, t∗k􏼈 􏼉

K

k�1, α∗k􏼈 􏼉
K

k�1, τ∗k􏼈 􏼉
K

k�1, p∗k􏼈 􏼉
K

k�1􏽮 􏽯.

ALGORITHM 1
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Table 1: Basic simulation settings.

Parameters Notation Value
,e entire time block T 1 s
,e system bandwidth W 100 kHz
,e constant circuit power consumption for BackCom at the k-th BD Pb,k 10 μW
,e constant circuit power consumption for active communications at the k-th BD pa,k 1mW
,e maximum transmit power at the PT Pmax 1W
,e performance gap reflecting the real modulation for BackCom ξ − 15 dB
,e noise power σ2 − 60 dBm
,e number of BDs K 4
,e minimum required throughput of the PT Cmin 1000 kbytes
,e threshold required for decoding xp cth 20
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Figure 3: ,e convergence of Algorithm 1 under different settings of Pmax.
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Figure 4: ,e minimum throughput among BDs versus the maximum allowed transmit power of the PT.
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Figure 6 compares the BD fairness achieved by the
proposed scheme, denoted by max-min throughput, and the
sum throughput maximization scheme, denoted by sum
throughput maximization, under two cases, where the set-
tings of the channels are different. It can be seen that there
exists a tradeoff between the sum throughput maximization

and the max-min throughput. Specifically, the proposed
scheme can greatly improve the fairness among BDs while
the average throughput among all BDs is reduced. ,is is
because, for the proposed scheme, more resources will be
allocated to the BD with a worst channel condition for good
throughput fairness, while for the sum throughput
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Figure 5: ,e minimum throughput among BDs versus the minimum required throughput for the PT.
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Figure 6: Fairness comparison.
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maximization, more resources will be allocated to the BD
with a better channel condition for achieving the maximum
throughput of all BDs.

5. Conclusions

In this paper, we have studied the throughput fairness for the
wireless powered cognitive hybrid active-passive commu-
nication network while considering a nonlinear EH model.
In particular, we have formulated an optimization problem
to maximize the minimum throughput that achieved all BDs
by jointly optimizing the transmit power and time of the PT,
the BDs’ time sharing among EH, BackCom and active
communications, and the power reflection coefficient and
transmit power of each BD subject to the QoS, energy
causality, transmit power constraints, etc. In order to solve
this problem, the optimal transmit power of the PT was
firstly achieved by means of contradiction, and then an
efficient iterative algorithm was developed to obtain the
optimal solutions. Simulation results verified the quick
convergence of the proposed algorithm and demonstrated
the superiority of the proposed scheme in terms of
throughput fairness.
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