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Gait recognition is one of the crucial methods in identity recognition, which has a wide range of applications in many fields, such
as smart home, smart office, and health monitoring. The camera is the most mainstream traditional solution. But the camera is
difficult to maintain stable performance in the dark, low light, and bad weather conditions. In addition, privacy leakage is also
one of the important issues that people worry about. In contrast, as the latest research progress in gait recognition, millimeter
wave radar can not only protect people’s privacy, but also maintain normal perception performance in dark conditions. In this
paper, we propose a system for gait recognition named MTPGait using spatio-temporal information via millimeter wave radar.
We specially design a neural network that can extract multiscale spatio-temporal features along space and time dimensions of
3D point cloud concisely and efficiently. We use LSTM to design the context flow of local and global time and space, fusing
local and global spatio-temporal features. In addition, we construct and release a millimeter wave radar 3D point cloud data
set, which consists of 960-minute gait data of 40 volunteers. Using the data set, we evaluate the system and compare it with
four state-of-the-art algorithms. The experimental results show that MTPGait is able to achieve 96.7% recognition accuracy in
a single-person scene on fixed route and 90.2% recognition accuracy when two people coexist, while none of the existing
methods is more than 90% recognition accuracy in either scenario.

1. Introduction

As an important link in human-computer interaction, iden-
tity recognition plays an important role in many fields. For
example, personalized control of room temperature, selec-
tion of background music, and adjustment of light bright-
ness are all dependent on accurate identity information. At
present, traditional recognition methods are based on wear-
able devices [1, 2]. The user’s identity is recognized through
the smart phone, ID card, token, and other devices carried
by the user. However, carrying extra equipment may cause
inconvenience to users in some cases. Therefore, no wear-
able recognition methods based on biometric features, such
as sclera [3], fingerprints [4], and iris [5], have been rapidly
developed to adapt to more general scenarios. The visual
recognition technology is widely used in various scenes

[6–9]. However, the camera is difficult to obtain clear images
in low light or even dark scenes. In addition, as people pay
more and more attention to privacy, especially considering
the factors such as the hijacking of cameras by malicious
users, people increasingly feel the serious privacy threat of
cameras in the home and office environment.

To eliminate issues such as privacy and weak light, the
researchers propose using WiFi for identity recognition,
based on the principle that each person’s unique body fea-
tures and gait characteristics lead to different channel state
information (CSI) patterns to recognize subtle differences
between people [10]. [11] combines the convolutional layer
with the LSTM layer and proposes a simple and effective
deep learning method to realize automatic identification of
people by WiFi. [12] proposes a gait recognition method
based on WiFi and LSTM and designs an effective six-layer
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recursive neural network to extract human gait biometric
features. However, the WiFi-based approach requires the
deployment of a transmitter and a receiver, and the user
needs to walk between the transceivers, which severely limits
the recognition area and the universality of the application.
In addition, the existing WiFi identification technology is
not able to identify multiple people in the same scene well
due to limited factors such as the bandwidth of the device.
Recently, millimeter wave radar technology has made a
prominent appearance in the field of autonomous driving,
and meanwhile, research in the field of indoor behavior per-
ception has also increased gradually.

The millimeter wave radar does not have the privacy
problem of the camera and can still work normally in low
light or dark environment. Compared with WiFi identifica-
tion technology, millimeter wave radar has a bandwidth of
up to 4GHz, which can provide more accurate spatial reso-
lution. In addition, millimeter wave radar can provide rela-
tively fine-grained velocity information. Importantly, the
current WiFi recognition technology relies heavily on the
information in the environment. Although some studies
use transfer learning and adversarial learning to solve this
problem, it still needs to spend a large deal of time and
energy to retrain or improve the model after the environ-
ment changes. Gait recognition based on millimeter wave
radar can filter the static point cloud directly and has high
robustness to the environment.

The 3D point cloud of pedestrian gait contains rich tim-
ing and spatial information, such as walking speed, spatial
trajectory, local limb swing amplitude, stride size, and fre-
quency. However, the existing methods for gait recognition
using 3D point clouds do not have a good fusion of time
sequence and spatial information in the gait point clouds
at the same time. For example, mID [13] uses LSTM for fea-
ture extraction of point clouds and only focuses on the tim-
ing information in the point cloud. [14] directly inputs the
3D point cloud into CNN for feature extraction. Although
this method uses the spatio-temporal convolution kernel to
extract the spatio-temporal information of point cloud, it
pays little attention to the fused features because the five
attributes are input independently for feature extraction.
The fused features can better represent the coordination
between body and limb, the correspondence between speed
and spatial position, and the matching between stride fre-
quency and stride length.

