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Local and customized services are realized with new type computing architecture by utilizing the spare resources distributed on
the helper nodes (HNs) throughout the network. The heterogeneity of mobile edge and fog computing networks makes them
natural to support multitarget tasks, and efficient task scheduling is always a fundamental and hot issue in multitask
multihelper (MTMH) computing networks. Unlike most of the researches concentrating on the optimization of a single or
limited service metrics, this article proposes a service framework for multitarget tasks, which is more universal for future 6G
networks supporting customized services. The comprehensive quality of service (CQoS) is constructed to indicate the
comprehensive objectives of the task nodes (TNs) with multiple targets. By formulating and transforming the CQoS maximal
problem into two one-variable form subproblems, an algorithm named scheduling of comprehensive objectives for tasks with
multitargets (SCOTT) is proposed. The SCOTT algorithm achieves the optimal offloading service solutions considering service
metrics including delay, energy consumption, and economic cost. Extensive numerical simulations are carried out, which
indicate that the proposed SCOTT algorithm can effectively achieve the optimal offloading solutions including node selection,
task division, and transmission power for TNs with various service targets. Moreover, the universal applicability of the SCOTT
algorithm is verified with case studies and numerical results.

1. Introduction

Benefitted from the development of the technologies includ-
ing wireless communications and local processing, the world
is entering the all-connect era, where the data exchange and
computing transfer are ubiquitous [1]. Billions of terminal
devices are connected to the network and construct the
Internet of Things (IoT) systems, which leads to the expo-
nential growth of the data traffic [2, 3]. Fully local processing
cannot support applications of all scenes for the reason that
local processing capabilities are limited [4]. In the well-
developed traditional networks, tasks generated at the task

nodes (TNs) that exceed the local processing capabilities
can be transferred to the central cloud server [4, 5]. How-
ever, with the explosion of the mobile data generated by
the emerging 5G and IoT applications, traditional central-
ized offloading architecture will bring a heavy burden to
the link between the cloud server and the TNs. Besides, the
increasing of the network scale and complexity makes the
real-time processing and global optimization impractical
and challenges the overall service quality [6, 7]. To cope with
the problems emerged in the upcoming internet of every-
thing, new network architectures that are more flexible and
extensible need to be developed; thus, the massive and
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diverse TNs can be efficiently supported, which are more
universal for future 6G networks providing customized
services.

Assisted by technologies including the network function
virtualization (NFV) and the software defined network
(SDN) [8], the concept of mobile computing has emerged.
Mobile computing combines the cloud computing, edge
computing [9], and fog computing [10] and provides com-
puting for user services anywhere anytime. In a network
supported by mobile computing technology, the networks
resources including relaying, caching, and computing are
subsided from the central server and extended to the whole
network space [11, 12]. The resources are carried by the
helper nodes (HNs) distributed throughout the network,
which construct the multitask multihelper (MTMH) com-
puting network together with the numerous TNs [13]. This
architecture provides a rich collection of the ubiquitous
network resources, and it has characteristics such as location
awareness, widespread geographical distribution, huge num-
ber of nodes, and heterogeneity [14, 15]. For the tasks gener-
ated at anywhere of the network, their particular service
targets can be satisfied by offloading all the data, or partially,
to the proper HNs rather than the only choice, i.e., the
central cloud server. Therefore, through jointly scheduling
the HNs with various capabilities and TNs with various ser-
vice targets, mobile computing can achieve better quality of
service (QoS) for metrics such as delay, energy consumption,
and security [16–18]. The heterogeneities and massiveness
of the TNs and HNs make the optimal radio and computing
resource management in computing networks challenging
[19], which leads to extensive researches on the task sched-
uling in computing networks.

2. Related Works

Real-time performance is an ever-increasing requirement of
the network services [20–23]. Better real-time performance
can be achieved through the services provided by the nearby
HNs, and this makes the task delay an important scheduling
metric of the mobile computing services. Markov decision
process approach is adopted to deal with computing task
scheduling problem from the cloud to the mobile-edge com-
puting (MEC) server, and delay optimal offloading solution
is achieved under a power-constrained condition [20]. In
[23], fog computing is integrated with vehicular networks,
and a three-layer vehicular fog computing (VFC) mode is
constructed to minimize the response time by leveraging
moving and parked vehicles as fog nodes. A new hybrid off-
loading architecture for VFC is proposed in [24], and the
node selection is optimized to reduce the offloading delay.
In [25], the maximum delay among users in a mobile cloud
computing system is minimized by randomization mapping
method. In [26], the autonomy of the HNs is taken into
consideration when pursing the delay-optimal offloading
solution. Based on queueing theory, analytical model is
introduced for service delay in [27], and the delay-
minimized policy is provided when fog computing is intro-
duced as a complement to cloud computing and an essential
ingredient of the IoT. Considering the task scheduling

problem for multitasks, low processing delay offloading
solution for unsplittable tasks is achieved in [13], and the
work is extended to splittable tasks in [28].

The decreasing of the distance between the user and
server can dramatically reduce the transmission energy con-
sumption [29, 30]. Meanwhile, the energy consumption is
usually a sensitive metric in computing and IoT networks,
for the reason that a large portion of the devices in IoT net-
works have a limited battery life [31–33]. This makes the
energy efficiency an influential scheduling metric of the
mobile computing services. The energy-efficient task offload-
ing problem in mobile cloud computing networks is consid-
ered in [34], in which a distributed energy-efficient dynamic
offloading and resource scheduling (eDors) algorithm is pro-
posed. The eDors algorithm achieves the energy-efficient task
offloading solution by simultaneously deciding the computa-
tion offloading selection, clock frequency control, and trans-
mission power allocation. A task selection and scheduling
scheme called CoESMS is introduced in [35], which mini-
mizes the overall energy consumption and makespan
through cooperative game theory models. In [33], a wireless
powered MEC network architecture is proposed to support
task offloading services, and energy-efficient offloading
scheme is analyzed to support mobile devices with finite bat-
tery life. The authors of [36] proposed a scheduling strategy
of the frequency division technique based on machine learn-
ing, which achieves good energy consumption minimization
performance in mobile edge computation offloading.

In most cases, incentive is essential to get the services
from HNs or the mobile service operators. From the view
of the HNs, they want to make profit as much as possible
based on their own capabilities. From the view of the TNs,
they want to minimize their economic cost on condition that
the services are satisfactory. Therefore, economic cost of is
another important service metric when making scheduling
decisions. Game theory is widely adopted in the researches
of this area. In [37], a two-stage game in three-layer mobile
crowd sensing (MCS) architecture is considered in edge
computing networks, and a Markov decision process-
(MDP-) based social model is built to achieve the maximal
social welfare. A quality-aware traffic offloading (QATO)
framework is proposed in [38], incentive schemes are
adopted among neighbor nodes to achieve better service
quality. Shen et al. [39] proposed an incentive framework
for resource sensing based on the Stackelberg game, and
the optimal solutions including sensing price and sensing
frequency are derived. A trilateral game among service pro-
vider, end users, and edge resource owners is modeled in
[40], and a two-stage dynamic game is used to evaluate the
profit of each participant. In addition, service metrics such
as fairness, security, and resilience are widely investigated
in mobile computing networks [37, 41–43].

