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Recently, deep learning has become the mainstream solution to solve specific emitter identification (SEI) problems. However,
because large amounts of labeled signal samples cannot be obtained in noncooperative scenarios, the performance of deep
learning-based data-driven methods for SEI was limited. As a result, a novel SEI method targeted on few-shot was proposed in
this study. First, the received signal was preprocessed based on variational mode decomposition and the Hilbert analysis to
obtain the Hilbert time-frequency spectrum. Subsequently, a classification neural network model was built and trained with a
small number of Hilbert time-frequency spectrum samples through meta-learning. This model could identify specific emitters
with limited training samples. The experimental results showed that this method accomplishes network training with as few as
80 training samples while obtaining a good level of generalization and effectively identifying different emitter individuals. In
addition, this method exhibits a strong robustness to noise by maintaining an identification accuracy of more than 80% in
channels with low signal-to-noise ratios. Finally, the proposed method demonstrated better identification performances than

other existing methods with its capability to effectively solve SEI problems in the few-shot scenario.

1. Introduction

Specific emitter identification (SEI) refers to a technology that
correlates a received signal to its emitting source, only utilizing
certain external features of the signal [1-3]. Such external fea-
tures, often referred to as radiofrequency fingerprints (RFFs)
of the specific emitting source, are generated by the nonlinear
characteristics of the hardware inside the emitter. They are
unique, independent of the signal content, and consistent in
different signals from the same emitter. However, signals emit-
ted from different emitters exhibit distinct features, i.e., they
are distinguishable RFFs, even if the emitter devices are from
the same manufacturer, of the same model, or even of the
same batch [4-6].

SEI is a crucial technology for cognitive radio [7, 8].
Dynamic spectrum access (DSA), an effective method of
improving spectrum utilization, allows cognitive radio net-
works to use the current spectral resources more efficiently
[9-12]. Moreover, to solve the problem of mutual interfer-
ences in DSA networks, identity authentication has usually

been used to ensure the security of wireless communication
systems. Through SEI, subtle features of the wireless radio sig-
nals can be determined with the help of signal processing tech-
niques. Subsequently, together with the critical system, a
hardware-software dual authentication system can be estab-
lished to improve the security performance of the wireless sys-
tem significantly.

In contrast, wireless radio technologies have been widely
used across various industries. Mutual interferences between
radio services and spectrum congestions must be prevented
and avoided to meet the wireless industry’s increasing demand
for radio spectrums. For this purpose, legitimate radio stations
must be monitored for strict compliance with the designated
working parameters. Moreover, pirate radios must be tracked
down. By applying SEI techniques to the captured signals in
the radio monitoring equipment, it becomes possible to distin-
guish between the legitimate and pirate radio stations by ana-
lyzing the working parameters within the frequency bands
allocated to them and extracting their hardware features. In
this manner, regulating the usage of spectrum resources can
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be achieved. Moreover, it enhances the radio equipment’s abil-
ity to distinguish users of different nature, as well as in the
detection of unknown interference signals.

In recent years, extensive research on SEI has been con-
ducted. Padilla et al. [13] proposed a method to extract RFFs
which utilizes the spectrum information of signal preambles,
with which several Wi-Fi devices have been successfully identi-
fied. Yuan et al. [14] designed an algorithm that can extract 13
features of the time-frequency power spectrum of RF signals to
construct a feature vector for SEL Although redundancies have
been found in the extracted features, the represented informa-
tion has still been considered insufficient, limiting the identifica-
tion performance. Zhang et al. [15] extracted the energy
entropy, first moment, and second moment of the time-
frequency power spectrum as RFFs. However, the time-
frequency power spectrum has not been partitioned, implying
a lack of consideration of the power distribution across the spec-
trum, the impact of which on the identification performance
can hardly be neglected. Satija et al. [16] decomposed the
received RF signals into finite modal components through var-
iational mode decomposition (VMD). With the VMD entropy
and cumulant constructed as RFFs of the emitter individuals,
the SEI problem in a Rayleigh channel has been effectively
solved. It is still not possible to establish an accurate mathemat-
ical model that explains the generation mechanism of RFFs.
Therefore, deep learning techniques have been widely adopted
to avoid expert intervention for SEI. Zhang et al. [17] have pro-
posed a method of SEI using a convolutional neural network
(CNN). In reference [18], seven ZigBee devices have been suc-
cessfully identified, utilizing the error of the received baseband
signal as the input of CNN. The long short-term memory
(LSTM) technique has been adopted in reference [19] to learn
the high-order correlation of received signals to identify multi-
ple USRP devices effectively. In reference [20], transient signals
have been processed by recurrence plots (RP) transforms, con-
tinuous wavelet transforms, and short-time Fourier transforms,
respectively, before being fed to the CNN.