However, there are still some problems in gait recogni-
tion based on millimeter wave radar. In [15], the gait motion
features were transformed into micro-Doppler images, and
the CNN model was trained and evaluated to achieve classi-
fication. CNN alone can extract local and global spatial char-
acteristics, but in the process of walking, the spatial and
velocity information of the whole human body and the local
body are closely related in time series, while CNN alone can-
not well extract the time series features and cannot effec-
tively use millimeter wave radar speed information. [13]
uses millimeter wave radar data to generate 3D point cloud
gait data sets and trains and evaluates LSTM models to real-
ize 12 person gait recognition. LSTM can well extract the
temporal features of point cloud data, but the morphology

of point cloud itself also contains a large amount of feature
information, which cannot be effectively extracted only by
using LSTM model.

In order to solve the above challenges, this paper pro-
poses a new gait recognition method based on 3D point
cloud. This method is based on the concise and efficient
CNN+LSTM network structure for multiscale spatio-
temporal features extraction. In addition, since there are very
few public millimeter wave radar gait data sets, this paper col-
lects the single and double persons gait data of 40 volunteers
in three scenarios to form a large-scale 3D point cloud data
set of gait (https://github.com/caoxu907/MMWAVE_gait).
Then, we conduct model training and evaluation on this data
set and achieve the highest recognition accuracy of 96.7%.

The main contributions of this paper are as follows:

(1) We specially design a neural network that can
extract multiscale spatio-temporal features along
space and time dimensions of 3D point cloud con-
cisely and efficiently. And LSTM is used to design
the context flow of local and global time and space,
fusing local and global spatio-temporal features

(2) We use the DBSCAN algorithm to cluster the point
clouds and use the Hungarian algorithm to perform
interframe multitarget matching

(3) We have built and published a large-scale 3D point
cloud gait data set of 40 volunteers in three scenar-
ios, with a total length of 960 minutes

(4) We evaluate the accuracy of single and double per-
sons gait recognition in multiple environments, and
the results show that single and double persons rec-
ognition accuracies are 96.7% and 90.2%

2. Related Work

2.1. Gait Recognition Based on Wireless Signals. There has
been a large amount of work in the research of gait recogni-
tion based on wireless signals. Among them, WiFi-based gait
recognition has the most research work. Using WiFi for
identification, the principle is that each person’s unique
physical characteristics and gait characteristics lead to differ-
ent CSI patterns to identify the subtle differences between
people [21–23]. WiWho [24] uses step analysis and walking
analysis to extract the step features and overall walking fea-
tures of each detected target from the CSI data and then
matches these features with the walking signatures pre-
trained by machine learning to achieve classification. WiFi-
ID [25] first uses continuous wavelet transform to separate
signals, then uses RelieF feature selection algorithm to
extract time and frequency domain features from the sepa-
rated signals, and finally uses sparse approximation algo-
rithm to achieve classification. Because the WiFi-based
sensing method has a strong dependence on the environ-
ment, it is difficult to achieve better results after the environ-
ment changes. In addition, it is difficult for WiFi signals to
separate targets like millimeter wave radars, so it is impossi-
ble to realize the perception of multiple people.

2 Wireless Communications and Mobile Computing

https://github.com/caoxu907/MMWAVE_gait


Researches on millimeter wave radar-based identifica-
tion are also gaining attention. Table 1 reviews the recent
research methods and recognition accuracy of identification
using millimeter wave radar. [15] uses CNN to extract the
micro-Doppler features of gait to realize gait recognition.
Experimental results show that the error rate of the test set
is 21.54% in gait recognition of five targets. mID [13] is
the first to use millimeter wave radar point cloud for gait
recognition. This method uses LSTM to extract the time
sequence characteristics of gait point cloud data. Finally, it
can achieve 89% accuracy in single-person gait recognition
and does not introduce the accuracy of multiperson recogni-
tion. Meng et al. establish the first public millimeter wave
radar gait point cloud data set mmGait and propose
mmGaitNet [14]. This method can achieve 90% accuracy
in single-person recognition, but the pedestrian route is a
fixed route. In random routes, this method can only achieve
45% accuracy.

