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Collecting environmental information of crop growth and dynamically adjusting agricultural production has been proved an
effective way to improve the total agricultural yield. Agricultural IoT technology, which integrates the information sensing
equipment, communication network, and information processing systems, can support such an intelligent manner in the
agricultural environment. Traditional agricultural IoT could meet the service demand of small-scale agricultural production
scenarios to a certain extent. However, the emerging application scenario of the agricultural environment is becoming more
and more complicated, and the data nodes of the underlying access to IoT backend system are increasing in large number,
while the upper-layer applications are requiring high quality of data service. Hence, the traditional architecture-based (i.e.,
centralised cloud computing) IoT systems suffer from the problems such as small network coverage, data security issue, and
limited power supply time while attempting to provide high-quality services at the edge of the network. Emerging edge
computing offers the opportunity to solve these issues. This paper builds an intelligent IoT system for agricultural environment
monitoring by integrating edge computing and artificial intelligence. We conducted an experiment to validate the proposed
system considering the reliability and usability. The experimental results prove the system’s reliability (e.g., data packet loss
rate is less than 0.1%). The proposed system achieves the concurrency of 500TPS and the average response time of 300ms,
which meet the practical requirements in agricultural environment monitoring.

1. Introduction

Recently, the Internet of Things (IoT) is being applied to
several fields, such as agriculture, logistics, and transporta-
tion [1–3]. Using various types of integrated microsmall
sensors, wireless sensor networks (WSNs) can achieve
real-time detection, acquisition, and sense of various objects
[4]. The transmission of various information in physical
space (such as temperature and humidity, moisture, and
pressure) can make users intuitively understand the infor-
mation. In China, the establishment of agricultural IT infra-
structures is still in its infancy. Therefore, it is impossible to
obtain timely information on all farms and different loca-
tions of crop growth environment parameters. In order to
detect the temperature and suffocation environment, the

environmental instruments equipped in the farms are man-
ually operated on-site, which is time-consuming and ineffi-
cient. This situation makes the farmers monitor and control
the climatic conditions are adversely affected, which in turn
affects the improvement of crop yield and quality [5].
Therefore, the method to improve the accuracy and effec-
tiveness of the crop growth environment in the acquisition
of various environmental parameters is expected.

On the other hand, the operation of various types of envi-
ronmental control equipment to achieve intelligent operation
and remote control has become a growing concern. The use
of the IoT, cloud computing, big data, and other information
technology promotes the transformation and upgrading of
the entire agricultural industry chain and vigorously drives
the development of intelligent agriculture. IoT can effectively
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reduce human consumption and accurately capture crop envi-
ronment and other information and timely carry out actions.
But traditional IoT platforms usually adopt a centralised archi-
tecture, in which the network bandwidth and processing
capacity of the central node could be the bottlenecks for the
horizontal expansion of the system [6]. The IoT network edges
of large-scale heterogeneous generate massive amounts of het-
erogeneous data. The long network links for data access oper-
ations reduce the performance and efficiency of centralised
data storage architectures. The resource constraints of IoT
nodes make them dependent on the IoT platform to provide
rich services to the external, and the long network links for
edge nodes to access IoT services under the centralised IoT
architecture make the network latency high, which makes it
difficult for edge IoT nodes to get real-time services [7, 8]. By
incorporating the computing model of edge computing (EC),
an edge processing layer is employed at the near-device end,
effectively reducing the workload of network and computa-
tion. Edge clouds rely on shorter network links with service
invokers, making it possible to provide low-latency network
services and low-cost resource access compared to the tradi-
tional cloud computing model. However, the edge cloud itself
is limited in resources and can easily become a bottleneck for
the platform’s services on the edge side of the network.