Consequently, 12 wireless devices have been successfully
identified. Wong et al. [21] proposed a CNN model devised
to estimate the gain deviation and phase deviation of the in-
phase and quadrature components of the RF signals to iden-
tify the emitter individuals. He and Wang [22] proposed
three signal preprocessing schemes: empirical mode decom-
position (EMD), intrinsic time-scale decomposition (ITD),
and VMD. Subsequently, an LSTM network has been used
to extract RFFs to perform SEL

The existing methods have promoted the development
of SEI technologies; however, these methods can only
achieve good identification performance when there are suf-
ficient training samples. In practice, SEI technologies are
mainly used in noncooperative scenarios, where it is difficult
to obtain many signal samples with labeled information.
Therefore, the traditional deep learning models are incapa-
ble of obtaining good training results, resulting in limited
identification performance of the system. In this study, an
SEI method in the few-shot scenario was proposed.

First, a signal preprocessing method based on VMD and
the Hilbert analysis was introduced, which transformed the
original RF signal into a Hilbert time-frequency spectrum
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to highlight its RFFs and thus enhance the distinguishability
of different types of RF signals. Next, the classification neural
network model was built, with the Hilbert time-frequency
spectrum as its training samples, and the meta-learning algo-
rithm was employed to conduct the training. Subsequently,
the proposed networK’s ability to uncover the intrinsic and
general characteristics of the signal data under test with only
a few training samples was verified. Therefore, the proposed
method has good identification performance and can effec-
tively solve the few-shot SEI problem.

The remainder of this paper is organized as follows. In
Section 2, we introduce the signal preprocessing scheme based
on variational mode decomposition and the Hilbert analysis.
In Section 3, we introduce the proposed few-shot SEI method
based on meta-learning. In Section 4, we present and discuss
the experimental results. Finally, we conclude the paper.

2. Signal Preprocessing

2.1. Variational Mode Decomposition. As a new signal
decomposition technique, VMD can decompose nonlinear
signals in the time domain and frequency domain to obtain
finite modal components [23], which can be realized by
modeling the constrained variational problem as follows:

enlg 2 (0 £) v

st () =£(1),
k=1

where v, (t) represents the k-th modal component, w, repre-
sents the corresponding central frequency, f(f) represents
the original signal, and 8(¢) represents the impulse function.

The constrained variational problem can be solved by
the augmented Lagrangian multiplier algorithm, where the
augmented Lagrangian function D({v,(¢)}, {w;}, A(t)) can
be expressed as follows:

K

D({v(t)} {w} Mt)) = <Z

where A(t) represents the Lagrange multiplier. The modal
component {v,(¢)} can be obtained by solving the saddle
point according to the augmented Lagrangian function D
({vi(0)}, {w}, A(#)). The alternate direction method of
multipliers (ADMM) algorithm was used to resolve the
problem through the following sequence:

Step 1: update the modal component as follows:

Fw) = Y V(@) + A(w)/2

1+ 2a(w - o)’

Vi (w) =

(3)
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Step 2: update the central frequency as follows:

Wl = J§ | Vi(w)Pdw
I3 IVi(w)Pda

Step 3: update the Lagrange multiplier as follows:

Aw) =A(w) +¢ lF(w) - kz Vi(w) ()

Step 4: repeat Steps 1 to 3 until the following condition is
achieved:

K
YIVE @) - Vi@)f; <& (6)
k=1

where F(w) represents the spectrum of the original signal f (¢),
V. (w) represents the spectrum of the modal component v, (¢),
A(w) represents the spectrum of the Lagrange multiplier A(¢),
n represents the iterative variable, and ¢ represents the thresh-
old coefficient (assuming & = 10~ in this study).