Tradeoff between different service metrics is also widely
studied in this area. The performance indexes including task
delay and energy consumption are abstracted to revenue and
cost in the operation process of the fog-enabled computing
network [44, 45], and game theories are adopted to achieve
the balance of payments. In [46], a solution to the helper
node location problem is provided, which provides support
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for mobile users with limited battery while being able to
process heavy workloads with low latency constraints. Yang
et al. [47] proposed a low complexity algorithm that provides
the maximal energy efficiency scheduling decisions under fea-
sible modulation and time allocations. Tradeoff between
energy consumption and task delay is achieved by Zhao
et al. [48], in which the total energy consumption of multiple
mobile devices is minimized subject to bounded-delay
requirement. In [49], state-of-the-art studies for the joint wire-
less power transfer (WPT) and offloading in MEC are com-
pared, and a taxonomy are formulated for the technologies
that provide offloading service for smart devices while extend-
ing battery lifetime. The user mobility is considered in [50],
and a lightweight mobility prediction and offloading (LiMPO)
framework using artificial neural networks with less complex-
ity is proposed, which achieves better performances in latency
reduction, energy efficiency, and resource utilization.

Based on the above literature review, we find that most of
the researches on the scheduling of computing services focus
on the optimization of a single or very limited kinds of service
metrics. However, the applications in future 6G and IoT net-
works always have various service targets. In addition, mobile
computing is always in heterogeneous and MTMH style,
which is appropriate for the processing of multitarget tasks.
The tasks that are sensitive to different metrics are scheduled
together, which have different tendencies of node selection
and offloading strategy. To cope with this, it is of great neces-
sary to develop universal task scheduling scheme in comput-
ing networks. Thus, the heterogeneous resources distribute
on the HNs can be integrated to provide customized services
for the comprehensive service objectives of the TNs.

Therefore, the main contributions of this paper are sum-
marized as follows:

(1) We propose a general service model for multitarget
tasks in MTMH computing networks. Heteroge-
neous service capabilities of the HNs and the various
service targets of the TNs are collected at the sched-
uler. The comprehensive objective of the service is
formulated as the comprehensive QoS (CQoS) by
weighting the absolute service metrics with service
target factors, and scheduling scheme is made aim-
ing to maximize the CQoS

(2) Considering the service metrics including task delay,
energy consumption, and economic cost, the CQoS
maximal problem for the offloading service with
three targets is formulated. By transforming the
original problem into two one-variable form sub-
problems, we develop an algorithm named schedul-
ing of comprehensive objectives for tasks with
multitargets (SCOTT), which provide the optimal
offloading solution including node selection, task
division, and transmission power. Case studies are
conducted out to further prove the practicability of
our proved offloading scheme

(3) Extensive simulations in a computing network are
carried out to investigate the performance of our

proposed scheduling algorithm. Numerical results
show that the SCOTT algorithm can effectively
obtain the CQoS maximal offloading solution based
on multiple available HNs and provide the optimal
offloading services for TNs with various targets in
different network scenarios

The rest of this paper is organized as follows. The general
service model for multitarget tasks is introduced in Section
3. In Section 4, we formulate the CQoS and the corre-
sponding optimization problem of the offloading service
concerning metrics including delay, energy consumption,
and economic cost. In Section 5, the CQoS maximal prob-
lem for 3-target tasks is solved, and the SCOTT algorithm
is proposed, which provides the optimal offloading solution
including node selection, task division, and transmission
power. Case studies for the proposed SCOTT algorithm are
carried out in Section 6. The numerical estimations are pro-
vided in Section 7. Section 8 concludes this paper.

3. Service Model for Multitarget Tasks

In this section, a general MTMH computing network
supporting tasks with N targets is introduced. The service
capabilities, service objectives, and service scheme are inter-
graded to represent the comprehensive satisfactory level of
the offloading service, which can guide the direction to
achieve the optimal service solutions.

3.1. Task Scheduling in MTMH Computing Networks. As
shown in Figure 1, we consider an MTMH mobile comput-
ing network consisting of multiple TNs and HNs, which
have various service targets and service capabilities. A task
scheduler in this network collects these service capabilities
from the HNs and the service requests from the TNs and
provides the service scheme. The scheduler may be located
at the cloud server or a specific HN. In this mobile comput-
ing network, the task generated at the TN with size l can be
offloaded to the nearby HNs to achieve better task process-
ing quality. The task processing targets of different TNs are
always diverse, and the task processing target of a same user
can be time-varying. For the service provided by a certain
HN, the relationship between the service capabilities and
the service targets can be revealed by the goodness of fit
between the HN and TN characteristics, which is illustrated
in Figure 1. This goodness of fit can reflect the comprehen-
sive satisfactory level of the service, and it depends on the
following three elements:

(1) The service capabilities of the M HNs, which can be
represented by Λ = fΛ1,Λ2,⋯ΛMg. The service
capabilities of HN i, i.e., Λi, may consist of the ser-
vice rate, service energy consumption, service price,
and any other elements related to the service process

(2) The comprehensive service objective of the TN
with multitargets, which can be represented by
K = fK1, K2,⋯,KNg. The parameter N is the number
of the service metrics such as delay and energy
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consumption. The larger the factor Kn is, the more
sensitive the TN is to the corresponding service
metric

(3) The service scheme provided by the scheduler, which
can be represented by O = fi, li, pig. The parameters
i, li, and pi are the index of the selected HN, the size
of the subtask offloaded to the selected HN, and the
transmission power of the TN, respectively

3.2. Comprehensive QoS. For a specific task, the service
scheme O is provided based on the collected service capabil-
ity Λ. Then, the absolute service metrics such as service
delay and cost can be achieved, which is denoted by S =
fS1, S2,⋯,SNg. Therefore, we have

S = ξ Λ,Oð Þ, ð1Þ

where ξ is the map function between the service capabili-
ties/scheme and the absolute service metrics.

The task has different sensitivities to different service
metrics, which are quantized by Kn, n = 1, 2,⋯,N . In order
to estimate the service quality in a general way, the absolute
service metric Sn is weighted by the corresponding service
objective factor Kn. Then, the summation of the weighted
service metrics can be calculated by the scalar product of K
and S, i.e.,

Q = K•S = K•ξ Λ,Oð Þ: ð2Þ

Based on the service scheme O and the service capabili-
ties Λ, we define the weighted summation Q as the CQoS
of the service provided for task with service objective K ,
and this integrated metric Q reveals the goodness of fit
between the service provider and service requester.

Taking a look at the expression of CQoS in (2), we find
that the only variable is the service scheme S. Therefore,
the general optimization problem that achieves the CQoS
maximal service scheme O∗ can be formulated as

P : max
O

Q = K•ξ Λ,Oð Þ,

s:t:i ∈F ,

0 ≤ li ≤ l,

0 ≤ pi ≤ pmax,

ð3Þ

where F is the set of the available HNs in this computing
network.

For any TN with various service objectives in a heteroge-
neous computing network, the optimization problem P pro-
vides the direction to search the CQoS maximal service
scheme, no matter what the service capabilities Λ and the
service objectives K are. This demonstrates the universal
applicability of this service framework.

4. Offloading Service for 3-Target Tasks

Based on the proposed service framework, the rest of the
paper concentrates on the offloading service for 3-target
tasks. The service metrics including delay, energy consump-
tion, and economic cost are investigated.

4.1. Metric Formulation. We use K = fKd , Ke, Kcg to denote
the comprehensive service objective of a TN, in which Kd ,
Ke, and Kc with nonnegative values are the delay factor,
energy consumption factor, and the cost factor, respectively.
The higher a factor in K is, the more sensitive the task is to
the corresponding service metric. In particular, the task with
Kd ≠ 0 and Ke = Kc = 0 is completely delay-sensitive, and the
delay-minimized offloading scheme achieves the highest
service quality for this task.

The service capabilities of an available HN, say HN i, is
specified as Λi = f f i, ηi, θi, πig; the explanations of the
parameters are summarized in Table 1. The task offloading
scheme provided by the task scheduler, i.e., O = fi, li, pig,
includes the HN selection, task division ðlT, liÞ, and the task
transmission power pi. In other words, the scheduler needs
to select a proper HN, determine the offload data size, and
provide the optimal transmission power from TN to the
selected HN.