For agricultural IoT, the introduction of EC means
that many tasks that used to need to be processed in the
cloud can be done locally with artificial intelligence algo-
rithms and data fusion algorithms and can greatly acceler-
ate the response speed of agricultural information and
improve monitoring accuracy and more targeted develop-
ment of agricultural environment management strategies
in the monitoring coverage area. This paper combines
the Internet of Things and its artificial intelligence tech-
nology to build a wide coverage, low power consumption
IoT monitoring system suitable for monitoring agricultural
environment. It achieves unified management of IoT
resources and cooperative computing for environmental
monitoring tasks. In this design, the contextual specificity
of the environmental monitoring, coupled with the high
requirement of real-time data processing, a new agricul-
tural, environmental monitoring IoT architecture model
is highlighted. The main contribution in this paper are
summarised as follows:

(1) Techniques related to building an edge computing
platform for environment monitoring were investi-
gated. The functional architecture and data commu-
nication architecture of the edge computing gateway
were studied

(2) A collaborative IoT cloud-edge architecture was pro-
posed to realise the unified heterogeneous resource
management. It enables the compatibility of the
resource identification and mapping mechanism to
various kinds of IoT identification standards and
realises the unification of the platform resource
description methods to reduce the complexity of
resource description

(3) The application of LSTM-based environmental indi-
cator prediction algorithm in environmental monitor-
ing was explored. Besides, a visualization dashboard
for agricultural environmental monitoring data is
built. The data collected by all monitoring nodes are
displayed in a dynamic visualization, and the corre-
sponding decision-making support was enabled by
the predicting module

The rest of this paper is organised as follows: Chapter 2
introduces the related work, Chapter 3 presents the system
architecture and functional details, Chapter 4 presents the
experiment and discussion of the proposed system, and
Chapter 5 concludes the work.

2. Related Work

2.1. Internet of Things. The Internet of Things (IoT) was first
proposed by Prof. Kevin Ashton of the MIT Auto-ID Lab in
1999. IoT was initially designed to solve the problems in
supply chain management [9]. The traditional IoT platform
architecture usually consists of a data sensing layer, network
layer, and business logic layer [10]. Such a centralised archi-
tecture has the advantages of easy construction and efficient
resource management when the scale of the system is small-
size or medium-size. However, with the expansion of the IoT
system, service demand is increasing (e.g., response time,
intelligent analysis, data storage, and privacy protection).
With the popularity of 5G technology, this demand further
increases [11, 12], a trusted computer or cluster of com-
puters deployed at the edge of a network with rich service
resources to provide computing and data storage services
to nearby mobile devices. In 2011, Bonomi et al. proposed
the concept of fog computing [13], which introduces a fog
computing layer between the device and the cloud. It uses
the local fog devices (e.g., routers, IP video cameras, and
switches) to process some task requests in close proximity,
thereby reducing the number of tasks transmitted to remote
cloud computing centres. In 2013, Ryan proposed the early
concept of edge computing [14] to address the problem of
the rapidly growing number of mobile edge devices. In
recent years, distributed IoT architecture based on edge
computing has attracted the attention from many
researchers [15–17]. Existing studies or edge computing
platforms only consider a single edge cloud’s vertical appli-
cation in an IoT scenario, without considering multiple edge
clouds in heterogeneous scenarios. Guo et al. built the first
virtual fencing system based on a wireless sensor network
and implemented a research test for automatic grazing of
arable cattle [18]. Vijayakumar and Ramya designed a low-
cost and real-time water quality monitoring system by a
wireless sensor network, which requires no wiring and has
the advantages of flexible deployment and low cost [19].
[20] explored the ZigBee technology in significant field con-
ditions to ensure stable operation of wireless transmission in
irrigation area environment. LoRaWAN is designed for
long-range communication and networking devices using
LoRa (Long Range Radio) technology and can be indepen-
dently networked from wireless operators [21]. Sendra
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et al. develop a monitoring system for large-scale farming,
which can measure temperature, relative humidity, wind
speed, and carbon dioxide in the farming environment
[22]. Valente et al. developed a LoRaWAN-based terminal
node equipped with a cluster of asynchronous serial protocol
sensors that can measure environmental parameters (includ-
ing atmospheric pressure, lightning strike count, and soil
conductivity) [23].