2.2. Hilbert Analysis. First, the Hilbert transformation is
applied [24] to the decomposed modal components as follows:

(1) = lro Vk_(t) dr. (7)

Consequently, the instantaneous amplitude a,(¢) and
instantaneous frequency wy(t) of each modal component are
calculated as follows:

a(t) = 72 (0) + (1) ®)
- Vi(t)
0,(t) = arctan V,I:(t) , 9)
_da,(t)

: (10)
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The Hilbert time-frequency spectrum of the signal after
Hilbert transformation is as follows:

H(t,w) = Re li a (1)) “W)‘“] . (11)

k=

—

3. Few-Shot Specific Emitter Identification
Method Based on Meta-Learning

3.1. Classification Neural Network Model. The classification
neural network model [25] was used to process RF signals
to extract RFFs comprehensively, and its structure is shown
in Figure 1.

The Hilbert time-frequency spectrum of the original RF
signal was used as the network input vector x. First, it was
fed into a CNN of multiple convolution layers (CNN I, II,

and III) for feature extraction. The convolution layers con-
tained several convolution kernels, which were used to convo-
lute the feature map from the previous layer. The ReLU
function was used to activate the convolution layers and intro-
duce nonlinear factors, which was helpful in the extraction of
complex deep features [26, 27]. Subsequently, vectorization of
distributed features was realized using the extracted feature
maps through the fully connected layers (Dense I and II).
Finally, the output vector of the last fully connected layer
Dense II was mapped by the softmax function to obtain C
different output probabilities, among which the highest
probability corresponded to the specific type of the identified
emitting source.

The training loss function of the classification neural
network model can be expressed as follows:

N

22 2 vxlog [fo(<”)], (12
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where x§"> represents the n-th Hilbert time-frequency spec-
trum sample corresponding to RF signals of class i, f,(-) rep-
resents the mapping function of the classification neural
network model with weight parameter 6, and y; represents
the label vector of class i, which is represented by the single
one-hot encoding vector.

3.2. Meta-Learning. Traditional machine learning algorithms
required multiple signal samples with labels to train the classifi-
cation neural network model introduced in the previous sec-
tion. However, in practice, it is challenging to label multiple
signal samples. Consequently, unfit training networks and
unsatisfactory results were obtained. Therefore, the meta-
learning [28] algorithm was proposed, which utilized only a
small number of labeled signal samples for network training.
Unlike traditional machine learning techniques, the basic train-
ing unit of meta-learning is a task [29], generated using the fol-
lowing procedure: (1) assume that the training data set D, ;,
contains C classes of signals, and C,(C, < C) classes of signals
are randomly selected to form a training subdataset D,;,_,,,ins
(2) for each class that belongs to C;, P training samples are ran-
domly sampled to form a support set S,, = {(x,,, ¥,,) }> which
contains a total of C; x P signal training samples; (3) a query set
Q= { (%> Y4n)} is formed by sampling R training samples
from the remaining data of each signal class, which contains a
total of C, x R signal training samples; (4) finally, a task T, =
(S,,» Q,,)is formed by support set S,, and query set Q,,, and
accordingly, the universal set of tasks T'={T,, T,--,T
Ty} is obtained for meta-learning.

For the task T,,, the parameter 6 of the meta-learner is
assigned to a temporary network, which has the same struc-
ture as the meta-learner, and its network parameter is defined
as @, . Next, the temporary network is trained using a support
set S,,, whose loss function can be expressed as follows:

PRI

L, (%o Vo) 16) = = Ciz S s log o (5ns) |

1 i=1 n=1
(13)
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FiGure 1: Structure of the classification neural network model.

Consequently, the parameter ¢,
network can be updated as follows:

of the temporary

aLTm ((xsm’ysm> ; 0)

Py=b—-a- 20 > (14)

where « represents the learning rate used to train the tempo-
rary network.

Subsequently, the temporary network is tested by query
set Q,,, and the gradient loss is calculated to optimize the
meta-learner’s parameters as follows:

L (o n) ) =, 3 2 pame 1 [ £, (55)
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where [ represents the learning rate used to train the meta-
learner.