2.2. Other Perception Based on Millimeter Wave. In addition
to using millimeter wave for gait recognition, researchers
have also conducted many other perceptual studies [26,
27]. mmTrack [28] improves spatial resolution by applying
digital beamforming to the receiving antenna and proposes
a new target detection method to solve near-far effect and
measurement noise. In addition, mmTrack designs a robust
clustering method to estimate the location of multiple
targets and finally achieves continuous tracking of multiple
trajectories, with a median tracking error of 9.9 cm for
dynamic targets. mSense [29] proposes a novel method for
material identification using millimeter wave radar. This
method uses CIR interpolation, direct path-based synchro-
nization, and background and noise elimination techniques
to characterize the intrinsic reflectivity of the target and then
achieves the target category’s association. Finally, the
method achieves an average of 93% recognition accuracy
for five materials such as aluminum, ceramics, plastics, wood,
and water. mmVib [30] proposes a noninvasive micron-level
vibration measurement method using millimeter wave radar.
This method introduces the Multi-Signal Consolidation
(MSC) model to capture the multifrequency and multian-
tenna characteristics of the reflected signal of the vibrating
object and achieves a comprehensive description of the
reflected millimeter wave signal model description of the
vibrating object. In the end, the method achieves a relative
amplitude error of 8.2% and a relative frequency error of
0.5%, and the median error in the amplitude of 100 microme-
ters was only 3.4 micrometers. VIMO [31] proposes a
method for detecting breathing and heartbeat using millime-
ter wave radio. The autocorrelation function of this method
calculates the CIR phase to estimate the respiratory fre-
quency and uses the cubic spline interpolation method to
estimate the heart rate. Finally, the respiratory frequency esti-
mation can be achieved. The median accuracy is 0.19 BPM,
and the median accuracy of the heart rate estimate is 1
BPM. mHomeGes [32] proposes a concentrated position-
Doppler profile (CPDP) based on point cloud and a light-
weight neural network mGesNet to extract gesture features,
proposes a new user discovery method to eliminate multi-

path effect, and finally designs a hidden-Markov model-
based voting mechanism (HMM-VM) to realize continuous
gesture recognition. The recognition accuracy of mHomeGes
can reach 95.3% in the case of ambient interference.

3. Principle of Millimeter Wave Radar

The millimeter wave radar determines the distance, speed,
and angle of the object by capturing the signal reflected by
the obstruction of the object on the transmission path. The
signal emitted by the millimeter wave radar is a continuous
frequency modulation wave, which is essentially a sine wave
signal whose frequency increases linearly with time. This
kind of continuous frequency modulation wave signal is also
called chirp, which is transmitted and received by two
antenna arrays equipped with millimeter wave radar. The
transmitted signal of millimeter wave radar can be expressed
as

sT tð Þ = AT cos 2π f ct +
ðt
0
f T τð Þdτ

� �
: ð1Þ

The received signal is

sR tð Þ = AR cos 2π f c t − Δtdð Þ +
ðt
0
f R τð Þdτ

� �
: ð2Þ

Among them, sTðtÞ and sRðtÞ represent the transmitted
signal and the received signal, respectively. AT and AR are
the amplitudes of the transmitted signal and the received sig-
nal, respectively. f c is the center frequency of the carrier.
f TðτÞ and f RðτÞ are the frequencies of the transmitted signal
and the received signal, respectively. Δtd indicates the flight
delay from the transmitted signal back to the receiving end
after reflection.

The frequency of the transmitted signal and the received
signal can be obtained by the following formula:

f T τð Þ = τ
B
T
, ð3Þ

f R τð Þ = τ − Δtdð Þ B
T

+ Δf d: ð4Þ

Among them, B is the signal bandwidth, T is the
sweep period of the chirp signal, and Δf d represents the
Doppler frequency shift. After the receiving antenna cap-
tures the reflected signal, the mixer combines the transmit-
ted signal and the echo signal reflected by the target scene
to generate an intermediate frequency signal, which can be
expressed as

sIF tð Þ = f LPF sT tð ÞsR tð Þf g = 1
2ATAR

⋅ cos 2π f cΔtd +
B
T
Δtd − Δf d

� �
t

� �
:

ð5Þ

3Wireless Communications and Mobile Computing



According to the delay of each chirp pulse, the dis-
tance formulas for different multitargets can be derived
as follows:

Δd = Δf c
2S , ð6Þ

where Δf is the frequency of the intermediate frequency
signal and S is the slope of the chirp.

The millimeter wave radar measures the speed by emit-
ting two chirp pulses separated by Tc and obtains the dis-
tance of the object by performing FFT processing on each
reflected echo. According to the different phases of the same
peak position, the speed of the object movement is derived:

v = λΔΦ

4πTc
: ð7Þ

Among them, λ is the wavelength, and ΔΦ is the phase
difference between the two chirped signals.

The millimeter wave radar estimates the angle by mea-
suring the phase change caused by the small change in the

distance of the object. The estimated angle can be expressed
as

θ = sin−1 λΔΦ

2πl

� �
, ð8Þ

where I is the distance between the antennas and ΔΦ is the
phase difference between the two chirp signals.

