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The problem of 3D coverage in a wireless sensor network (WSN) has always been an urgent problem to be solved. A novel
compact particle swarm optimization algorithm (ncPSO) to solve this problem is proposed in this paper. This algorithm uses a
Pareto distribution to describe the position of particle swarms. The ncPSO reduces memory usage compared to traditional
heuristics. The ncPSO using the Pareto distribution is less likely to fall into local optima than other compact algorithms using
the Gaussian distribution. We also add Gaussian perturbation strategy to the algorithm to better avoid the algorithm falling
into local optimum. Among the test functions of CEC2013, the ncPSO achieves remarkable optimization ability on most test
functions. Finally, we apply ncPSO to the 3D coverage problem of sensors. Compared with other algorithms, the ncPSO
achieves satisfactory results.

1. Introduction

The heuristic algorithms develop rapidly, and many heuristic
algorithms and their improved algorithms are proposed, such
as particle swarm optimization (PSO) [1], genetic algorithm
(GA) [2], whale optimization algorithm (WOA) [3], Black
Hole (BH) [4], Artificial Bee Colony (ABC) [5], Sine Cosine
Algorithm (SCA) [6], and Bat Algorithm (BA) [7]. The theo-
rem of No Free Lunch (NFL) shows that no algorithm is appli-
cable to all problems [8, 9]. Intelligent computing is applied in
many fields such as architecture, transportation, education,
medicine, and economics [10, 11]. Many improved heuristic
algorithms have been proposed to solve different problems
[12, 13]. Ji et al. proposed a multisurrogate-assisted multitask-
ing particle swarm optimization to solve the problem of
expensive multimodal optimization. Ji et al. introduced mul-
titasking evolution into PSO, which makes the algorithm
have faster convergence speed and better optimization ability
in high-dimensional problems [14]. Song et al. proposed
variable-size cooperative coevolutionary particle swarm opti-
mization to solve the problem of “dimensional disaster.”
Using this algorithm, the feature selection problems with
high-dimensional data are solved [15]. For the problem of

mixed continuous and discrete data, Wang et al. proposed a
new particle swarm optimization algorithm to solve this
problem. Wang et al. tested the performance of the proposed
algorithm with other algorithms on 28 test functions of
CEC2013. The results show that the proposed algorithm by
Wang et al. has better performance than other algorithms
[16]. Fan et al. proposed a random reselection particle swarm
optimization algorithm and applies it to the parameter opti-
mization of solar photovoltaic modules [17]. The problem
with existing heuristic algorithms is that they need large
memory space. This problem is a limitation on tiny devices
such as wireless sensor and microrobot. In order to solve this
problem, compact Artificial Bee Colony (cABC) [18], com-
pact Particle Swarm Optimization (cPSO) [19], compact Sine
Cosine Algorithm (cSCA) [20], and compact Bat Algorithm
(cBA) [21] are proposed. These algorithms with compact
strategy all use normal distribution to represent the position
of population. Although they can reduce the usage of mem-
ory space, they fall into local optimum simply. We propose
a novel compact strategy to solve this problem.

The WSN has impacted every aspect of the life of people
and has attracted the attention of many scholars [22, 23].
The goal of the WSN is to send collected information from
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monitoring area to base station for data analysis [24]. There
are many types of sensors such as humidity, temperature,
and brightness. Due to the many kinds of sensors which
can collect different kinds of information, the WSN is
applied in military, healthcare, environmental studies, and
start home [25–27]. The coverage problem of the WSN is
one of the most important problems to be solved. There
are two main types of the coverage problem, namely, full
coverage and partial coverage [28]. In this paper, we mainly
research the partial coverage problems. However, the partial
coverage problem in a given area includes two categories: the
maximum coverage rate under a certain number of sensor
nodes and the minimum number of sensor nodes to achieve
a certain coverage rate. Increasing coverage rate by increas-
ing the number of sensors will reduce the lifetime of the
WSN. So it is a very vital topic to achieve maximum cover-
age rate with the minimum number of nodes.