2.2. Agricultural IoT and Intelligence Computing. Agricul-
tural IoT is the domain application of IoT technology in
the whole industry chain of production, management, oper-
ation, and service in agriculture [24, 25]. The most common
agricultural IoT is used for production environment moni-
toring [19]. IoT technology is used to collect and obtain
information of different elements in the agricultural produc-
tion environment, including temperature and humidity,
light, carbon dioxide, soil water content, and soil fertility.
Early IoT applications focused on agricultural information
sensing. For example, Wang et al. built a mobile observation
system for bovine animals using pulse oximeters, respiratory
sensors, body temperature sensors, environmental sensors,
and GPS modules [26], which provided a monitoring tool
to prevent the spread of diseases in the herd. González
et al. developed a method to perform unsupervised behav-
ioural classification by installing GPS sensors and movement
collars on cattle to observe and record foraging [27]. Gill
et al. propose a cloud-based information system that pro-
vides agriculture-as-a-service using cloud and big data tech-
nologies [28]. It collects information from different users
through preconfigured devices and IoT sensors and pro-
cesses it in the cloud using big data analytics. Zhu et al.
design a dedicated IoT platform in precision agriculture
and ecological monitoring [29]. The massive amount of data
generated by agricultural, environmental monitoring
exhibits complex and dynamic characteristics, and it usually
involves multiple sectors, regions, and domains.

With the advancement of artificial intelligence, advanced
scientific data processing algorithms are applied in multiple
aspects such as air quality prediction and pollution source
location. Environmental data are often a series of observa-
tions obtained from various physical quantities observed in
temporal order, reflecting the characteristics of entity attri-
butes over time, i.e., a multidimensional time series [30].
Time series usually carry a specific law of variation, which
is determined by the intrinsic physical properties of the
monitored indicators. Time series prediction refers to the
process of mining the intrinsic law of change through a large
amount of series data and predicting the next point in time
based on this law. Popular time series algorithms, including
ARIMA [31], etc. [32], used wavelet decomposition and
reconstruction to smooth the time series and demonstrated
its feasibility for atmospheric pollutant concentration analy-
sis. The change of environmental information involves mul-
tiple factors and has nonlinear characteristics, which
significantly impacts the accuracy of environmental infor-
mation prediction. Neural network-based methods have
the advantages of self-learning and self-evolving neurons,
which are good at dealing with nonlinear models. Artificial

neural networks have shown better performance in environ-
mental prediction, and the first one used by related scholars
was BP neural network [33], which is with simple structure.
Still, it cannot record the features of the previous moment or
multiple moments to be used as learning, which leads to the
poor prediction and poor generalisation. RNN [34] and
many other neural networks have been applied to environ-
mental information prediction, and certain improvements
have been achieved. The various environmental monitoring
parameters are affected by many factors such as climatic
conditions and geographic conditions and do not show lin-
ear characteristics.

3. Data-Secured Intelligent Edge Cloud
Architecture for IoT

As shown in Figure 1, the workflow is clearly described. This
system integrates various kinds of sensors, RFID, video, and
other sensing and monitoring devices to collect specific
information of farm. This system introduces a cloud-edge
collaboration mechanism to process, analyse, and store data
to improve the efficiency of network bandwidth utilisation
and guarantee the high quality of the platform’s external
services. The system integrates wireless sensor networks
and achieves stable and reliable data transmission through
5G networks. The system fuses and processes the obtained
massive agricultural data and realises fully automated mon-
itoring and intelligent analysis of agrarian environment in
combination with intelligent terminals. The system’s main
objectives are as follows: (1) to realise unified management
of heterogeneous IoT resources. The proposed architecture
uses mapping technology to achieve compatibility with
various IoT identity standards and adopts customised iden-
tity within the system. A unified resource descriptor is rea-
lised by abstracting the behaviour and attributes of
resources. (2) To realise a cloud-edge computing services.
Data resources are exchanged to each edge cloud through
the cloud computing centre. The services of each edge cloud
are integrated to provide intelligent decision support for
agricultural environment monitoring through intelligent
algorithms for hierarchical processing and computing mas-
sive data.

3.1. Cloud-Edge Collaborative Architecture. The platform
provides comprehensive IoT perceptive ability. The termi-
nal is equipped with ULG series collection and transmis-
sion integrated equipment and a set of crop growth
related sensors (e.g., soil moisture sensor, soil pH sensor,
air temperature and humidity sensor, soil temperature and
humidity sensor, light intensity sensor, and carbon dioxide
concentration sensor). The platform’s architecture consists
of an intelligent sensing layer, cloud-edge collaboration
layer, heterogeneous network layer, business logic layer,
and human-machine interface layer (as shown in Figure 2).