4. System Design

MTPGait uses millimeter wave radar to obtain biological
characteristics of human gait when walking for identity rec-
ognition. The continuous frequency modulation wave emit-
ted by the millimeter wave radar is used to obtain the
reflected signal of the walking person and then generate 3D
point cloud. The system realizes the classification by analyz-
ing point cloud data. Figure 1 is the flow chart of MTPGait.
There are six steps in total:

(i) Point cloud generation: the millimeter wave radar
transmits the chirp signal and records the reflected

Table 1: A review of various conventional studies on radar-based personal identification.

References Data set Method Number and type of radar Recognition accuracy

[16]

20 volunteers
2,880 radar
signals each
lasting 10
seconds

A deep network constructed from
several individually sparse AEs
The input data are μ D signals

Using a single radar
A continuous wave

Doppler radar, the ST200
system by RFbeam

The recognition accuracy of single
person on random routes can reach

96.20%.

[17]
8 volunteers
Total 40,000

frames

Multichannel 3D convolutional
neural network

Gait point cloud data as input

Using a single radar
IWR1443BOOST

The recognition accuracy of single
person on random routes can reach 93%

[18]

10 volunteers
Total 1500
samples

2.3 seconds per
sample

Input the gait spectrum map into the
convolutional neural network

Using a single radar
AWR1443

The recognition accuracy of single
person on fixed and random routes can

reach 91% and 90%

[19]
4 volunteers
100000 frames

of data

Input point cloud data into
multibranch CNN networks

Using a single radar
CAL60S244 IBM AiP

The recognition accuracy of single
person on random routes can reach

85.8%

[20]

6 volunteers
Three

environments
Total 75

minutes of data

Input point cloud data into spatio-
temporal graph convolutional

network

Using a single radar
IWR6843ISK

The recognition accuracy of single
person and two persons on random
routes can reach 68.88% and 75.51%

[14]
95 volunteers
Total 30 hours

of data

Input the five attributes of the point
cloud into the CNN network

Using two radars
IWR6843 and IWR1443

The recognition accuracy of single
person and two persons on fixed route

can reach 90% and 86%

[15]
5 volunteers

150 minutes of
gait data

Input the micro-Doppler signature
into the DCNN model

Using a single radar
An FMCW radar device
produced by industrial
radar systems GmbH

The method achieved an error rate of
24.70% on the validation set and an error

rate of 21.54% on the test set

[13]
12 volunteers
Total 120

minutes of data

Each frame of data is flattened into a
16000 dimensional vector and fed

into the bidirectional LSTM

Using a single radar
IWR1443

The recognition accuracy of single
person on random routes can reach 89%
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signal. Then it calculates and generates point clouds
based on the reflected signal. In this process, static
clutter filtering and Constant False-Alarm Rate
(CFAR) algorithms are applied to remove interfer-
ence point clouds [33]. Interference point clouds
include static objects, such as tables and walls, as
well as dynamic objects other than pedestrians, such
as rotating fans and curtains stirred by the wind

(ii) Point cloud clustering analysis: in this module, a
clustering algorithm is applied to gather sparse
point clouds into one or more point cloud clusters
to form single or double persons point cloud fea-
tures. If the clustering result is a single person point
cloud, go directly to the fourth step; otherwise, go to
the third step

(iii) Multitarget matching between frames: the Hungary
algorithm is applied to match multiple point cloud
clusters between the upper and lower frames and
then obtain multiple continuous point cloud fea-
tures of the gait trajectory

(iv) Data preprocessing: in this module, we prepro-
cessed the data before training. Frames with less
than 128 point clouds are filled to 128 point clouds
to ensure consistent length of input data. Then, we
slice the point cloud data with the length of 30
frames as a window. In addition, we divide the data
into training set and test set according to the ratio of
11 : 1

(v) Feature extraction: we input five attributes of 3D
point cloud gait data as five independent channels
into spatio-temporal convolution kernel for local

feature extraction and then fuse the features of five
attributes through fusion network. The global fea-
ture is extracted by the long- and short-term mem-
ory network

(vi) Target classification: the fully connected layer
deduces the score of each classification and finally
realizes the classification of the targets