Next, we formulate the delay Di, energy consumption Ei,
and economic cost Ci based on Λi and O. Thus, we can get
the absolute service metrics as S = fDi, Ei, Cig.
4.1.1. Task Offloading Delay. The overall task offloading
delay when HN i is selected includes two parts, i.e., the delay
of the local subtask with lT bits and the delay of the offloaded

Task scheduler

Report Schedule

Service

Serv
ice

Service

Helper node

Task node

Service capability

Service target

Figure 1: Service framework for multitarget tasks in an MTMH
computing network. The service capabilities of the HNs and the
service requests of the TNs are collected at the task scheduler,
which makes the service scheme for the tasks with multitarget.
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subtask with li bits, which are denoted by DTi and DOi,
respectively. In most applications, the overall delay of the
task offloading service is decided by the maximum process-
ing time of the subtasks; thus, we have

Di =max DTi,DOið Þ: ð4Þ

Following the model in our previous research [41], the
time of processing 1 bit data locally is ηT/f T, in which f T
is the CPU frequency of the TN, and ηT is the CPU cycles
for processing 1 bit data at the TN. Thus, the local delay
DTi can be expressed as

DTi = lT
ηT
f T

: ð5Þ

Compared with the local delay, the offloading delay DOi
involves the processing delay in similar form to DTi, and a
transmission delay in addition, i.e.,

DOi =
liηi
f i

+
li

WBi
= li

1
WBi

+
ηi
f i

� �
, ð6Þ

where f i is the CPU frequency of HN i, ηi is the CPU cycles
for processing 1 bit data at HN i, W is the spectrum band-
width allocated to the offloading service, and Bi is the
spectral efficiency of the wireless link from the TN to
HN i. Given the terminal transmission power pi, Bi is
obtained through the Shannon capacity as

Bi = log2 1 +
piγiβi

Ii +WN0

� �
: ð7Þ

In the expression of Bi, γi and βi are the path loss and
shadowing factors of this wireless link. Ii and N0 are the
interference power and the noise power spectral density,
respectively.

4.1.2. Task Offloading Energy Consumption. The overall off-
loading energy consumption Ei includes the computing
energy consumption and the transmission energy consump-
tion. In this research, we use θT and θi to represent the
energy consumption per CPU cycle of the TN and HN i.
Then, the computing energy consumptions per bit data for
the TN and HN i are represented by ηTθT and ηiθi, respec-
tively. Taking the transmission energy consumption with
transmission power pi into consideration, the overall energy
consumption is formulated as

Ei = ET,i + EOi = lTηTθT +
lipi
WBi

+ liηiθi, ð8Þ

where ET,i = lTηTθT + ðlipi/WBiÞ is the energy consumptions
of the TN, and EO,i = liηiθi is the offloading energy con-
sumption when HN i is selected.

4.1.3. Task Offloading Cost. Remunerations are requisite in
most computing network applications, regardless of the
HNs are individual devices with spare resources or specially
deployed by operators. The economic cost of the task off-
loading service is usually proportional to the offloading data
size. We use a parameter πi to denote the remuneration of
HN i when one bit data is offloaded to it. Therefore, the
economic cost of the offloading service with offloading task
size li is

Ci = liπi: ð9Þ

Based on the metrics of the task offloading service
including Di, Ei, and Ci, the CQoS and the optimization
problem need to be specified.

4.2. CQoS and Optimization Problem. The satisfaction
degree of the TN for the service provided by the computing
network depends on both the service target of the task itself

Table 1: Summary of key notations.

Nota. Unit Description

l Bit Overall task size of the TN.

lT Bit Subtask size processed locally at the TN.

li Bit Subtask size offloaded to HN i.

ηT Cycle/bit CPU cycles for processing 1 bit data at the TN.
ηi Cycle/bit CPU cycles for processing 1 bit data at HN i.

f T Cycle/s CPU frequency of the TN.

f i Cycle/s CPU frequency of HN i.

θT J/cycle Energy consumption per CPU cycle of the TN.

θi J/cycle Energy consumption per CPU cycle of HN i.

πi $/bit The service price of HN i.

W Hz Spectrum bandwidth for task offloading.

pi J/s Transmission power of the TN to HN i.

pmax J/s
Upper bound of the transmission power of

the TN.

γi − Path loss factor between the TN and HN i.

βi − Shadowing factor between the TN and HN i.

Ii J/s Interference power between the TN and HN i.

N0 J/(s·Hz) Noise power spectral density.

Kd /s
Delay factor of the comprehensive service

objective.

Ke /J
Energy consumption factor of the
comprehensive service objective.

Kc /$
Cost factor of the comprehensive

service objective.

K − Comprehensive service objective.

Di s Task offloading delay through HN i.

Ei J
Task offloading energy consumption

through HN i.

Ci $ Task offloading economic cost through HN i.

Qi − Local CQoS of the offloading service
through HN i.
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and the service capabilities of the HNs. For a TN with com-
prehensive service objective K = fKd , Ke, Kcg, the weighted
offloading service metrics are KdDi, KeEi, and KcCi. Then,
we construct the CQoS of the offloading service provided
by HN i as

Qi =
1

KdDi + KeEi + KcCi
, ð10Þ

which indicates that task offloading schemes with low delay,
low energy consumption, and low economic cost can achieve
high comprehensive service qualities, and the impact of spe-
cific service targets are weighted by the corresponding fac-
tors. This is also the reason why there is a reciprocal in (10).

Given a selected HN, the CQoS provided above is taken as
the utility of the provided service, and it is directly decided by
the subtask size li and the TN transmission power pi. There-
fore, we propose the following optimization problem.

P0 : max
li ,pi

Qi

s:t:0 ≤ li ≤ l

0 ≤ pi ≤ pmax,

ð11Þ

where pmax is the upper bound of TN transmission power. For
each available HN, we need to solve the corresponding optimi-
zation problem to find the local optimal offloading solution ð
l∗i , p∗i Þ and the corresponding local maximal CQoS Q∗

i , i ∈F .
In this way, the global optimal offloading solution O∗ = ði∗,
l∗i∗ , p∗i∗Þ and global maximal CQoS Q∗ can be obtained by
selecting the HN with the highest local maximal CQoS. This
scheme is applicable to TNs with differentiated service targets.

5. SCOTT Algorithm

In this section, we propose the SCOTT algorithm for the
scheduling of the 3-target tasks, which solves the CQoS opti-
mization problem by transformed into two one-variable form
subproblems. Thus, the global optimal offloading solution
O∗ = ði∗, l∗i∗ , p∗i∗Þ and global maximal CQoS Q∗ are obtained.

5.1. Problem Transformation. For the original optimization
problem P0, the maximization of the local CQoS Qi is equiv-
alent to the minimization of the denominator in (10). There-
fore, we can transform P0 into P1 as

P1 : min
li ,pi

Qi1 = KdDi + KeEi + KcCi

s:t:0 ≤ li ≤ l

0 ≤ pi ≤ pmax,

ð12Þ

in which Qi1 =Q−1
i .

As defined in (4), the overall delay Di of the task offload-
ing service provided by HN i is decided by the larger subtask
delay. Then, we have the following proposition.

Proposition 1. When the CQoS Qi is maximized under the
condition that Di =max ðDT ,i,DOiÞ, the offloading delay DOi
is no less than the local delay DT ,i.

Proof. Please refer to Appendix A.