The sensing layer contains sensor monitoring nodes. The
monitored data are transmitted to the edge computing gate-
way through wireless transmission protocols such as
LPWAN and 802.11 g. The transport layer adopts heteroge-
neous networking rules based on LoRaWAN and Wi-Fi and
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applies star topology with low energy consumption, wide
coverage, and high bandwidth. The edge computing layer
is able to perform online real-time data processing on each
measurement parameter of agricultural environment using
artificial intelligence and data fusion algorithms at the infor-
mation collection site. Each functional module is encapsu-
lated through container technology, and information is
transmitted between each functional module and between
the cloud and the edge through the edge messaging middle-
ware server. Compared with the traditional cloud architec-
ture monitoring system, it can reduce the transmission
delay, improve the system response speed, and reduce the
pressure on the server side. The application layer imple-
ments an agricultural environment monitoring visualization
platform to effectively manage and apply the data collected
by multiple types of nodes and to make expert decisions
and early warnings based on environmental factors. It is

designed for the platform resource management and collab-
oration. Resource sharing and resource control policy can be
made among edge cloud systems to achieve controlled shar-
ing of resources and service convergence.

More precisely (as illustrated in Figure 3), the cloud
computing centre adapts to access all edge clouds and pro-
vides unified services to the external through the conversion
of resources. The sensing devices sense the information of
the physical world (such as temperature, humidity, and pres-
sure) and transmit the collected data to the corresponding
servers through the network. The execution devices execute
the received instructions from the upper layer or their con-
trol logic to realise the operation of the physical world.
The cloud-edge collaboration refers to the access to the cor-
responding edge cloud system according to the functional
requirements and geographic location. The edge system
shields the differences of sensing devices to realise the
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unified management and control of multisource heteroge-
neous devices. The edge cloud system provides device access
and management services to the perception layer and pro-
vides a unified resource open interface to the business logic
layer. The customised services of the cloud-edge collabora-
tion meet the diversity of the underlying device access, and
the edge cloud system deployed at the data source can effec-
tively utilise the network bandwidth to provide high-quality
services for the sensing layer devices and IoT applications.
The heterogeneous network layer adopts different network
communication technologies (such as WLAN, 5G, NB-IoT,
and LoRa).

The data stored in the platform are mainly (1) text data
collected (such as data collected by temperature and humid-
ity sensors), (2) audio and video data, and (3) system data
(such as users, service call permissions, system configura-
tion). It is difficult to store these massive heterogeneous data
using a structured database, so we use Redis (https://redis.io)
as the persistent data repository. A cloud-based file storage
system (https://os.iot.10086.cn) is employed to store IoT
audio and video data and uses a content distribution net-
work to distribute the resources according to the regional
nature of the data. We employed SQL Server 2015 to store
entity data. The structured database supports complex con-
ditional statement queries to meet the platform application
requirements. The platform uses read-write separation to
operate the database to improve access performance, making
data read and write in different instances.

3.2. Cloud-Edge Service and IoT Data Security. The IoT edge
cloud collaboration applies to large-scale heterogeneous sce-
narios, using the cloud computing centre to connect edge
cloud systems at the edge of the distributed network and
manage and control the edge cloud systems to achieve
cross-edge cloud service collaboration. The relationship
between the cloud computing centre and the edge cloud sys-
tems is shown in Figure 3. The cloud computing centre is a

key component of the edge cloud collaborative architecture,
which connects each edge cloud system through the cloud
computing centre, links the data resources between each
edge cloud system, and realises cross-edge cloud collabora-
tive services. The cloud computing centre provides manage-
ment and control functions for each edge cloud, such as
resource access policy, resource identification, instantiation
deployment of cloud-edge microservices, security monitor-
ing, and user management. Most of the data is stored in
the edge cloud, and some resources frequently requested
are stored in the cloud computing centre to reduce the
dependency. In addition, the cloud computing centre inte-
grates the platform resources and provides a unified service
interface to the developers, making the underlying heteroge-
neous system transparent to the developers.

The edge cloud system is customised according to the
application and device requirements of the scenario where
it is located and can be adapted to various network commu-
nication protocols and data formats in the underlying layer.
It uses a unified external interface in the upper layer to com-
municate with the business logic layer. The deployment of
the edge cloud system requires digital certificates issued by
the cloud computing centre as the legal proof of identity
and the key for resource sharing. The service interface uses
RESTful specification (https://restfulapi.net/), HTTP proto-
col for synchronous data exchange, and RabbitMQ
(https://www.rabbitmq.com/) message queue for asynchro-
nous data exchange, etc. The data generated by the edge
cloud system is processed, analysed, and stored locally. The
edge cloud system administrator has the highest manage-
ment control over the data in the edge cloud and can decide
which data are open to the public and which data can only
be used in the current edge cloud system. The edge cloud
system is an integral part of the IoT edge cloud collaborative
architecture, which is implemented according to the service
requirements of the scenario, mainly consisting of device
access middleware, data storage centre, data analysis and
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the processing module, and service provision centre and
resource sharing and exchange module, and the edge cloud
architecture is shown in Figure 3.