4.1. Point Cloud Clustering and Multitarget Matching
between Frames. The gait point cloud collected by millimeter
wave radar is sparse and scattered. After applying the static
clutter filtering algorithm, most of the static interference
point cloud is filtered out. By adjusting the CFAR threshold,
most nontarget dynamic interference can also be removed.
However, there will still be some dynamic interference that
is difficult to filter out. This is because the movement speed
of some distractors is high or low, and some are close to the
speed of the human body, such as swinging air-conditioning
fan blades. This leads to too much dynamic interference
when the threshold is too small, and when the threshold is
too large, part of the human body point cloud is missing.
Fortunately, most of the dynamic interference is at a certain
distance from the user. Therefore, we use the DBSCAN clus-
tering algorithm to gather the point cloud data reflected by
the human body and remove the remaining noise points.
In addition, for double persons point cloud data, it needs
to be divided into single-person point cloud data for pro-
cessing. Therefore, the DBSCAN clustering algorithm is
used to cluster and segment double persons point clouds.
Figure 2 shows the point cloud data before and after cluster-
ing. The DBSCAN algorithm is a classic clustering algorithm
based on density perception that does not need to set the
number of clusters in advance. It divides the clusters by

Point clouds data collection Clustering to point clouds

Multiple
target

Simple
target

Feature extractionIdentification Data preprocessing

Fill

Slice

128 point clouds

30
frames

LSTM

. . .

CNN

Interframe multi-target
matching

User 1
User 2

User N

1st frame P1Person#1 Person#2
2st frame P1

1st frame P2
2st frame P2

Figure 1: The flow chart of MTPGait.
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calculating the closeness between sample points. When pro-
cessing point cloud data, the algorithm divides the point
cloud according to the Euclidean distance between the point
clouds in the three-dimensional space. For point clouds
between different people who are far away, such as main-
taining a social distance of 0.3-0.6m or more, the algorithm
has better performance. But when the distance is close, the
segmentation accuracy of this algorithm decreases.

4.2. Neural Network Structure. The point cloud data is com-
posed of five attributes: distance, speed, pitch angle, horizon-
tal angle, and signal-to-noise ratio. After data analysis and
data transformation, we can get the three-dimensional coor-
dinates (X, Y , and Z) of the point cloud. Correspondingly,
we can get the five attributes X, Y , Z, V , and N of the point
cloud, where X, Y , and Z are the three-dimensional coordi-
nates of the point cloud, V is the speed, and N is the signal-
to-noise ratio. Due to the sparse and scattered characteristics
of the point cloud itself, the point cloud mapping will gener-
ate a large amount of redundant data on the picture, result-
ing in a rapid increase in network consumption. Therefore,
in order to reduce network consumption and improve train-
ing speed, we directly use the five attributes of the point
cloud as the input data of the network instead of mapping
the point cloud to the picture.

In order to effectively extract the spatio-temporal fea-
tures of point cloud data, we specially design a neural net-
work that can extract multiscale spatio-temporal features
along space and time dimensions of 3D point cloud con-
cisely and efficiently. And LSTM is used to design the con-
text flow of local and global time and space, fusing local
and global spatio-temporal features. We take the five attri-
butes of the point cloud independently as input and use
the spatio-temporal convolution kernel to extract the local
spatio-temporal features of the point cloud. However, it is
difficult for five independent gait attributes to fully repre-
sent the inherent characteristics of gait, so we need to fuse
these five attributes. Therefore, in the third layer, we
design a fusion network F to fuse the five attributes. After

fusion, the features are more comprehensive and can more
comprehensively represent the coordination of a person’s
torso and limbs, the correspondence of speed and spatial
position, and the matching of stride frequency and stride
length.

GF = Cat F Xð Þ, F Yð Þ, F Zð Þ, F Vð Þ, F Nð Þð Þ: ð9Þ

GF represents the output after the fusion network F,
and Cat represents the feature fusion by concat. At the
fourth layer, we extract the global temporal features
through LSTM. The temporal sequence of the fused fea-
tures can well represent the global spatio-temporal trajec-
tory and global speed of walking. Finally, a full
connection layer network FC is set at the end to derive
and calculate the classification score scr. The loss function
of the network is

L scr, tð Þ = − log exp scr t½ �ð Þ
∑jexp scr j½ �ð Þ

 !
= −scr t½ � + log 〠

j

exp scr j½ �ð Þ
 !