It is discernible that the temporary network focuses on
exploring the characteristics of a single task through data anal-
ysis and modeling, while the meta-learner specializes in
understanding the common feature representation of all tasks
through summarizing and analyzing the training results of the
temporary network. Specifically, the common feature repre-
sentation of the tasks represents the general and intrinsic char-
acteristics implied in the training data. A good understanding
of such common characteristics acquired by the meta-learner
indicates its promising capability for generalization. Accord-
ingly, the meta-learner can provide more optimal initial values
to the temporary network on the new tasks, thus making the
temporary network achieve training fitting through a few iter-
ations on the condition of few samples. The training results are
fed back to the meta-learner to improve its generalization per-
formance further [30]. Therefore, the meta-learning algorithm
is considered suitable for few-shot training.

3.3. Algorithm Flow. Based on the theoretical analyses pre-
sented in previous sections, the algorithm flow of specific
emitter identification based on meta-learning is summarized
in this section.

FiGure 2: SDR platform.
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FiGURE 3: Structure of the classification neural network model.

Step 1: obtain the Hilbert time-frequency spectrum
through preprocessing the received RF signals, which is used
as the training sample to construct the training data set
D, that contains C classes of signals.

Step 2: acquire M meta-learning tasks T ={T,, T,, ",
T, Ty} by sampling the training data set D,,,;,,-

Step 3: for task T, train the temporary network with
support set S, according to Equation (13); and then update
the temporary network parameter ¢, following Equation (14).
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FIGURE 4: Identification accuracy on different numbers of training samples.
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FIGURE 5: Identification accuracy of different propagation channels.

Step 4: test the temporary network with query set Q,; cal-
culate the gradient loss based on Equation (15); and then opti-
mize the meta-learner parameters according to Equation (16).

Step 5: repeat Steps 3 and 4 until meta-learning of all
tasks is completed.

4. Experiment Results and Analyses

4.1. Data Acquisition and Network Modeling. This section
explains the experiments’ data acquisition through a software-
defined radio (SDR) platform, as shown in Figure 2.

Seven USRP devices of the same model were used to obtain
signals from different emitter individuals, with six working as
radio emitters and one working as the radio receiver. Each side
was connected to a PC, defining either the transmitting or
receiving behavior through a GNU radio. The receiver captured
six different types of RF signals emitted from the defined emit-
ters. The working frequency of the transmitted signal was set to
2.4 GHz, and the sampling frequency at the receiver end was
16 MHz. QPSK modulation was applied to all the six emitters
with a bandwidth of 1.2 MHz. Each received signal was divided
to record 1000 units of data, each with 256 sampling points.



Wireless Communications and Mobile Computing

Accuracy

—e— Method in [11]
~¥— Method in [14]

Eg/N, (dB)

—e— Method in [17]
—— Our method

F1GURE 6: Identification accuracy of different methods.

Signal transmission and capture were carried out in a
laboratory environment to ensure a high data quality. It is
necessary to test the identification performance under differ-
ent signal-to-noise (SNR) conditions by artificially adding
noises to the signal to verify the algorithm’s robustness to
noises. The originally captured signal data was sent to
MATLAB for the additional noises in the experiments, with
the SNR set to 0, 2,..., 20dB.

The neural network model—comprising the input layer,
CNN layers, fully connected layers, and the softmax classifi-
cation activation function—was built based on the structure
presented in Figure 1. The structure of the classification neu-
ral network model is shown in Figure 3.

4.2. Impact of the Number of Training Samples on Identification
Performance. This section focuses on the impact of the number
of training samples on identification performance. We train
CNN through meta-learning, where the number of labelled
training samples is set to 20, 40, 60, 80, 100, and 120. We then
test the identification accuracy under different SNRs, and the
identification accuracy curve is shown in Figure 4.

As shown in Figure 4, as the number of labelled samples
increases, the overall identification accuracy also increases.
However, when the number of training signal samples
reaches 80, the identification performance of the system is
stable and maintains a high level, indicating that the pro-
posed method can well adapt to the few-shot specific emitter
identification task. Therefore, with only a few labelled signal
samples for training, the system can exhibit satisfactory
identification performances.