The heterogeneity of edge clouds for IoT resources leads
to the difficulty of resource sharing and service collaboration
among edge clouds. The resource management module was
aimed at managing and utilising heterogeneous resources
efficiently. IoT identification is the basis of IoT resource
management; due to the lack of unified identification system
standards, it is challenging to share resources among
systems. We propose an IoT identity mapping method to
support various identity technology standards, adopt a cus-
tomised identity method within the system, and decouple
resource identification and resource location. It adopts
Uniform Resource Name (URN) to identify platform
resources and uses Uniform Resource Locators (URL) to
search resources. It realises (1) the compatibility of various
IoT identification standards through the resource identifica-
tion mapping, (2) the unique identification of heterogeneous
resources in each edge cloud, and (3) the unification of the
platform resource description mode. It reduces the difficulty
of resource expression format conversion in the service col-
laboration operation in each edge cloud and supports the
sharing of resources in each edge cloud. The architecture
of the identity mapping module is shown in Figure 4.

The identity mapping service is deployed in the cloud
computing centre to provide an identity mapping information
query service. The identity mapping information includes the
platform virtual identification number, the resource’s physical
identification number, and the edge cloud system number
where the resource is located. Through this module, the plat-
form virtual identification number can be converted to the
physical identification number of the resource and the edge
cloud system number where the resource is located. When
retrieving the platform resources, only the platform virtual
identification number of the resource needs to be passed in
to discover the edge cloud system where the resource is
located. Its physical identification number achieves the
resource search. The identity mapping management module
is deployed in the cloud computing centre to provide services
for creating, modifying, and deleting identity mapping infor-
mation. An edge cloud resource, which could be shared exter-
nally, must be registered in this module to obtain the platform
virtual identification number before it can be accessed exter-
nally. When the physical identification number of the resource
changes, only the physical identification number of the
resource in the identity mapping information needs to be
modified, while the platform virtual identification number of
the resource does not need to be changed, which avoids the
modification of applications developed based on the resource
and simplifies the work of platform application developers.
The identity mapping cache is deployed in each edge cloud
system to cache the resource mapping information to reduce
redundant data requests.

3.3. Agricultural-Oriented Service Management. The plat-
form provides the information collection function, with
which we can view the real-time status of the plot on the
map. The platform transmits the images collected by high-

definition cameras to the data centre through the network
and enables real-time preview and playback. The interface
counter can monitor the total number of interface calls
and the success rate of interface calls. The system manager
can browse and manage the information of base stations in
each block (including base station name, base station level,
base station serial number, and base station map markers)
and sensor information (such as sensor name, category,
health value, display type, and setting the period of sensor
upload data). The system can control the equipment on
the farm, such as turning on/off the devices, including the
fan, the fill light, the shade screen, and the automatic sprin-
kler irrigation. The system can also support the facilities’
performance monitoring, such as the management of M2M
cards and SIM card management.

Some of the functional interfaces of the system are
shown in Figure 5. Figure 5(a) shows the environmental fac-
tor functional interface. In this interface, the left area shows
the sensor’s name and the current value obtained from the
sensor. Below the sensor value is the selection of parameters
such as soil moisture, air humidity, and light level. The mid-
dle of the interface is shown more visually by displaying the
locations where the platform has been used on a map,
marked by red dots.