Yoon and Kim first proposed that the coverage problem
of WSN is NP-hard [29]. The coverage problem of WSN be
studied in 3D is lesser than that in 2D. Researchers have pro-
posed many methods to solve this problem of WSN in 2D.
However, many solutions that perform well on 2D problems
do not work well in 3D. The 3D coverage problems are more
difficult than the 2D coverage problems, and the 3D cover-
age problems conform closer to the real world. In the 3D
coverage problem, the sensor will encounter obstacles and
affect the coverage of the area. The obstacle blocks the trans-
mission of the sensor signal, so that the sensor cannot mon-
itor the information of the area blocked by the obstacle. In
this paper, we discuss how to solve the two-class partial cov-
erage problems for sensors in a 3D environment containing
obstacles.

The main contributions of this paper are as follows:

(1) Propose a novel compact strategy to solve the prob-
lem of large memory usage of heuristic algorithm.
The novel compact strategy uses the Pareto distribu-
tion to describe the position of the whole particle
swarm instead of the position of each particle to
reduce memory usage

(2) Use Pareto perturbation to better avoid algorithm
falling into local optimum. The Pareto perturbation
is a heavy-tailed distribution. This distribution
makes it easier for the algorithm to find the position
outside the local optimum. This distribution enables
particles to get the solution vector which deviates
from the current optimum

(3) Combine the novel compact strategy and Pareto per-
turbation with PSO to solve the 3D coverage prob-
lem of sensor network. The performance of the
ncPSO and other algorithms is compared on the
CEC2013, and the optimization effect of ncPSO is
also compared with other algorithms in 3D coverage
problem

The rest of the paper is structured as follows. Section 2
covers a related work. We introduce the process of coming
up with the ncPSO in Section 3. We show the performance

test results in Section 4. Section 5 applies the ncPSO to the
coverage problem of WSN. We give conclusion and outlook
in Section 6.

2. Related Work

We introduce the PSO, cPSO, and current research progress
on WSN coverage in this section. The coverage of WSN is
one of the most important issues in current research.
Because of the small size of the sensor, algorithms that
require large memory are not suitable for it. Because intelli-
gent computing can effectively solve the 3D coverage prob-
lem of WSN, the ncPSO is proposed to conveniently use
for sensor in this paper. The traditional heuristic algorithms
have the disadvantage of large memory usage. The proposed
compact algorithms using Gaussian distribution have the
disadvantage of easily falling into local optimum. In view
of these two shortcomings, we propose the ncPSO that uses
Pareto distribution to represent the position of particle
swarm. Because the ncPSO solves the problems of large
memory usage and easy falling into local optimum, the
ncPSO is suitable for solving 3D coverage problems in WSN.

2.1. Particle Swarm Optimization. The PSO is proposed by
Kennedy and Eberhart in 1995 according to the foraging
behavior of birds [1]. The PSO is the most representative
heuristic algorithm. Each particle records its own position,
denoted by Xi. Every particle is a solution to the problem.
The PSO will generate a current optimal solution pBest
and a historical optimal solution gBest in each iteration.
Each particle affected by current optimal position and his-
torical optimal position will have a flight speed, and accord-
ing to the current position and flight speed, they will move
to a new position in the next iteration. The positions of par-
ticles are updated according to

Vg+1
i =wVg

i + c1 × rand × pBesti − Xg
i

À Á
+ c2 × rand × pBest − Xg

i

À Á
,

ð1Þ

Xg+1
i = Xg

i + Vg+1
i , ð2Þ

where Xg
i represents the position in the gth iteration of the i

th particle, Vg
i represents the velocity in the gth iteration of

the ith particle, w is a inertia weight, c1 and c2 are two ran-
dom number in [0,1], pBesti represents the current optimal
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Figure 1: The movement process of the particle swarm.
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solution, and gBset represents the historical optimal solu-
tion. The movement process of the particle swarm is shown
in Figure 1.

V1,V2, andV3 represent three speeds in Equation (1).V1
represents the wVg

i , V2 represents the ðpBesti − Xg
i Þ, and V3

represents the ðpBest − Xg
i Þ. Vg+1

i is the combination of the
three speeds. The new position of Xg+1

i is based on Xg
i and

Vg+1
i . The pseudocode of PSO is described in Algorithm 1.