According to Proposition 1, the delay target in P0 and
P1 can be represented as KdDOi, and the subtask size li
should satisfies

DTi ≤DOi ⟹ l − lið Þ ηT
f T

≤ li
1

WBi
+
ηi
f i

� �
⟹ l

ηT
f T

ηT
f T

+
1

WBi
+
ηi
f i

� �−1
≤ li < l:

ð13Þ

Therefore, P1 can be transformed into

P2 : min
li ,pi

Qi2 = KdDOi + KeEi + KcCi

= Kdli
1

WBi
+
ηi
f i

� �
+ Kcliπi

+ Ke lηTθT + li
pi

WBi
+ ηiθi − ηTθT

� �� �

s:t:l ηT
f T

ηT
f T

+ 1
WBi

+ ηi
f i

� �−1
≤ li ≤ l

0 ≤ pi ≤ pmax:

ð14Þ

Remark 2. The conclusions in Proposition 1 and P2 can be
explained as follows. For a certain HN and a subtask size li,
the increase of the transmission power pi cannot continually
decrease the overall task offloading delay, for the reason that
the local processing capability of the TN is limited. Besides, a
larger transmission power will undoubtedly lead to a higher
energy consumption and thus a lower CQoS. The correlation
between li and pi in the CQoS maximization problem is
revealed by (13).

It is easy to know that problem P2 is not convex. Then,
we will further transform P2 into one-variable form to find
the optimal offloading solution. For the optimization objec-
tive Qi2, the first derivative with respect to li is

∂Qi2
∂li

= Kd
1

WBi
+
ηi
f i

� �
+ Ke

pi
WBi

+ ηiθi − ηTθT

� �
+ Kcπi:

ð15Þ

The derivative ∂Qi2/∂li is uncorrelated with li. At the
mean time, given the comprehensive service target K =
fKd , Ke, Kcg of the TN and the service capabilities of the
HN i, ∂Qi2/∂li is directly decided by the TN transmission
power pi. As a result, we can divide the value range of pi in
P2, i.e., ½0, pmax�, into two parts, in which ∂Qi2/∂li is nonneg-
ative and negative, respectively. As shown below, these two
value ranges are denoted as R1 and R2, respectively.

R1 = 0, pmax½ � ∩ pi
∂Qi2
∂li

���� ≥ 0
� �

, ð16Þ
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R2 = 0, pmax½ � ∩ pi
∂Qi2
∂li

���� < 0
� �

: ð17Þ

When the subtask size li increases, the minimization goal
Qi2 in P2 is severally monotone increasing inR1 and mono-
tone decreasing in R2. Consequently, the optimal value of li
that minimizes Qi2 in R1 and R2 should be lðηT/f TÞ
ððηT/f TÞ + ð1/WBiÞ + ðηi/f iÞÞ−1 and l, respectively.

Based on the above analysis, we can transform the opti-
mization problem P2 into two subproblems as follows:

P2 − 1 : ð18Þ
min
pi

Qi21 = KdDOi + KeEi + KcCið Þjli=l ηT/f Tð Þ ηT/f Tð Þ+ 1/WBið Þ+ ηi/f ið Þð Þ−1

ð19Þ
s:t:pi ∈R1: ð20Þ
P2 − 2 : ð21Þ

min
pi

Qi22 = KdDOi + KeEi + KcCið Þjli=l ð22Þ

s:t:pi ∈R2: ð23Þ
Obviously, P2 − 1 and P2 − 2 are both one-variable form

optimization problems. We can solve the original problem
P0 by firstly finding the optimal solutions of these two sub-
problems severally, then achieving optimal CQoS Q∗

i based
on Q∗

i21 and Q∗
i22. The HN with the highest Q∗

i will be
selected as the helper node, and the corresponding task divi-
sion and transmission power will also be achieved.

5.2. Subproblem Solving. To solve the two subproblems
obtained above, the two corresponding value ranges, i.e.,
R1 and R2, need to be determined first.

The value ranges of P2 − 1 and P2 − 2 are determined by
the sign of the gradient ∂Qi2/∂li (16). Therefore, the follow-
ing proposition is provided.

Proposition 3. The gradient ∂Qi2/∂li is monotone decreasing
when pi ∈ ½0, p̂i� and monotone increasing when pi ∈ ðp̂i,∞Þ,
in which p̂i is the only positive solution of the following
equation.

KeBi −
γiβi/ Ii +WN0ð Þ

1 + piγiβi/ Ii +WN0ð ÞIi +WN0ð Þð Þ ln 2
Kd + Kepið Þ = 0:

ð24Þ
Proof. Please refer to Appendix B.

According to the conclusions in Proposition 3, ∂Qi2/∂li
achieves its minimum value when pi = p̂i. If ∂Qi2/∂lijp̂i ≥ 0,
∂Qi2/∂li is always nonnegative when pi ∈ ½0,∞Þ. Otherwise,
∂Qi2/∂li has two zero points in ð0,∞Þ, which are severally
denoted by ‘pi and p′i (‘pi < p′i). Then, the sign of ∂Qi2/∂li
can be summarized as:

When ∂Qi2/∂lijp̂i ≥ 0, ∂Qi2/∂li ≥ 0 in ½0,∞Þ.
When ∂Qi2/∂lijp̂i < 0, ∂Qi2/∂li ≥ 0 in ½0, ‘pi� and ½p′i,∞Þ

and ∂Qi2/∂li < 0 in ð‘pi, p′iÞ.
Taking the value range of pi in the original optimization

problem P0, i.e., ½0, pmax�, into consideration (16), a subalgo-
rithm is introduced in Algorithm 1 to achieve R1 and R2.

We need to solve the two subproblems based on the
values ranges achieved by Algorithm 1. First, the following
proposition are provided for the optimal solutions of P2 − 1.

Proposition 4. The optimal transmission power p∗i1 of the
subproblem P2 − 1 and the corresponding optimal subtask
size l∗i1 are provided as follows:

p∗i1 =
‘pi, R1 ≠ 0, pmax½ �,
argmin
pi1∈P i1

Qi21, R1 = 0, pmax½ �,

8<
: ð25Þ

l∗i1 = l
ηT
f T

ηT
f T

+
1

WBi
+
ηi
f i

� �−1
�����
pi=p∗i1

, ð26Þ

In (25), P i1 = f0, pmax, p̆ig when the following three
conditions are satisfied. Otherwise, P i1 = f0, pmaxg.

α2 ln 2
α3

< 1,

f 1ð Þ < 0,

f 1 +
p max γiβi

Ii +WN0

� �
> 0:

8>>>>>><
>>>>>>:

ð27Þ

The function f ðxÞ is

f xð Þ = α1 +
α2
x

+ α3 log2 xð Þ, ð28Þ

in which the three parameters, i.e., α1, α2, and α3, are

α1 = −Ke
ηT
f T

+
ηi
f i

� �
W
ln 2

+ Ke,

α2 = Ke
ηT
f T

+
ηi
f i

� �
− Kd

ηT
f T

− Ke ηiθi − ηTθTð Þ − Kcπi

� �
γiβi

Ii +WN0

� �
W
ln 2

,

α3 = Ke
ηT
f T

+
ηi
f i

� �
W > 0:

8>>>>>>>><
>>>>>>>>:

ð29Þ
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When P i1 is f0, pmax, p̆ig, p̆i is the only solution of f ð1 +
ðpiγiβi/ðIi +WN0ÞÞÞ = 0 valued in ½0, pmax�.

Proof. Please refer to Appendix C.

When the value range of P2 − 2 is not empty, the follow-
ing proposition provides the optimal offloading solution for
this subproblem, as well as the relationship between Q∗

i21 and
Q∗

i22.