:

ð10Þ

As shown in Figure 3, the network contains a total of
six layers. Among them, the layer 0 is the input layer, and
the five attributes of X, Y , Z, V , and N are directly input
to the layer 1; the layer1 is composed of five independent
modules, each of which is composed of a 7 × 7 spatio-
temporal convolution sum 3 × 3 maximum pooling com-
position. We use batch normalization followed by the
ReLU activation functions after the layer. We use the 3
× 3 max pooling with 2 × 2 strides. Next is layer 2 com-
posed of the first layer of five independent ResNet50.
Layer 3 uses a 3 × 3 spatio-temporal convolution and 2 ×
2 average pooling to fuse the five attributes features. The
next layer is an LSTM layer with an input size of 256
and a hidden unit of 128 and a dropout of 0.5. After this,
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1.5
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0.5
0.0
–0.5
–1.0
–1.5
–2.04

3
2

1
0

–1
–2

–3
–4

2.0

Z

Y

X 1.51.00.50.0–0.5–1.0–1.5–2.0

(a) The original 3D point cloud of two people

2.0
1.5
1.0
0.5
0.0
–0.5
–1.0
–1.5
–2.04

3
2

1
0

–1
–2

–3
–4

2.0

Z

Y

X 1.51.00.50.0–0.5–1.0–1.5–2.0

Noise

(b) The point cloud of two people after clustering

Figure 2: Point clouds of two people before and after clustering.

6 Wireless Communications and Mobile Computing



it is layer 5 composed of two fully connected layers and a
ReLU activation function. The last one layer 6 is the out-
put layer. The initial value of the learning rate lr is 0.05.
For each 4 epoch, we set lr = lr × 0:005. The batch size is
256. The optimization function of the network is Adam.
We implement our network in PyTorch.

5. Experiment

5.1. Device Parameter Setting. TI’s millimeter wave radar
IWR1843BOOST is used for 3D point cloud acquisition
of human gait. The radar is configured with three trans-
mitting antennas and four receiving antennas, as well as

Conv: 7 x 7
Maxpool: 3 x 3

Input

Layer 0 Layer 1 Layer 2

Layer 3
Layer 4

Layer 5 Layer 6

Conv: 3 x 3 LSTM

Fully connect Output

Avgpool: 2 x 2

Layer of ResNet 50

X

Y

Z

V

N

Figure 3: The neural network structure of MTPGait.

7.6 m 2.5 m

1.8 m

Sensing area

12 m

Route 1 m

IWR 1843

3.5 m

(a)

Sensing
area

1m

3.5 m

6 m

5.5 m

(b)

Sensing
area

1m

6 m

2.5 m

(c)

Figure 4: The diagram of the three experimental scenarios. (a), (b), and (c) represent laboratory, conference room, and corridor scenarios,
respectively.
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a built-in phase-locked loop (PLL) and analog-to-digital con-
verter (ADC). The radar equipment integrates TI’s high-
performance C674x DSP for radar signal processing. The fre-
quency range is 77GHZ to 81GHZ, with a bandwidth of
4GHZ. We set the frame rate to transmit 10 frames per sec-
ond and send 128 chirps per frame. The chirp transmission
period tc is 162.14 microseconds. The frequency slope is set
to 70GHZ/ms. The range of azimuth and elevation angle of
arrival is between -60 degrees and 60 degrees. Under this
parameter configuration, the maximum detection speed of
the radar is 2.35m/s, and the speed resolution is 0.15m/s.
The maximum detection distance is 8m, and the distance
resolution is set to 0.044m.

5.2. Data Collection. We implemented data collection in
three scenarios as shown in Figures 4(a)–4(c) in Figure 4
which are laboratory, conference room, and corridor scenar-

ios, respectively. Figure 5 is a real picture of data collection
in the laboratory scene. The size of the collection area in
the three scenes is 4m × 5m, 2m × 5m, and 2:5m × 5m,
respectively. In the experiment, we used a single commercial
radar device to collect single and double persons 3D point
cloud gait data on 40 volunteers. The age of the volunteers
is between 19 and 29 years old, the height is between 158
and 182 cm, and the weight is between 45 kg and 105 kg.
As the millimeter wave radar has certain restrictions on
the elevation and horizontal angles, we place the radar at a
height of 1m and keep the data collection area at a mini-
mum distance of 1m from the radar equipment to improve
the coverage of the human body by the radar beam.

The total duration of the data we finally collected was
960 minutes. We completed the data collection in a period
of three months. The data collection process is divided into
fixed route and random route, and the duration is 200 s each
time. Since a single device may cover each other when
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collecting data from double persons, we only consider the
short-term coverage between persons in most cases. In this
case, when we use DBSCAN clustering, we will skip the mul-
tiframe data in such cases. Since the coverage time is short
and the number of data frames generated is also less, it will
not have a significant impact on the overall accuracy. For
the long-term coverage of multiple people, we will adopt a
multidevice collection solution in future work.