2.2. Compact Particle Swarm Optimization. Microhardware
has strict requirements on memory, and excessive memory
space affects the normal use of hardware. The cPSO is pro-
posed by Ferrante to adapt limited hardware availability
[19]. The cPSO uses the distribution probability of the pop-
ulation to describe the position of the population. For each
dimension, cPSO only uses perturbation vectors PVgðμg,
σgÞ to describe the swarm. The PV is a Gaussian distribu-
tion, μ is the mean of the PV , and σ is the standard deviation
of the PV . The compact strategy produces a winner and a
loser based on the comparison. μ and σ will update accord-
ing to winner and loser in each iteration. The update formu-
las of μ and σ are shown as Equations (3) and (4).

μg+1 = μg + 1
Np

winner − loserð Þ, ð3Þ

σg+1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σgð Þ2 + μgð Þ2 − μg+1ð Þ2 + 1

Np
winner2 − loser2
À Ás

,

ð4Þ

where Np is the virtual number of particles. A large number
of experiments show that when Np is set to 300, the algo-
rithm has the best effect. The memory usage of PSO and
cPSO is shown in Table 1.

Table 1 shows that the usage of PSO memory depends on
the number of particle and the dimension of problem, but the
usage of cPSO memory only depends on the dimension of
problem. The process of compact strategy is introduced.
Firstly, generate corresponding probability distribution func-
tion (PDF) according to PV vector. Then, calculate cumula-
tive distribution function (CDF) by PDF and normalize
CDF within the range of [0,1]. Then a random number will
be generated to calculate a inverse cumulative distribution
function (iCDF). The value of iCDF is represented as the
position of the particle swarm. The equations of PDF and
CDF of the Gaussian distribution are shown in

PDF = e− x−μð Þ2/2σ2ð Þ× ffiffiffiffiffi2/π
p

σ × erf μ + 1ð Þ/
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ffiffiffi
2
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where the erf is the error function. The pseudocode of cPSO
that combining compact strategy into PSO is shown in
Algorithm 2.

2.3. Coverage of WSN in 3D. The current research problems
on sensor network coverage problem mainly include 2D and
3D. Scholars study problems on 2D more than 3D. The 3D

Initialize X and V of the PSO
Calculate the fitness of each particle
Initialize the gBest, pBesti, f itnessPBest, f itnessGBest
while g < =max iteration do

while i < = particles do
Update Vi and Xi according to Equations (1) and (2)
Calculate the fitness of the new particle
if f itnessðiÞ < f itnessPBest then

pBesti = Xi
f itnessPBest = f itnessðiÞ

end if
if f itnessðiÞ < f itnessGBest then

gBest = Xi
f itnessGBest = f itnessðiÞ

end if
i = i + 1

end while
g = g + 1

end while

Algorithm 1: The pseudocode of PSO.

Table 1: The memory usage of PSO and cPSO.

Algorithm Memory

PSO Particles × dimension
cPSO 2 × dimension
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coverage problem is more in line with real life and should be
the focus of research. Amulya et al. propose a modified
particle swarm optimization to achieve maximum coverage
in 2D. The result shows that using this algorithm could get
bigger coverage than using conventional PSO [30]. Nguyen
et al. proposed that different sensors have different transmis-
sion radius. They discussed how the sensors work together
under different sensor transmission radius to achieve
maximum coverage in 2D [31]. Huynh et al. applied the
improved cuckoo algorithm to the 2D sensor coverage prob-
lem and achieved good results [32]. Osamah et al. used the
bee algorithm to 2D coverage to reduce resource usage
[33]. Junaid et al. proposed a method that dynamically
adjust the state of the sensors to achieve maximum coverage
while extending the lifetime of the sensor network [34].
Wang et al. added the idea of reverse learning to WOA to
speed up the global search speed and make the sensor reach
the maximum coverage faster in 2D [35].

Pan et al. improved the BH and applied it to the problem
of 3D sensor network coverage with obstacles [36]. The
feasibility of BH is proved by simulation experiments. How-
ever, there is still room for improvement in the optimization
ability. Riham et al. proposed a new network configuration
strategy for the 3D sensor network coverage problem [37].
Riham et al. proved that this strategy can better optimize
the coverage problem than other similar strategies through
simulation experiments. Wang et al. applied the improved
virtual force algorithm to the k-coverage problem in under-
water 3D and proved its feasibility through simulation
experiments [38]. Cao et al. proposed a particle swarm opti-

mizer with distributed parallelism and used it in the indus-
trial field to achieve the 3D coverage problem with obstacle
[39]. William et al. proposed a new strategy to achieve
dynamic 3D coverage with limited energy using mobile
sensors. Simulation experiments show that the strategy
worked well [40].