4.3. Robustness to Noise. As RFFs are subtle and vulnerable to
noise interference during wireless channel transmission, the
robustness of the proposed method to noise is crucial to its
identification performance. This section prepared different
propagation channels with additive white Gaussian noise

(AWGN), Rayleigh noise, and Rice noise added to the signal
data, respectively. The identification accuracy of each channel
under different SNRs was obtained and plotted in Figure 5.

As shown in Figure 5, the best identification perfor-
mance is achieved in the AWGN channel, with an identifica-
tion accuracy of 90% at 4 dB and more than 95% at 10 dB. In
contrast, the identification performances were poorer in
both Rayleigh and Rice channels because the noises in Ray-
leigh and Rice channels are multiplicative noises, which have
a more significant impact on RFFs extraction than the addi-
tive noises in AWGN channels. However, under the interfer-
ence of multiplicative noises, the system’s identification
accuracy did not deteriorate further. For the Rayleigh chan-
nel, an accuracy of 85% at 4dB and 90% at 10dB was
observed. For the Rice channel, the accuracy at 4dB and
14dB was 85% and 90%, respectively. The experimental
results implied that the proposed method was robust to
noises of different wireless transmission channels.

4.4. Other Indices to Evaluate the Identification Performance.
The identification accuracy is defined as the ratio of the
number of correctly classified samples to the total number
of samples under test, which can only evaluate the identifica-
tion performance of the system as a whole rather than the
identification performance of each type of signal. In this sec-
tion, the receiver operating characteristic (ROC) was used as
an index to further evaluate the identification performance
of the proposed method, as shown in Figure 6, with the
SNR set to 6, 12, and 20 dB, respectively.

As shown in Figure 7, all the ROC curves of the pro-
posed method are generally distributed in the upper left
region of the plot—the higher the SNR, the more concen-
trated the ROC curve is within the region. Both the high
true-positive rate and a low false-positive rate achieved for
identifying each USRP device show the suggested method’s
promising performance in the area of SEI. In addition, the
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FiGure 7: ROC curves of the proposed method at 6 dB, 12 dB, and 20 dB, respectively. (a) SNR =6 dB. (b) SNR =12dB. (c) SNR =20dB.

area under the curve (AUC) was calculated. In Figure 6, the
AUC value of each ROC curve is greater than 0.91 at 6dB,
greater than 0.95 at 12dB, and greater than 0.98 at 20dB,
further proving the good identification performance of the
proposed method quantitatively.

4.5. Comparison with Other Identification Methods. The above
experiments proved the effectiveness and efficiency of the pro-
posed method in SEI for a few-shot scenario. This section
benchmarks the study with those proposed in references [11,
14, 17] to examine its advantages. The experimental results
of the methods mentioned above are shown in Figure 6.

As shown in Figure 6, the identification accuracy of this
method is higher than that of other methods in each defined
SNR scenario, and the overall identification accuracy is 5-
15% higher than the other methods. In addition, in a low
SNR scenario, the proposed method can still achieve an iden-
tification accuracy above 0.8, whereas all the other methods
showed deteriorated performances. The proposed method
outperforms the experiments due to its adoption of meta-
learning, which can thoroughly learn the general and intrinsic
characteristics of the signals. On the contrary, the methods for
benchmarking rely on a large quantity of samples to train the
neural networks and establish simple mapping relationships
between signal data and classes. When the number of training
samples is reduced, the generalization ability of these networks
is degraded, and their identification performances are affected.

5. Conclusion

In this study, a method of few-shot specific emitter identifi-
cation is proposed. First, the received RF signal was prepro-
cessed based on VMD. Next, the Hilbert time-frequency

spectrum was obtained through the Hilbert analysis of the
modal components. Such spectrums were used as the train-
ing samples of the classification neural network to carry out
meta-learning to ensure that the neural network achieves
good training results with a limited number of training sam-
ples. The experimental results showed that this method
could achieve excellent identification performance and
strong robustness to noise with only 80 training samples.
Finally, the proposed method demonstrated better identifi-
cation performances than other existing methods because
it can effectively solve SEI problems in the few-shot scenario.
In future work, focus will be on identifying specific emitters
in open-set few-shot scenarios. In other words, the method
used to detect open-set RF signals while normally identifying
different types of closed-set RF signals will be investigated
based on the results of this study. In addition, real-world RF
signals were captured for experimental verifications to justify
further and improve the versatility of the proposed method.
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