On the right side, information such as device name,
device information, status, and switches is displayed, giving
an intuitive and convenient display. The video monitoring
function is shown in Figure 5(b). The left side of the inter-
face shows the completed campus monitoring. You can
select the location or camera you need to view. The area’s
video monitoring will be displayed in the middle of the page
after double-clicking. You can also adjust the direction of the
surveillance camera in multiple paths through the operation
area below to see the surrounding images without leaving
any dead angle. You can also adjust the number of images
displayed in the main interface by the number of window
segments, up to 16 cameras simultaneously. Click the history
video button in the upper left corner to query the history
video; after selecting the camera location, enter the query
period in the operation area below to query the history
video; the function also has the parts of pause, resume, fast
playback, slow playback, etc. Growth report real-time query
as shown in Figure 5(c) is to query the real-time growth
monitoring data returned by each sensor; the menu is
divided into three levels, menu level 1 for the agricultural
industry, menu level 2 for the company, and menu level 3
for the sensor. Intelligent control engine function as shown
in Figure 5(d), the left menu of the interface to select the
regional node, after selecting the middle of the interface
shows the existing equipment, you can also enter the query
conditions above to filter. The primary displayed device
information is device name, device information, status, node
name, and switch. The switch button can be used to adjust
the operation and stop of the device. The system can set
the threshold value to achieve automatic control. Suppose
the air temperature and humidity are greater than 30
degrees. The fan will be automatically turned on to cool
down and automatically turned off when the temperature
is less than 25 degrees.
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3.4. Environmental Predictive Computing Service. RNNs are
mainly used to process temporal data, such as speech and
text. In temporal data, the output of the current time point
is related to the input of the previous time point, and tradi-
tional neural networks cannot capture this back-and-forth
dependency, while RNNs learn this relationship by adding
periodic connections to the neurons in the hidden layer.

Figure 6(a) shows the basic structure of an RNN, where x
and y denote the input and output vectors, respectively, H
denotes the hidden layer, W1, W2, and W3 are the weight
matrices, respectively, and h denotes the output vector of
the hidden layer. Figure 6(a) shows the circular structure
of RNN, and Figure 6(b) shows the expanded structure of
Figure 6(a). We find that the output yt at the current time
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point is jointly determined by the output ht−1 of the hidden
layer at the previous time point and the current input xt, and
ht−1 contains the output information of the hidden layer at
all previous time points. The RNN at time point t can be
represented by the following equation.

ht = tanh W3ht−1 +W2xtð Þ,
yt =W1ht:

ð1Þ

The expanded RNN structure can be regarded as a feed-
forward neural network with N intermediate layers, so it can
be trained using the backpropagation algorithm. However,
in the process of backpropagation, the continuous multipli-
cation of W3 and ht−1 tends to cause gradient disappearance
and gradient explosion, which makes it difficult for the RNN
to learn the forward and backward information dependence
at a long distance.

To solve this problem, long short-term memory net-
works (LSTM) are proposed. Similar to RNN, LSTM also
consists of a set of repeated neural network modules, and
such modules are called memory blocks. As shown in
Figure 7, each memory block contains three gates, i.e., for-
getting gate, input gate, and output gate. In contrast to
RNN, which has only one state for recurrent transmission
(output of the hidden layer), LSTM has two, namely, the
hidden layer state (ht) and the cellular state (st), that runs
through the entire memory block. In Figure 2, st−1 and ht−1
are the cell state and the hidden layer state at the previous
time point, respectively, and xt and yt are the input and out-
put at the current time point, respectively. The roles of the
three gates are described in detail below.

The forgetting gate determines how much information is
discarded from the cell state. The hidden state ht−1 at the
previous time point and the input xt at the current time
point are fed into the memory block and after the activation
function Sigmoid outputs a proportional value from 0 to 1,
which represents the proportion of information retained
from the cell state. Finally, the proportional value is multi-
plied by st−1 to achieve the forgetting function. The forget-
ting gate can be represented as

f t = Sigmoid Wf · ht−1, xt½ � + bf
� �

, ð2Þ

where Wf and bf denote the weight and bias, respectively.

The input gate determines how much information from
the current input is added to the cell state. First, consistent
with the forgetting gate, the hidden state ht−1 from the pre-
vious time point and the input xt from the current time
point are input to the memory block, and after the activation
function Sigmoid outputs a scale value from 0 to 1, which
represents the proportion of information retained from the
current input. At the same time, ht−1and xt are input to
the memory block, and xt

’ is output after the activation
function tanh. Finally, the proportional value is multiplied
with xt

’ to realise the input function. The input gate can be
represented as

it = Sigmoid Wi · ht−1, xt½ � + bið Þ,
xt

’ = tanh WC · ht−1, xt½ � + bCð Þ,
ð3Þ

where Wi and WC denote weights and bi and bC denote
biases.