3. A Novel Compact Particle
Swarm Optimization

The original cPSO uses a Gaussian distribution to describe
distribution statistics on the position of particle swarms.
Gaussian distribution is a thin-tailed distribution. The big-
gest problem with this is that using a Gaussian distribution
can easily lead to getting stuck in a local optimal solution.
Considering this deficiency, we propose a novel compact
particle swarm optimization (ncPSO). We use the Pareto
distribution instead of the Gaussian distribution to express
the position of particle swarms. Pareto distribution is a
heavy-tailed distribution. It falls more slowly than Gaussian
distribution for x⟶∞. So the Pareto distribution has a
greater probability of taking values that deviate from the
normal level. This feature makes it fall into local optimum
difficult in the search. The formulas of PDF and CDF of
the Pareto are shown in

PDF = 1
σ

1 + k
x − θð Þ
σ

� �−1−1/k
, ð7Þ

Initialize the μ and σ of PV
Initialize the X according to PV
Initialize the V by V =Vmin + ðVmax −VminÞ × rand
Initialize the gBest, pBest, f itnessPBest, f itnessGBest
while g < =max iteration do

pBest = compact(PVðμ, σÞ) according to Equations (5) and (6)
Calculate the f itnessPBest of the pBest
Update X and V of each particle according to Equations (1) and (2)
Calculate the fitness of the new X
if f itnessðXÞ < f itnessPBest then

winner = X
loser = pBest

else
winner = pBest
loser = X

end if
Update PV according to Equations (3) and (4)
pBest =winner
f itnessPBest = f itnessðwinnerÞ
if f itnessðXÞ < f itnessGBest then

gBest = X
f itnessGBest = f itnessðXÞ

end if
g = g + 1

end while

Algorithm 2: The pseudocode of cPSO.
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CDF =
1 − 1 + k

x − θð Þ
σ

� �−1/k
, k ≠ 0,

1 − exp −
x − θð Þ
σ

� �
, k = 0:

8>>><
>>>:

ð8Þ

The generalized Pareto distribution has three parame-
ters: threshold parameter θ, scale parameter σ, and shape
parameter k. The figures of Pareto PDF and Pareto CDF
are shown in Figure 2. The descending speed of the right tail
of the Pareto distribution is significantly slower than that of
the Gaussian distribution.

The ncPSO uses uniform distribution function to ran-
domly generate the initial positions and initial velocities of
particles within a feasible solution range. Because the Pareto
distribution is one-sided function, we also generate a sym-
metric position on the other side at each iteration, then
compare the two positions and take the better one as the
next pBest. Because the Pareto distribution is a heavy-
tailed distribution, it may occur that the CDF value does
not reach 1 within the feasible solution range, resulting in
the value of the inverse cumulative distribution function
out of bounds. We solve this problem by regenerating a
new random numbers to generate iCDF. Among the three
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parameters of the Pareto distribution, k > 0 is guaranteed, θ
determines the convergence position, and σ determines the
convergence speed. The ncPSO no longer restricts that the
position of particle must be normalized to [-1,1], and the
position of the particle is obtained directly in feasible solu-
tion space.

It is possible that only one dimension falling into the
local optimum makes bad result of whole swarm. The
ncPSO selects one dimension of the particle randomly to
perform a Gaussian perturbation to better avoid the algo-
rithm falling into local optimum in each iteration. The per-
turbation formula is shown in

Xd = normrnd Xd , C
� �

ð9Þ

where the C is a constant and determined by the actual
problem to be solved. After Gaussian perturbation, the par-
ticle moves according to Equations (1) and (2) to a new posi-
tion. Then, ncPSO compares the position of pBest and new
position of particle to generate a winner and loser to update

θ and σ of the Pareto distribution. The update formulas of θ
and σ are shown as

θg+1 = σg + 1
Np

winner − loserð Þ, ð10Þ

σg+1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σgð Þ2 + θgð Þ2 − θg+1

À Á2 + 1
Np

winner2 − loser2
À Ás

:

ð11Þ

Initialize the θ and σ of Pareto
Initialize the X by uniform distribution
Initialize the V by uniform distribution
Initialize the gBest, pBest, f itnessPBest, f itnessGBest
while g < =max iteration do

pBestR = novlel_compact(θ,σ) according to Equations (7) and (8)
pBestL = 2 × pBest − pBestL
pBest = compare(fitness(pBestR),fitness(pBestL))
Calculate the f itnessPBest of the pBest
Update X and V of each particle according to Equations (1) and (2)
Calculate the fitness of the new X
[loser,winner]=compare(fitness(X),fitness(pBest))
Update θ and σ according to Equations (10) and (11)
pBest =winner
f itnessPBest = f itnessðwinnerÞ
Randomly choose a dimension d
Gaussian perturbation for the d − th dimension of X by Equation (9)
Calculate the fitness of the new X
if f itnessðXÞ < f itnessGBest then
gBest = X
f itnessGBest = f itnessðXÞ

end if
g = g + 1

end while

Algorithm 3: The pseudocode of ncPSO.

Table 2: Comparison of memory and function calls of different algorithms.

Algorithm Dimension Population Memory Function calls

PSO D N N ×D N ×max iteration
ABC D N N ×D 2 ×N ×max iteration
WOA D N N ×D N ×max iteration
BH D N N ×D N ×max iteration
ncPSO D 1 2 ×D 3 ×max iteration

Table 3: Parameter settings of different algorithms.

Algorithm Parameters

PSO D = 50, N = 40, w = 0:9, r1 = 2:0, r2 = 2:0
ABC D = 50, N = 40, limit = 100
WOA D = 50,N = 40, probability switch = 0:5
BH D = 50,N = 40
ncPSO D = 50, N = 40, r1 = 2:0, r2 = 2:0
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After updating θ and σ, the pBest will be generated. As
the number of iterations increases, σ gets smaller and
smaller, and the ncPSO converges at the convergence posi-
tion θ faster and faster.

The difference between ncPSO and other algorithms is
that ncPSO uses Pareto distribution of heavy-tailed distribu-
tion to describe the position of the whole particle swarm
instead of Gaussian distribution. The advantage of using
Pareto distribution is that it can reduce the probability of
the algorithm falling into local optimum. Another difference
is that ncPSO uses mathematical distribution to represent
the position of particle swarm instead of storing the position
of each particle, which greatly reduces the use of memory
units. Taking 30 particles and 40 dimensions as an example,
the traditional PSO needs 40 × 30 = 1200 memory units to
store the position of each particle in each dimension, while
ncPSO only needs 40 × 2 = 80 memory units to express the

position of the whole particle swarm. The ncPSO has a good
applicability to microdevices, and the excellent optimization
performance of ncPSO is a new optimization method for 3D
coverage of WSN. The pseudocode of ncPSO is shown in
Algorithm 3.

4. The Performance Tests of Algorithms

We mainly compare the performance of ncPSO with con-
ventional heuristic algorithms and other compact algo-
rithms in this section. The CEC2013 test functions are
used for performance test. The functions in CEC2013 are
diverse and very convincing [41]. The 28 functions in
CEC2013 are represented by f 1 − f 28, respectively. f 1 − f 5
are 5 unimodal functions, f 6 − f 20 are 15 multimodal func-
tions, and f 21 − f 28 are 8 composition functions.

Table 4: Comparison of performance testing and Wilcoxon’s sign test of conventional algorithms.