Proposition 5. When R2 ≠∅, the optimal transmission
power p∗i2 of the subproblem P2 − 2 and the corresponding
optimal subtask size l∗i2 are provided as follows.

p∗i2 =
pmax, pmax ≤ p̂i,

p̂i, pmax > p̂i,

(
ð30Þ

l∗i2 = l: ð31Þ
In addition, there is Q∗

i21 ≥Q∗
i22 when R2 ≠∅.

Proof. Please refer to Appendix D.

Remark 6. The conclusions in the above two propositions
can be intuitively explained as follows. If the value range of
P2 − 2 is not empty, the offloading scheme that achieves
the highest CQoS has l∗o = l. This means that in the value
range R2, it is better to offload all the entire task to the
HN because of the high cost performance of the offloading
service. According to the expression of ∂Qi2/∂li in (15), this
high cost performance may come from the low processing
energy consumption, the low service price, or the high
energy consumption factor of the task.

Based on the value ranges achieved by Algorithm 1,
Proposition 4 and 5 provide the optimal offloading solution
ðl∗i1, p∗i1Þ, ðl∗i2, p∗i2Þ and minimized utilities Q∗

i21, Q
∗
i22 of the two

subproblems. The local optimal offloading solution ðl∗i , p∗i Þ
and the corresponding local maximal CQoS Q∗

i are given by

Q∗
i =

1
Q∗

i21
, R2 =∅,

1
Q∗

i22
, R2 ≠∅,

8>>><
>>>:

l∗i , p
∗
ið Þ =

l∗i1, p
∗
i1ð Þ, R2 =∅,

l∗i2, p
∗
i2ð Þ, R2 ≠∅:

(
ð32Þ

This process is introduced in Algorithm 2.

5.3. Optimal Offloading Solution. Given a certain HN, the
local optimal offloading solution and the local maximal
CQoS are provided by Algorithms 1 and 2. In order to
achieve the global CQoS maximal offloading solution O∗ =
ði∗, l∗i∗ , p∗i∗Þ and the corresponding Q∗, we propose the
SCOTT algorithm in Algorithm 3, in which the HN with
the highest local maximal CQoS are selected.

6. Case Study for SCOTT Algorithm

Now, we investigate the task offloading services of several
special cases, which are compared with the existing
researches. Thus, the universal applicability of our proposed
SCOTT task offloading scheme is further proved.

1: Initialize R1 =∅, R2 =∅, p̂i = ‘pi = p′i = 0;
2: According to the system parameters, calculate the value of p̂i from

KeBi − ðγiβi/ðIi +WN0Þ/ð1 + ðpiγiβi/ðIi +WN0ÞÞÞ ln 2ÞðKd + KepiÞ = 0
with bisection method;
3: if ∂Qi2/∂lijp̂i ≥ 0 then

4: R1 = ½0, pmax�, R2 =∅;
5: else
6: Calculate the value of ‘pi and p′i from

Kdðð1/WBiÞ + ðηi/f iÞÞ + Keððpi/WBiÞ + ηiθi − ηTθTÞ + Kcπi = 0
with bisection method;
7: if pmax ≤ ‘pi then
8: R1 = ½0, pmax�, R2 =∅;
9: end if
10: if ‘pi < pmax < p′i then
11: R1 = ½0, ‘pi�, R2 = ½p′i, pmax�;
12: end if
13: if pmax ≥ p′i then
14: R1 = ½0, ‘pi� ∩ ½p′i, pmax�, R2 = ½‘pi, p′i�;
15: end if
16: end if
17: return R1, R2, p̂i, ‘pi, p′i;

Algorithm 1: Achieving value ranges.
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6.1. Local Processing. The aim of calling for offloading ser-
vice is to achieve a higher CQoS than local processing. If
the cost performance of the offloading service is too low,
the TN tends to abandon the offloading service and process
the task locally. This happens when the processing efficiency
of the corresponding HN is too low, or the economic cost is
too high. The lower bound of the CQoS Q is

Q =
1

KdDi + KeEi + KcCi
=

1
Kdl ηT/f Tð Þ + KelηTθT

, ð33Þ

which corresponds to the offloading solution ðli = 0, pi = 0Þ,
i.e., local processing.

Substituting this solution into (10), we get Qi = KdlðηT/
f TÞ + KelηTθT = 1/Q. The SCOTT algorithm minimizes Qi.
This guarantees that the offloading solution obtained by
our proposed SCOTT algorithms can always achieve the

Q∗ that is no less than Q. Therefore, the SCOTT algorithm
is applicable to local processing.

6.2. Delay-Sensitive Tasks. If the comprehensive service
objective of a TN is K = fKd > 0, Ke = 0, Kc = 0g, this task
is a delay-sensitive task. This kind of task is not sensitive
to the energy consumption or economic cost of the offload-
ing service and focuses on the delay performance.

For this kind of tasks, the optimization goals of P2 and
P2 − 1 become Kdliðð1/WBiÞ + ðηi/f iÞÞ and KdðlðηT/f TÞηT/
f Tðð1/WBiÞ1/WBi + ðηi/f iÞηi/f iÞÞ/ððηT/f TÞ + ð1/WBiÞ + ðηi/
f iÞÞ, respectively. Besides, the value ranges R1 and R2 are
obviously ½0, pmax� and ∅. For delay-sensitive tasks, the
SCOTT algorithm achieves the local optimal offloading solu-
tion based on the conclusions in Proposition 4. Therefore,
the SCOTT algorithm is applicable to delay sensitive tasks.
This case corresponds to the problem solved in [26], in
which task delay is the minimization goal.

1: Input R1, R2, p̂i, ‘pi, p′i;
2: if R2 =∅ then
3: Calculate the optimal offloading solutions of P2 − 1, i.e., l∗i1, p∗i1, with (25) and (26);
4: Calculate the minimized utilities of P2 − 1 by

Q∗
i21 = ðKdDOi + KeEi + KcCiÞjli=l∗i1,pi=p∗i1 ;

5: Set l∗i = l∗i1, p
∗
i = p∗i1, Q

∗
i = ðQ∗

i21Þ−1;
6: else
7: Calculate the optimal offloading solutions of P2 − 2, i.e., l∗i2, p∗i2, with (30) and (31);
8: Calculate the minimized utilities of P2 − 2 by

Q∗
i22 = ðKdDOi + KeEi + KcCiÞjli=l∗i2,pi=p∗i2 ;

9: Set l∗i = l∗i2, p
∗
i = p∗i2, Q

∗
i = ðQ∗

i22Þ−1;
10: end if
11: return ðl∗i , p∗i Þ, Q∗

i ;

Algorithm 2: Local CQoS maximal algorithm.

1: Initialize F , Q,L , P as the sets of available HNs, local maximal CQoS, local optimal task division, and the local optimal TN trans-
mission power.
2: while A task is generated do
3: Acquire the TN’s service target factor K = fKd , Ke, Kcg;
4: for each HN i ∈F do
5: Call Algorithm 1;
6: Call Algorithm 2;
7: Update Q =Q ∪Q∗

i ;
8: Update L =L ∪ l∗i ;
9: Update P =P ∪ p∗i ;
10: end for
11: Get the optimal HN: i∗ = argmax

i∈F
Q;

12: Get the optimal offloaded task size: l∗i∗ = argmax
l∗i ∈L

Q;

13: Get the optimal offloading power: p∗i∗ = argmax
p∗i ∈P

Q;

14: Get the maximal CQoS: Q∗ =max ðQÞ;
15: return O∗ = ði∗, l∗i∗ , p∗i∗Þ,Q∗;
16: end while

Algorithm 3: SCOTT algorithm.
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6.3. Economic Cost-Sensitive Tasks. If the comprehensive ser-
vice objective of a TN is K = fKd = 0, Ke = 0, Kc > 0g, this
task is a economic cost-sensitive task. This kind of task is
not sensitive to the processing delay or energy consumption
of the offloading service and focuses on the economic cost
performance.