5.3. Data Preprocessing. Since the number of point clouds in
each frame will be different, this will cause the length of the
input data to be inconsistent. Therefore, we have filled in
each frame of data. If the number of point clouds does not
meet 128, the copy is notified that the existing point clouds
are filled to 128. When inputting the attribute network for
training, we use a 3-second data frame, that is, 30 frames
of data as the input of each attribute network, and each
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Figure 8: The accuracy of five network structures on fixed route.
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Figure 9: The accuracy of five network structures on random route.
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frame of data has 128 point clouds. We divide the data into
training set and test set according to the ratio of 11 : 1.

6. Evaluation

After the data set was constructed, we evaluated the system
performance. Because the 3D point cloud data generated

by millimeter wave radar is too sparse and scattered, it is
difficult to directly use traditional vision-based methods to
recognize various parts of the human body, and the point
cloud mapping to the picture will generate a large deal of
redundant data resulting in a rapid increase in network con-
sumption. Therefore, we chose to directly consume the point
cloud for training. However, the network structure suitable
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Figure 10: The accuracy of five methods on fixed route.

mmGait mID Point-Net DGCNN Ours

Method

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

1-13
2-10

Figure 11: The accuracy of five methods on random route.
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for 3D point cloud is not so easy to determine. Therefore, we
further analyze the characteristics of 3D point cloud and
found that although it is sparse and scattered, it still contains
the spatial distribution characteristics of the human body. In
addition, the point cloud has the speed attribute, and the
person is walking. The movement characteristics of the over-
all torso and each body part are reflected in the speed attri-
bute, so the point cloud of consecutive frames contains the
time sequence law of human walking. Therefore, we guess
that a suitable network must have both the ability to extract
spatial and temporal features and to merge them. Based on
this, we design the network structure of CNN+LSTM. In
order to verify our guess, we compare a variety of different
types of network structures and different network sizes by
conducting ablation research evaluations, which will be dis-
cussed below.

6.1. Overall Performance. In general, the accuracy of the sys-
tem can reach 96.7% and 94.9% in the fixed route and ran-
dom route with 13 participants. The confusion matrix of
the two cases is shown in Figures 6 and 7. In the case of 10
people participating and two people walking at the same
time, the system accuracy of the fixed route and the random
route reached 90.2% and 87.4%, respectively. This is because
when a single device collects data, the greater the number of
people in the case of random routes, the more serious the
mutual obstruction, the higher the probability of obstruc-
tion, and the longer the duration of occurrence. We compare
our approach with various conventional studies of radar-
based personal identification in Table 2.

6.2. Comparison of Neural Network Structure. In order to
verify our conjecture, we compare four different types of net-
work CNN, LSTM, transformer, and CNN+ transformer.

Among them, CNN and LSTM are the first half and the
second half of our network, respectively. Comparing with
them, we can effectively verify whether the combination of
CNN+LSTM is better than CNN and LSTM alone through
ablation studies. In addition, once transformer appeared, it
has taken the lead in the field of NLP. In the past two years,
it has slowly migrated to the field of vision and achieved
good results. There are two main ways to apply transformer
in the field of vision. One is the pure transformer structure.
For example, Vision Transformer directly applies the pure
transformer architecture to a series of image blocks for
classification and achieves good results on several larger
image data sets. The other is a hybrid structure combining
CNNs/backbone network and transformer. For example,
DETR [34] is a target detection framework that combines
CNN and transformer’s pipeline. Therefore, we compare
the two structures with transformer and CNN+ transformer.
Among them, transformer uses ViT-Base in Vision Trans-
former [35], and CNN+ transformer uses DETR.

The five neural network methods are evaluated with
accuracy as their evaluation index. The results of the five
methods are shown in Figures 8 and 9. Figures 8 and 9,
respectively, report the performance of the five algorithms
under the fixed route and the random route. Among them,
1-13 means there are 13 volunteers in this experiment, and
one volunteer is walking at the same time. 2-10 means there
are 10 volunteers in this experiment, and two volunteers are
walking at the same time. The experimental results show
that, first, the combined effect of CNN+LSTM is signifi-
cantly better than that of CNN or LSTM alone. This verifies
our previous conjecture that a network with both spatial and
temporal feature extraction capabilities can better extract
gait point cloud features. Second, the application effect of
transformer and CNN+ transformer on the point cloud data
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Figure 12: The accuracy of different lengths of input data on fixed route.

12 Wireless Communications and Mobile Computing



set is not very good. We guess that this is because the mech-
anism of the transformer limits its ability to converge better
on large-scale data sets. Although the total size of our data
set has reached 16 hours, it is still a far cry from ImageNet,
which has more than 14 million images, and JFT, which
has more than 350 million images. Therefore, the trans-
former is not suitable for radar gait point cloud data sets that
do not yet have large-scale public data sets.