PSO ABC WOA BH ncPSO

f 1 −1:33E + 03 > 4:06E + 03 > −1:34E + 03 > −1:40E + 03 = −1:40E + 03
f 2 8:83E + 06 > 2:29E + 08 > 8:07E + 07 > 2:70E + 07 > 1:74E + 06
f 3 2:65E + 09 > 2:45E + 13 > 3:47E + 10 > 4:46E + 09 > 1:04E + 09
f 4 1:11E + 03 < 8:59E + 04 > 5:90E + 04 < 3:09E + 04 < 8:12E + 04
f 5 −9:76E + 02 > 1:22E + 03 > −7:96E + 02 > −8:84E + 02 > −1:00E + 03
f 6 −8:04E + 02 > −4:18E + 01 > −6:79E + 02 > −8:16E + 02 > −8:23E + 02
f 7 −6:76E + 02 > 1:58E + 03 > 9:12E + 02 > −6:13E + 02 > −6:84E + 02
f 8 −6:79E + 02 = −6:79E + 02 = −6:79E + 02 = −6:79E + 02 = −6:79E + 02
f 9 −5:44E + 02 > −5:54E + 02 > −5:30E + 02 > −5:33E + 02 > −5:44E + 02
f 10 −4:43E + 02 > 6:41E + 02 > −1:79E + 02 > −4:69E + 02 > −4:99E + 02
f 11 5:13E + 01 > −2:05E + 01 > 4:10E + 02 > 3:93E + 02 > −3:84E + 02
f 12 2:29E + 02 < 1:79E + 02 < 6:05E + 02 > 5:38E + 02 > 2:73E + 02
f 13 4:06E + 02 > 2:73E + 02 < 7:97E + 02 > 6:19E + 02 > 3:51E + 02
f 14 6:47E + 03 > 5:33E + 03 > 9:10E + 03 > 8:41E + 03 > 1:84E + 03
f 15 8:53E + 03 < 1:31E + 04 > 1:15E + 04 > 9:62E + 03 > 9:55E + 03
f 16 2:03E + 02 > 2:03E + 02 > 2:03E + 02 > 2:02E + 02 = 2:02E + 02
f 17 7:99E + 02 > 6:56E + 02 > 1:45E + 03 > 1:32E + 03 > 3:51E + 02
f 18 8:68E + 02 < 9:56E + 02 < 1:56E + 03 > 1:45E + 03 > 9:85E + 02
f 19 5:30E + 02 > 5:04E + 04 > 6:81E + 02 > 6:25E + 02 > 5:02E + 02
f 20 6:24E + 02 < 6:22E + 02 < 6:25E + 02 > 6:24E + 02 = 6:25E + 02
f 21 1:67E + 03 > 2:72E + 03 > 1:93E + 03 > 1:65E + 03 > 1:64E + 03
f 22 1:02E + 04 > 6:75E + 03 > 1:29E + 04 > 1:23E + 04 > 4:31E + 03
f 23 1:20E + 04 > 1:45E + 04 > 1:41E + 04 > 1:30E + 04 < 1:40E + 04
f 24 1:38E + 03 > 1:35E + 03 < 1:41E + 03 > 1:43E + 03 > 1:36E + 03
f 25 1:54E + 03 < 1:47E + 03 < 1:53E + 03 < 1:52E + 03 < 1:60E + 03
f 26 1:65E + 03 > 1:61E + 03 > 1:67E + 03 > 1:64E + 03 > 1:48E + 03
f 27 3:32E + 03 > 3:04E + 03 < 3:56E + 03 > 3:60E + 03 > 3:32E + 03
f 28 4:44E + 03 < 3:49E + 03 < 8:75E + 03 > 8:12E + 03 > 5:16E + 03
>/=/< 19/1/8 19/1/8 25/1/2 21/3/4
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Figure 3: Continued.
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4.1. Comparison between ncPSO and Conventional Heuristic
Algorithms. Firstly, we compare ncPSO with conventional
heuristic algorithms. We choose PSO, ABC, WOA, and
BH. All algorithms are run 20 times on each test function,

and then, the average is calculated as the experiment result.
Simultaneously Wilcoxon’s sign rank test is taken with a sig-
nificant level α = 0:05. The memory and function calls of the
algorithms are shown in Table 2.
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Figure 3: The convergence of some test functions of conventional algorithms.
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In Table 2, we can see that ncPSO requires less memory
and function calls than other algorithms. Table 3 shows the
parameter settings of all algorithms.

The test results of these algorithms on CEC2013 and
Wilcoxon’s sign test results are shown in Table 4. The sym-

bol “>” indicates that the performance of ncPSO is better
than other algorithms. The symbol “=” indicates that the
performance of ncPSO is as good as other algorithms. The
symbol “<” indicates that the performance of ncPSO is
worse than other algorithms.

Table 5: The parameter settings of all compact algorithms.