The output gate determines the output information for
the current point in time. This is also done first by feeding
the memory block with the hidden state ht−1 of the previous
time point and the input xt of the current time point, which
is then passed through the activation function Sigmoid to
obtain a proportion. Then, the output value of the cell state
after the activation function tanh is multiplied by the pro-
portion to get the output at the current time point. The out-
put gate can be expressed as follows.

ot = Sigmoid Wo · ht−1, xt½ � + boð Þ,
ht = ot ∗ tanh stð Þ,

ð4Þ

where Wo and bo denote the weight and bias, respectively.

4. Experiment

The experiment was designed to verify the overall availabil-
ity of the proposed system and the accuracy of its environ-
mental prediction function.

The packet loss, throughput, and response time are fre-
quently used metrics to describe the system availability.
We used a group of data to test the packet loss (between
transmission layers) of the system data transmission and in
the environmental information data collection. The terminal
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Figure 6: The structure of RNN.
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device collects data in a given period (e.g., an hour) and
sends it to the automatic monitoring base station for aggre-
gation at regular intervals (e.g., every 2 hours). The environ-
mental monitoring wireless node collects data once a day

and sends them to the monitoring base station for aggrega-
tion, and finally, all data are transmitted to the IoT platform.
As shown in Figure 8(a), under different sampling frequen-
cies, the computing unit performs 5000 data sends and

× ×

+×

Output gate tanh

tanh SigmoidSigmoidSigmoid

Input gate
Forget gate

ft

ht-1 ht

st-1 st

yt

xt

it xt

ot
′

Figure 7: The structure of LSTM.
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Figure 8: The experimental result regarding the performance metrics.

Table 1: Availability testing result.

Transactions
(hits)

Availability
Elapsed time

(secs)
Response time

(secs)
Transaction rate

(trans/sec)
Concurrency

Successful
transactions

Failed
transactions

10000 100% 6.7 0.05 1492.5 200 10000 0

10000 100% 8.1 0.89 1234.5 300 10000 0

10000 100% 12.1 1.93 826.4 400 10000 0

10000 100% 15.4 2.01 649.3 500 10000 0

10000 100% 24.55 2.54 407.3 600 10000 0

10000 99% 47.06 2.87 210.0 700 9989 11

10000 96% 78.1 3.13 128.0 800 9602 398

Table 2: Samples from the selected dataset.

Date
Maximum temperature

(°C)
Minimum temperature

(°C)
Average temperature

(°C)
Average humidity

(%RH)
Yield

(kg/mu)

2015-01-01 1.9 -0.4 0.7875 75 907.177044

2015-01-02 6.2 -3.9 1.7625 77.25 747.835779

2015-01-03 7.8 2 4.2375 72.75 740.097015

2015-01-03 8.5 -1.2 3.0375 65.875 760.081199
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counts the number of packet losses, with the increase of
sampling frequency, the overall packet loss rate declines
sharply, and when the sampling frequency reaches 60ms,
the packet loss rate drops to 0.1%. The result falls in our
expectation, and it indicates the proposed system could fulfil
the requirement in practice.

The system is designed for large-scale heterogeneous
scenarios, and the platform needs to guarantee service avail-
ability during high concurrent scenarios. The throughput
and response time of the platform are verified by analysing
the log data of the platform under different concurrency.
We use the Pulsar tool (https://pulsar.apache.org/) to simu-
late the service requests to the platform, with different
values of concurrent clients. The test result of workload is
shown in Table 1, in which, the task queue indicates the
percentage of backlogged tasks in the task queue. For each

group in the experiment, 10000 transactions were executed
with different size of terminals (i.e., concurrency). In the 6th

group, 11 transactions failed; that means the concurrency
maximum is between 600 and 700. The relationship
between the average response time and the number of con-
current clients is shown in Figure 8(b). The average
response time increases with the number of concurrent
threads. When the number of concurrent threads surpasses
the maximum number of threads supported by the edge
cloud, there is a significant increase in the average response
time. As shown in Figure 8(b), the system throughput of the
edge cloud system deployed with a single service reaches
the maximum when the concurrency is 300, indicating that
the system does not saturate with the number of tasks when
the concurrency is less than 300; while the number of tasks
saturates when the concurrency is more significant than
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Figure 9: The visualisation of the selected experimental dataset.
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300, but the system throughput does not decrease signifi-
cantly when it is less than 800. When the concurrency
reaches 300, the task queue starts to have tasks piling up,
but at this time, the system can still process in time, and
the task processing error rate is 0. When the concurrency
reaches 800, request processing exceptions start to occur.