For this kind of tasks, local processing is the optimal
solution, which can achieve a infinitely high CQoS. The
optimization goal of P2 becomes Kcliπi, which is obviously
proportional to the offloading task size li. Besides, the value
ranges R1 and R2 are obviously ½0, pmax� and ∅. Based on
Proposition 4, the conditions in (27) are not fully satisfied,
and Qi21 is a monotone increasing function of pi. Therefore,
the SCOTT algorithms will provide p∗i = 0 and l∗i = 0 in this
case. Therefore, the SCOTT algorithm is applicable to eco-
nomic cost sensitive tasks. This case can be applied to the
case in [39], and the resource sensing frequency corresponds
to the offloading task size in this paper.

6.4. Economic Cost-Insensitive Tasks. If the comprehensive
service objective of a TN is K = fKd > 0, Ke > 0, Kc = 0g, this
task is not sensitive to the economic cost during the offload-
ing service and tends to achieve low delay and high energy
efficiency.

For this kind of tasks, the optimization goal of P2
becomes KdDOi + KeEi. This will not change the procedure
of the SCOTT algorithm, which transforms the original
problem into two one-variable form subproblems. There-
fore, the SCOTT algorithm is applicable to economic cost-
insensitive tasks. This case corresponds to the researches
seeking the balance between task delay and energy cost, such
as the DEBTS algorithm proposed in [51].

We omit the analyses of other cases like energy-sensitive
(K = fKd = 0, Ke > 0, Kc = 0g) tasks, which corresponds to
the optimization problems in [41, 47]. The above investiga-
tions reveal the universal applicability of the SCOTT algo-
rithm for multitarget tasks, and this will be further verified
by the numerical simulation results in the next section.

7. Numerical Results

In this section, plenty of numerical simulations are carried
out to investigate the performance of our proposed schedul-
ing scheme. The task offloading solution and the corre-
sponding service performance are evaluated for tasks with
various service targets.

7.1. Simulation Setting. A heterogonous computing network
is considered, in which HNs with various service capabilities
are randomly distributed in the TN-centered computing
network. The TN calls for offloading services from the task
scheduler, which collect the service objectives of the TN
and the service capabilities of the HNs. The offloading
subtask is transmitted from the TN to the selected HN
through a flat wireless channel with bandwidth of 10MHz.
The interference power Ii and the noise power spectral
density N0 are −43dBm and −173dBm/Hz, respectively.
The path loss factor γi (in dB) is obtained through 38:46 +
20 log10ðdiÞ, where di (in m) is the distance between the

TN and HN i. Besides, a shadowing factor −5dB is adopted
for each HN. The other parameter settings are specified in
the corresponding simulation results.

7.2. CQoS Maximal Offloading Solution. Firstly, we investi-
gate the task offloading services through a specific HN.
The service objective of a TN is K = f1, 1, 1g, and the task
size is 2Mbits. The capabilities of the TN and HN i are
provided in Table 2.

Figure 2 shows the local maximal CQoS Q∗
i and the

weighted service metrics including delay metric KdDi,
energy consumption metric KeEi, and the economic cost
metric KcCi. In Figure 1, we plot the local maximal CQoS
of the offloading service provided by HN i, and the distance
between the TN and HN i varies from 10m to 100m. With
the increasing of the upper bound for the terminal transmis-
sion power, the local maximal CQoS increases from a lower
bound to an upper bound. When pmax = 0, the task has to be
processed locally at the TN. Therefore, the lower bound in
Figure 1 is the CQoS of local processing, i.e., Q, which has
been discussed in Section 6. The weighted metrics of local
processing are shown in Figure 1 ðpmax = 0Þ. A higher pmax
helps achieve lower task delay and energy consumption met-
rics, but a higher economic cost metric at the same time,
which is revealed by the numerical results in Figure 1. When
pmax increases continually, the energy consumption of the
offloading service can not continually decreases. Because
the energy consumption for transforming 1 bit data, i.e.,
pi/ðWBiÞ, is an increasing function of pi. As a result, an
upper bound of Q∗

i is achieved. The simulations results also
show that an HN located close to the TN can achieve a higher
CQoS, for the reason that the transmission energy consump-
tion and transmission delay are lower when the distance is
small. For an HN that is too far away, the cost performance
of the offloading service is too low; thus, the local processing
is adopted. For example, the HN that is 100m away from the
TN cannot provide service better than local processing.

In Figure 3, the CQoS maximal task offloading solutions
through HNs located at different distances are plotted. As
shown in Figure 3(a), the optimal transmission power p∗i
equals to pmax when pmax is small. With the increasing of
pmax, p

∗
i reaches an upper bound, which corresponds to the

upper bound of Q∗
i shown in Figure 2(a). We can also

observe that the upper bound of p∗i is small when the

Table 2: Capabilities of the TN and HN i:

Node Parameter Value

TN

ηT 1000 cycle/bit

f T 1GHz

θT 2 × 10−9 J/cycle

HN i

ηi 1000 cycle/bit

f i 10GHz

θi 1 × 10−9 J/cycle
πi 5 × 10−7 $/bit
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Figure 2: The maximal CQoS and the service metrics. (a) The maximal CQoS versus pmax. (b) The optimal service metrics versus pmax,
di = 40m.
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Figure 3: The CQoS maximal task offloading solutions through HNs located at different distances. (a) The optimal transmission power p∗i
versus pmax. (b) The optimal offloading task size l∗i versus pmax.

11Wireless Communications and Mobile Computing



distance is small. It is because that the a small pi can provide
a high CQoS in this case. At the same time, the upper bound
of p∗i is also small when the distance is large. It is because
that the increasing of pi cannot provide a small task delay
but a high energy consumption in this case. The extreme
case in Figure 3(a) is the case when the distance is 100m,
which makes local processing be the optimal offloading solu-
tion. Figure 3(b) shows the optimal offloading task size l∗i
when pmax increases. We observe that the larger pmax is, the
larger the subtask the TN offloads to the HN. For the nearby
HNs with high cost performance, offloading the whole task
can achieve the maximal CQoS. On the contrary, local pro-
cessing is preferred when the HN is too far away, and the
optimal offloading task size l∗i is 0 in this case.

7.3. Offloading Service for Multitarget Tasks. Now, we inves-
tigate the task offloading service achieved by our proposed
SCOTT algorithm, and three tasks with various service tar-
gets are considered. Specifically, the offloading service objec-
tives of the three tasks are f1, 0, 0g, f0, 1, 0g, and f0:1,0:1,1g,
respectively. The task size is 2Mbits, and the upper bound of
the transmission power is 4W. Three HNs with various
capabilities are available for the offloading service, and the
parameters of the three HNs are provided in Table 3. Besides,
the capabilities of the TN are the same with the previous
subsection.

Figure 4 plots the maximal CQoS Q∗
i of the three tasks

through the three available HNs. It is obvious that HN 1,
HN 2, and HN 3 provide the highest CQoS for task 1, task
2, and task 3, respectively. Therefore, the SCOTT algorithm
will assign task 1 to HN 1, and so on for the other two tasks.