Algorithm Parameters

cPSO D = 50, virtual Np = 300, w = 0:2, r1 = −0:07, r2 = 3:74
cABC D = 50, virtual Np = 300, limit = 100, food number = 3
cSCA D = 50, virtual Np = 300, probability switch = 0:5
cBA D = 50, virtual Np = 300, loudness rate = 0:5, pulse rate = 0:5, fmin = 1, fmax = 2
ncPSO D = 50, virtualNp = 300, r1 = 2:0, r2 = 2:0

Table 6: Comparison of performance testing and Wilcoxon’s sign test of compact algorithms.

cABC cPSO cBA cSCA ncPSO

f 1 2:42E + 04 > −1:39E + 03 > −1:40E + 03 = 5:33E + 04 > −1:40E + 03
f 2 6:92E + 08 > 2:71E + 07 > 4:24E + 06 > 7:31E + 08 > 1:74E + 06
f 3 2:33E + 11 > 5:53E + 09 > 4:82E + 09 > 1:88E + 15 > 1:04E + 09
f 4 1:42E + 05 > 4:80E + 03 < 2:81E + 05 > 1:81E + 05 > 8:12E + 04
f 5 5:79E + 03 > −9:91E + 02 > −1:00E + 03 = 1:43E + 04 > −1:00E + 03
f 6 1:34E + 03 > −8:23E + 02 = −8:51E + 02 < 3:01E + 03 > −8:23E + 02
f 7 −4:44E + 02 > −5:90E + 02 > 3:63E + 12 > 1:48E + 04 > −6:84E + 02
f 8 −6:79E + 02 = −6:79E + 02 = −6:79E + 02 = −6:79E + 02 = −6:79E + 02
f 9 −5:24E + 02 > −5:37E + 02 > −5:10E + 02 > −5:26E + 02 > −5:44E + 02
f 10 4:37E + 03 > −4:75E + 02 > −4:99E + 02 = 7:01E + 03 > −4:99E + 02
f 11 4:47E + 02 > 3:16E + 02 > 2:47E + 03 > 4:60E + 02 > −3:84E + 02
f 12 7:07E + 02 > 4:95E + 02 > 7:91E + 03 > 9:23E + 02 > 2:73E + 02
f 13 8:51E + 02 > 5:27E + 02 > 6:87E + 03 > 9:93E + 02 > 3:51E + 02
f 14 1:44E + 04 > 9:17E + 03 > 8:67E + 03 > 1:60E + 04 > 1:84E + 03
f 15 1:51E + 04 > 9:98E + 03 > 1:03E + 04 > 1:54E + 04 > 9:55E + 03
f 16 2:04E + 02 > 2:03E + 02 > 2:01E + 02 < 2:04E + 02 > 2:02E + 02
f 17 1:95E + 03 > 1:03E + 03 > 1:66E + 04 > 1:46E + 03 > 3:51E + 02
f 18 2:32E + 03 > 1:07E + 03 > 1:58E + 04 > 1:59E + 03 > 9:85E + 02
f 19 6:32E + 04 > 5:51E + 02 > 8:67E + 02 > 1:83E + 04 > 5:02E + 02
f 20 6:25E + 02 = 6:24E + 02 < 6:25E + 02 = 6:25E + 02 = 6:25E + 02
f 21 5:69E + 03 > 1:58E + 03 < 1:61E + 03 < 5:17E + 03 > 1:64E + 03
f 22 1:66E + 04 > 1:22E + 04 > 1:11E + 04 > 1:79E + 04 > 4:31E + 03
f 23 1:71E + 04 > 1:28E + 04 < 1:34E + 04 < 1:69E + 04 > 1:40E + 04
f 24 1:42E + 03 > 1:43E + 03 > 1:67E + 03 > 1:51E + 03 > 1:36E + 03
f 25 1:59E + 03 < 1:56E + 03 < 1:64E + 03 > 1:58E + 03 < 1:60E + 03
f 26 1:64E + 03 > 1:62E + 03 > 1:40E + 03 < 1:71E + 03 > 1:48E + 03
f 27 3:66E + 03 > 3:42E + 03 > 5:29E + 03 > 3:82E + 03 > 3:32E + 03
f 28 7:13E + 03 > 3:48E + 03 < 8:61E + 04 > 8:68E + 03 > 5:16E + 03
>/=/< 25/2/1 20/2/6 18/5/5 25/2/1
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According to the data from Table 4, we can see that
the ncPSO has better performance than PSO on 19 func-
tions. And compared with ABC, the ncPSO achieves better

results on 19 functions too. The WOA is better than
ncPSO in only two functions. The ncPSO performs better
than BH on 21 functions. Because some images have very
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Figure 4: The convergence of some test functions of compact algorithms.
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little discrimination, we select a part of representative images
of the convergence process for display. The convergence of
some test functions is shown in Figure 3.