We designed an experiment based on the computing ser-
vice (detailed in Section 3.5) to predict crop yield based on
meteorological, environmental factors. The data were col-
lected from February 1, 2015, to August 31, 2016. They con-
tained four environmental factors, i.e., the maximum
temperature of the day, minimum temperature of the day,
the average temperature of the day and average humidity
of the day, and crop yield. The dataset contains 46 data from
different data sources, and each data contains 578 datasets.
Some of the data in the dataset are shown in Table 2.

The visualization of the dataset is shown in Figure 9. The
five images from top to bottom in Figure 9 show the data
changes of maximum temperature, minimum temperature,
average temperature, average humidity, and yield of the
day in chronological order. The horizontal axis represents
the time, totalling 578 days, and the vertical axis represents
temperature, humidity, and yield. As shown from Figure 9,
the temperature varied with the change of the season, the
humidity factor had no obvious pattern, and the work
reached its highest in the harvest period (in late July).

We first normalized the temperature, humidity, and
yield, dividing the dataset into a training set, validation set,
and test set, containing 400, 100, and 78 sets of data, respec-
tively, and trained 100 rounds with the mean square error as
the loss function. At the end of the training, the training loss
reached 0.0016, the validation loss reached 0.0004, and the
test loss reached 0.0176. Figure 10 shows the performance
of the model. The horizontal axis represents time and the
vertical axis represents the yield (after normalisation). The
blue curve indicates the actual yield value, the green curve
indicates the predicted yield value output from the training
set, the orange curve indicates the predicted yield value out-
put from the validation set, and the red curve indicates the
predicted yield value output from the test set. As shown in
Table 3, the prediction results of LSTM on the training, val-
idation, and test sets are consistent with the true values, but

the predicted values are slightly higher than the actual values
in the nonharvest period and slightly lower than the actual
values in the harvest period.

5. Conclusion

In this paper, an agricultural environment monitoring
system is built by integrating edge computing and artificial
intelligence. This paper investigates the traditional archi-
tecture of agricultural IoT system, proposes a cloud-edge
collaboration framework for agricultural environment
monitoring, and implements agricultural environment pre-
diction function based on LSTM. The system has been
deployed in more than 10 large-scale farms. There are still
some shortcomings in the research; e.g., for sensors,
improper installation location may lead to inaccurate data
acquisition, and instability could result in data collection
changes. Moreover, there are some wireless sensors trans-
mission signal distance is limited. The power supply for
equipment is not easy-to-obtain: solar power supply may
not provide sufficient power, and the adoption of AC
power required relocating power wires on the site.
Advancement of sensor technology is expected in future.
In other hand, for LSTM structure, the training cost of
its model is relatively high. In the future, we will introduce
several improved versions of LSTM (e.g., coupled LSTM)
and other methods on the agricultural environment pre-
diction model proposed in this paper to enhance the train-
ing performance of the prediction model and improve the
prediction accuracy.

Data Availability

The data that support the findings of this study are available
on request from the corresponding author.
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Table 3: Part of the result of the crop yield prediction.

Date
Maximum temperature

(°C)
Minimum temperature

(°C)
Average temperature

(°C)
Average humidity

(%RH)
Yield (kg/mu)

Actual Predicted

2016-06-15 27.6 22.2 24.4875 72.5 408.97309 434.70498

2016-06-16 30.2 17.8 24.45 69.125 419.502002 427.01839

2016-06-17 32.8 20.1 26.875 61.125 463.757745 492.51727

2016-06-18 33.2 21.7 28.175 64.25 507.862592 553.84575

2016-06-19 32.8 23.9 27.6375 79.625 637.323462 684.95569

2016-06-20 31 21.5 26.425 81.875 492.604463 544.86529

2016-06-21 25.9 24.2 25.275 99 507.48092 541.65983

2016-06-22 32.6 25.1 28.6875 87.875 637.718308 711.57310

2016-06-23 34 26.3 29.625 84.5 809.730649 871.13022

2016-06-24 24.6 22.5 23.45 93.625 488.359556 499.60946
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