It is easy to find that the three tasks are sensitive to
different service metrics. Task 1 with service objective f1,
0, 0g is a delay-sensitive task; thus, the SCOTT algorithm
turns into the DOTS algorithm proposed in [26], which
achieves the delay-minimized offloading scheme. Task 2
with service objective f0, 1, 0g is an energy-sensitive task;
thus, the SCOTT algorithm turns into the FEMTO algo-
rithm proposed in [41], which achieves the energy-
minimized offloading scheme. Task 3 with service objective
f0:1,0:1,1g is sensitive to service cost. The delay and energy
factors of task 3 do not equal to 0 because that the service
objective f0, 0, 1g will lead to totally local processing and
an infinitely great CQoS. On the other hand, Table 3
reveals that HN 1 has a fast CPU frequency, HN 2 has a
low unit processing energy consumption, and HN 3 has a
low unit economic cost. The above task and HN character-
istics led to the numerical results in Figure 4. In conclusion,
the SCOTT algorithm can provide the optimal offloading
solution with the maximal CQoS for multitarget tasks,

and it can universally cover the task scheduling schemes
that concern limited metrics.

7.4. CQoS Maximal Offloading in Different Network
Scenarios. Next, the CQoS maximal offloading through
SCOTT algorithm in service clusters with different radius
and HN amount is evaluated. Figure 5 plots the maximal
CQoS of a TN with K = f1, 1, 1g. The HN amount equals
to 10, 20, or 30, and the HNs are uniformly distributed in
the service cluster with radius ranges from 20m to 100m.
The parameters f i, θi, and πi of the HNs follows Gauss-
ian distributions, the mean values of which are 5GHz,
2 × 10−10 J/cycle, and 3 × 10−7 $/bit, respectively.

We can observe from Figure 5 that the CQoS of the
offloading service decreases with the increasing of the net-
work radius. The reason is that the transmission delay and
transmission energy consumption between the TN and the
optimal HN increase with the increasing of the network
radius, which lead to higher Di and Ei. Besides, a large
amount of available HNs can provide a higher CQoS for

Table 3: Capabilities of the available HNs.

Node
Capability

ηi f i θi πi di
HN 1 1000 cycle/bit 10GHz 3 × 10−10 J/cycle 5 × 10−7 $/bit 10m

HN 2 1000 cycle/bit 5GHz 1 × 10−10 J/cycle 5 × 10−7 $/bit 20m

HN 3 1000 cycle/bit 5GHz 3 × 10−10 J/cycle 1:5 × 10−7 $/bit 30m
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Figure 4: Maximal CQoS for 3-target tasks. The service objectives
of the three tasks are f1, 0, 0g, f0, 1, 0g, and f0:1,0:1,1g,
respectively. Task 1 and Task 2 can be scheduled with DOTS and
FEMTO algorithm, respectively.
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the TN. It is because that the probability to find a befitting
HN for the TN with specific service objective increases when
the HN amount is large.

8. Conclusions

In order to provide the customized services for the emerging
multifarious IoT applications with multiple targets, we pro-
pose a general service framework in homogeneous MTMH
computing networks, in which the TNs are served according
to specific service objectives. The CQoS combining metrics
including service delay, energy consumption, and economic
cost is formulated to quantify the TN’s comprehensive satis-
factory level for the provided service. An algorithm named
SCOTT is developed, which achieves the CQoS maximal
offloading solutions by problem transforming. Numerical
results based on extensive simulations in a heterogeneous
computing network demonstrate that the proposed algo-
rithm can effectively provide the optimal node selection, task
division, and transmission power for the TNs with various
service targets. The universal applicability of the task sched-
uling scheme is also verified by case studies and simulations.
Future research directions of this work are the universal
scheduling scheme for multitarget tasks of mobile network
nodes in a multilayered computing network.

Appendix

A. Proof of Proposition 1

We prove Proposition 1 with contradiction. In other words,
if the condition that DTi ≤DOi is not satisfied, the optimiza-
tion goal Qi in P0 is not maximized.

Assume that there is an offloading scheme ðli, piÞ for the
available HN i, and the corresponding subtask delays satisfy
DTi >DOi.

Based on this offloading scheme, we can decrease the TN
transmission power pi to pi′ = pi − Δpi

, such that DTi =DOi.
Then, the delay target KdDi = Kd max ðDTi,DOiÞ and the
economic cost target KcCi = Kcliπi remain unchanged.

The energy consumption for the transmission of 1 bit
data, i.e.,

Et =
pi

W log2 1 + piγiβið Þ/ Ii +WN0ð Þð Þð Þ , 0 ≤ pi ≤ pmax,

ðA:1Þ

is a monotone increasing function of the transmission power
pi when pi is nonnegative [41]. So, the decrease of pi leads
to a small energy consumption target KeEi = KeðlTηTθT +
ðlipi/WBiÞ + liηiθiÞ.

Therefore, the utility Qi = 1/ðKdDi + KeEi + KcCiÞ can
always be increased by this transmission power adjustment,
and Qi is not maximized with the given offloading scheme
ðli, piÞ.

The above proves Proposition 1.

B. Proof of Proposition 3

Take the derivative of ∂Qi2/∂li with respect to pi, we get

∂2Qi2
∂li∂pi

=
1

WB2
i

KeBi −
γiβið Þ/ Ii +WN0ð Þ

1 + piγiβið Þ/ Ii +WN0ð Þð Þð Þ ln 2

�

Á Kd + Kepið Þ
�
:

ðB:1Þ

Denote KeBi − ðγiβi/ðIi +WN0Þ/ð1 + ððpiγiβiÞ/ðIi +
WN0ÞÞÞ ln 2ÞðKd + KepiÞ by G. For nonnegative transmis-
sion power pi, we have

∂G
∂pi

= Ke
pi γiβi/ Ii +WN0ð Þð Þ2

1 + piγiβið Þ/ Ii +WN0ð Þð Þð Þ ln 2

+ Kd
γiβi/ Ii +WN0ð Þð Þ2

1 + piγiβið Þ/ Ii +WN0ð Þð Þð Þ2 ln 2
> 0,

lim
pi⟶0

G < 0,

lim
pi⟶+∞

G > 0:

ðB:2Þ

Therefore, G is a monotone increasing function of pi and
has a single zero point when pi ∈ ½0,∞Þ. Denote the only zero
point of the equation G = 0 as p̂i. Then, ∂

2Qi2/∂li∂pi is posi-
tive when pi ∈ ½0, p̂i� and negative when pi ∈ ðp̂i,∞Þ. In other
words, the gradient ∂Qi2/∂li is monotone decreasing when
pi ∈ ½0, p̂i� and monotone increasing when pi ∈ ðp̂i,∞Þ.
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Figure 5: Maximal CQoS in service clusters with different radii and
HN amount.
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The above proves Proposition 3.

C. Proof of Proposition 4

According to the expression of ∂Qi2/∂li in (15), we can
expand the objective function of P2 − 1, i.e., Qi21 in (18), as

Qi21 = KelηTθT +
l ηT/f Tð Þ

ηT/f Tð Þ + 1/WBið Þ + ηi/f ið Þð Þ
Á Kd

1
WBi

+
ηi
f i

� �
+ Ke

pi
WBi

+ ηiθi − ηTθT

� �
+ Kcπi

� �

= KelηTθT +
l ηT/f Tð Þ ∂Qi2/∂lið Þ

ηT/f Tð Þ + 1/WBið Þ + ηi/f ið Þð Þ ≥ KelηTθT:

ðC:1Þ

The inequation in the last line of the above formula
comes from the fact that ∂Qi2/∂li ≥ 0, pi ∈R1.

According to Algorithm 1, there is ‘pi ∈R1 when R1 ≠
½0, pmax�, and ‘pi is one of the zero points of ∂Qi2/∂li. There-
fore, the optimal transmission power that minimizes Qi21 is
p∗i1 = ‘pi whenR1 ≠ ½0, pmax�, and the minimum value of Qi21
is KelηTθT in this case.