6.3. Comparison with Other Point Cloud Processing
Algorithms. Four existing point cloud-based classification
algorithms mmGait [14], mID [13], Point-Net [36], and
DGCNN [37] are used to compare with our algorithm.
mmGait and mID classify volunteers based on the point
cloud sequence generated by volunteers walking. However,
both Point-Net and DGCNN classify based on static object
point clouds. Therefore, in order to ensure the objectivity
of the comparison, we add LSTM to Point-Net and DGCNN
to extract timing features.

We evaluate five algorithms with accuracy as their eval-
uation index. Figures 10 and 11, respectively, report the
single and double persons gait recognition performance of
the five algorithms in the fixed route and the random route.
Experimental results show that our algorithm performance
is better than the other four algorithms overall. Both
mmGait and mID have achieved good results in fixed routes,
while Point-Net and DGCNN are not very effective. This is
because the first two algorithms are designed for gait point
clouds and have been tested by corresponding data sets.
The latter two are completely designed for static object point
clouds. Although LSTM is added, it is difficult to achieve
higher accuracy. In addition, by further analyzing the results
in Figure 10, it can be seen that the accuracy of mmGait in
the random route is much lower than that of the fixed route.

This is because mmGait can only achieve 45% accuracy in
the case of random routes in the original paper. This shows
that the mmGait algorithm itself is difficult to adapt to gait
point cloud data under random routes. In addition, the
results show that the performance of mID in multiplayer
scenes is also very unsatisfactory. This is because mID
itself is only for single-player scenes. In the single-player
scene in mID, when 12 people participate, a good accuracy
of 89% is achieved, but it has not been trained and tested
in a multiplayer scene. Therefore, compared with several
existing point cloud processing algorithms, our method
can achieve high accuracy under both fixed and random
routes and can still maintain good performance in double
persons situations.

6.4. Impact of Input Data Length. The length of the input
data represents the length of a continuous walking trajectory
for the volunteers. When the length of input data is short, it
cannot fully characterize the characteristics of gait, such as
walking speed, spatial trajectory, local limb swing amplitude,
stride size, and frequency. When the input data is too long,
the training duration will be greatly increased, and the num-
ber of total training samples will be reduced. Therefore,
proper input data length will greatly improve the training
effect of the model. We train the model when the length of
input data is 10, 30, 50, 70, and 90 frames, and the accuracy
results are shown in Figures 12 and 13. By observing
Figures 12 and 13, it can be concluded that the accuracy is
significantly improved when the length of input data
increases from 10 to 30 frames. After that, with the increase
of the length of input data, the accuracy continues to
increase, but slowly. However, the increase of input data
length will continue to increase the training cost. Therefore,
in order to ensure high precision and avoid unnecessary

10 30 50 70 90

Input data length (Frames)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

1-13
2-10

Figure 13: The accuracy of different lengths of input data on random route.
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training cost, we choose to set the input data length as 30
frames.

6.5. Impact of Different Environments. In order to verify the
robustness of the system in different environments, we con-
duct experiments in three classic environments, including
laboratories, corridors, and conference rooms. In three sce-
narios, we collect a total of 40 volunteers’ gait point cloud

data. The recognition accuracy of the three scenarios is
shown in Figures 14 and 15. Experimental results show that
changes in the environment will hardly affect the recognition
accuracy. This is because when using millimeter wave radar
to collect data, CFAR and static clutter filtering algorithms
can be used to remove static point clouds, so that the point
clouds of static objects in the environment such as walls,
ceilings, tables, and chairs can be removed. Therefore,
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Figure 15: The accuracy of different environments on random route.
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Figure 14: The accuracy of different environments on fixed route.
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compared with WiFi-based gait recognition, millimeter wave
radar-based gait recognition has greater advantages in envi-
ronmental independence and robustness.

7. Conclusion

In this paper, we propose a gait recognition system using mil-
limeter wave radar 3D point cloud. Therefore, we design a
neural network that can efficiently extract temporal and spa-
tial features of gait. This network greatly improves the recog-
nition accuracy. We collect and publish online a gait data set
with a duration of 960 minutes for 40 volunteers. As far as we
know, this is the second large-scale public millimeter wave
point cloud gait data set besides mmGait. A large number
of experiments conducted in laboratory, corridor, and con-
ference room scenarios show that the accuracy of MTPGait
can reach 96.7% and 94.9% in the case of fixed route and ran-
dom routes. Compared with several existing methods, this
method can achieve higher accuracy in fixed route and ran-
dom route, single, and double persons situations.

Data Availability

The data is available at https://github.com/caoxu907/
MMWAVE_gait.
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