When R1 = ½0, pmax�, we can get the poles of Qi21 by
searching the solutions of ∂Qi21/∂pi = 0 in the value range
½0, pmax� with bisection method. By comparing the values
of Qi21 at the poles and pi = 0, pi = pmax, we can get the
optimal offloading solution in this case. Next, we can
prove that the function ∂Qi21/∂pi = 0 has at most one solu-
tion in ½0, pmax�, which is denoted by p̆i.

The first derivative of Qi21 with respect to pi is

∂Qi21
∂pi

=
l ηT/f Tð Þ

ηT/f Tð Þ + 1/WBið Þ + ηi/f ið Þð Þ2

Á Ke
1

WBi

� �2
+ Ke

ηT
f T

+
ηi
f i

� �
1

WBi

(

+ Kd
ηT
f T

− Ke ηiθi − ηTθTð Þ − Kcπi

�

+ Ke
ηT
f T

+
ηi
f i

� �
pi

�
∂ 1/WBið Þ

∂pi

)
,

ðC:2Þ

in which ∂ð1/WBiÞ/∂pi can be expanded as

Therefore, the function ∂Qi21/∂pi = 0 is equivalent to

Kd
ηT
f T

− Ke ηiθi − ηTθTð Þ − Kcπi + Ke
ηT
f T

+
ηi
f i

� �
pi

� �

Á − γiβi/ Ii +WN0ð Þð ÞW
1 + γiβi/ Ii +WN0ð Þð Þpið Þ ln 2

+ Ke

+ Ke
ηT
f T

+
ηi
f i

� �
WBi = 0:

ðC:4Þ

By introducing the variable substitution x = 1 + ðpiγiβi/
ðIi +WN0ÞÞ ∈ ½1,+∞Þ, ∂Qi21/∂pi = 0 can be further equiva-
lent to

f xð Þ = α1 +
α2
x

+ α3 log2 xð Þ = 0, ðC:5Þ

in which the three parameters, i.e., α1, α2, and α3, are

∂ 1/WBið Þ
∂pi

=
−γiβi/ Ii +WN0ð Þ

W log2 1 + piγiβið Þ/ Ii +WN0ð Þð Þð Þ½ �2 1 + piγiβið Þ/ Ii +WN0ð Þð Þð Þ ln 2

=
− γiβi/ Ii +WN0ð Þð ÞW

1 + γiβi/ Ii +WN0ð Þð Þpið Þ ln 2
1

WBi

� �2
:

ðC:3Þ

α1 = −Ke
ηT
f T

+
ηi
f i

� �
W
ln 2

+ Ke,

α2 = Ke
ηT
f T

+
ηi
f i

� �
− Kd

ηT
f T

− Ke ηiθi − ηTθTð Þ − Kcπi

� �
γiβi

Ii +WN0

� �
W
ln 2

,

α3 = Ke
ηT
f T

+
ηi
f i

� �
W > 0:

8>>>>>>>><
>>>>>>>>:

ðC:6Þ
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Now, we need to prove that the equation f ðxÞ = 0 in
(C.5) has at most one solution in ½1, 1 + ðpmaxγiβi/ðIi +
WN0ÞÞ�.

The first derivative of f ðxÞ with respect to x is

f ′ xð Þ = −
β

x2
+ γ

1
x ln 2

: ðC:7Þ

Then, the solution of f ′ðxÞ = 0 in ð−∞, +∞Þ is x1 = α2
ln 2/α3.

If x1 < 1, we have f ′ðxÞ > 0 when x ≥ 1, and f ðxÞ is
monotone increasing in ½1, 1 + ðpmaxγiβi/ðIi +WN0ÞÞ�.
Therefore, f ðxÞ has a single zero point in ½1, 1 + ðpmaxγiβi/
ðIi +WN0ÞÞ� iff f ð1Þ < 0 and f ð1 + ðpmaxγiβi/Ii +WN0ÞÞ >
0 are satisfied. The only zero point x̆ = 1 + ðp̆iγiβi/ðIi +
WN0ÞÞ can be obtained with bisection method.

If x1 ≥ 1, x1 is the only pole of f ðxÞ, and f ðxÞ is mono-
tone decreasing in ½1, x1� and monotone increasing in ðx1,
+∞Þ. Besides, we have

f x1ð Þ = α1 +
α2
ln 2

+ α3 log2
α2 ln 2
α3

� �
, ðC:8Þ

in which α1 + ðα2/ln 2Þ = Ke > 0 and α3 log2ðα2 ln 2/α3Þ ≥ 0.
Thus, the minimum value of f ðxÞ is larger than 0, and
f ðxÞ = 0 has no solution in this case.

In conclusion, p∗i1 = ‘pi when R1 ≠ ½0, pmax�. When
R1 = ½0, pmax�, we get p∗i1 by comparing the values of Qi21
when pi ∈P i1, and the set P i1 includes the only pole of
Qi21, i.e, p̆i iff the three conditions in (22) are satisfied.

The above proves Proposition 4.

D. Proof of Proposition 5

The first derivative of Qi22 with respect to pi is

∂Qi22
∂pi

=
l

WB2
i

KeBi −
γiβi/ Ii +WN0ð Þ

1 + piγiβi/ Ii +WN0ð Þð Þð Þ ln 2

�

Á Kd + Kepið Þ
�
:

ðD:1Þ

Compare (D.1) with (B.1), we get

∂Qi22
∂pi

= l
∂2Qi2
∂li∂pi

: ðD:2Þ

Therefore, the variation trend of Qi22 is the same with
∂Qi2/∂li. Based on the conclusions in Proposition 3 and
Algorithm 1, we can conclude that Qi22 is monotone
decreasing when pi ∈ ½0, p̂i� and monotone increasing when
pi ∈ ðp̂i,∞Þ.

For the cases that ∂Qi2/∂lijp̂i ≥ 0 or pmax ≤ ‘pi, R2 =∅.

Otherwise, we have the following conditions:
If ‘pi < pmax < p̂i, R2 = ½‘pi, pmax� ≠∅, and Qi22 is mono-

tone decreasing in R2, thus p
∗
i2 = pmax.

If p̂i ≤ pmax < p′i, R2 = ½‘pi, pmax� ≠∅, and Qi22 is mono-
tone decreasing in ½‘pi, p̂i� and monotone increasing in ½p̂i,
pmax�, thus p∗i2 = p̂i.

If pmax ≥ p′i, R2 = ½‘pi, p′i� ≠∅, and Qi22 is monotone
decreasing in ½‘pi, p̂i� and monotone increasing in ½p̂i, p′i�,
thus p∗i2 = p̂i.

The corresponding optimal subtask size l∗i2 equals to l for
the reason that Qi2 is a monotone decreasing function of li
when pi ∈R2.

We have proved the optimal solution of P2 − 2 so far.
Then, we need to prove that Q∗

i21 ≥Q∗
i22 when R2 ≠∅.

In the proof of Proposition 4, we express Qi21 as

Qi21 = KelηTθT +
l ηT/f Tð Þ ∂Qi2/∂lið Þ

ηT/f Tð Þ + 1/WBið Þ + ηi/f ið Þð Þ ≥ KelηTθT:

ðD:3Þ

Besides, Qi21 can be expressed as

Qi22 = Kdl
1

WBi
+
ηi
f i

� �
+ Kel

pi
WBi

+ ηiθi

� �
+ Kclπi

= KelηTθT + l
∂Qi2
∂li

< KelηTθT,

ðD:4Þ

in which the in inequality in the last line of the above for-
mula comes from the fact that ∂Qi2/∂li ≥ 0, pi ∈R2.

Therefore, Qi21 is always larger than Qi22, and there is
Q∗

i21 ≥Q∗
i22 when R2 ≠∅.

The above proves Proposition 5.
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