We can see that ncPSO has faster convergence speed and
better ability to find optimization on f 11, f 14, f 17, f 22, f 26.
The ncPSO does not have a better optimization ability than
ABC on f 13. Although the optimization ability of ncPSO is
not as good as that of PSO, the convergence speed of ncPSO
is faster on f 15 and f 23. The BH performs better than
ncPSO on f 23.

4.2. Comparison between ncPSO and Other Compact
Algorithms. We compare ncPSO with other compact algo-
rithms in this subsection. We choose cPSO, cABC, cSCA,
and cBA. We also performed 20 experiments for each test
function and also takeWilcoxon’s sign rank test. The memory
and function calls are the same for all these compact algo-
rithms. Table 5 shows the parameter settings of all algorithms.

Table 6 shows the test results of the algorithm on
CEC2013 and Wilcoxon’s sign test results. According to
Table 6, we can find that ncPSO performs better than cPSO
on 20 functions. The cABC and cSCA are only better than
ncPSO on f 25. The ncPSO has better performance than
cBA on 18 functions and has same performance with cBA
on 5 functions.

We also select some representative images of the conver-
gence process for display in Figure 4. According to the fig-
ures from Figure 4, we can find that ncPSO has faster
convergence speed and better ability to find optimization

on f 9, f 14, f 15, f 17, f 22. The convergence ability of ncPSO
is not as good as cBA in f 16, but it is better than cABC,
cSCA, and cPSO. On the contrary, the convergence ability
of ncPSO is better than cBA on f 25, but not as good as
cABC, cSCA, and cPSO. On f 23, the convergence ability of
ncPSO is worse than that of cPSO and cBA, but better than
that of cSCA and cABC.

5. Application in Optimizing Coverage of 3D in
Wireless Sensor Network

The problem of sensor coverage in 3D environment is more
complicated than that in 2D. Compared with 2D coverage,
3D coverage needs to consider the influence of terrain on
coverage effect. The complicated terrain makes it difficult
for sensors to collect information. We use the 3D model gen-
erated by “peak” function in MATLAB as the environment
for simulation experiments. The control variables of the
experiment in this section are the 3D simulation environ-
ment and the communication radius of sensors. The simula-
tion environment is shown in Figure 5. The communication
radius of sensors are set to 5m.

In this simulation environment, as long as the first and
second coordinates are known, the height in the 3D environ-
ment can be known, and then, the position of the sensor can
be known. The ncPSO sets the dimension of particle swarm
to twice the number of sensors. Two dimensions represent
two coordinates of a sensor, and then, the value of the third
dimension of the sensor in the terrain can be calculated by

4–10
4

–5

2

0

2 0

5

0

10

–2–2
–4–4

Figure 5: The virtual environment in 3D for simulation experiments.

Table 7: The form of particle to represent position of nodes.

Dimension 1 2 ...... 2N − 1 2N
Sensor Sensor1,1 Sensor1,2 ...... SensorN ,1 SensorN ,2
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the information of the topographic map, so that the position
of the sensor can be obtained. The particle of ncPSO can be
represented in the form of Table 7.

There is a monitoring obstacle problem in the 3D prob-
lem. The existence of obstacles makes it impossible for the
sensor to pass through the obstacles to collect information
about the location to be measured. If the terrain between
the sensor and the monitoring node is higher than the line
connecting the two points, the signal will be blocked and
the monitoring point will not be monitored. The obstacle
model in WSN is shown in Figure 6.

We suppose that nodes 1 and 2 are both in the radius of
sensor in Figure 6; it can been seen that node 1 could be
covered but node 2 could not be covered due to the obsta-
cle. The judgment formula for whether the monitoring
point is covered is shown in Equation (12). The formula
for the coverage rate of the whole environment is shown
in Equation (13).

Coverage s, nð Þ =
1, distance s, nð Þ ≤ radius and there no obstacle,
0, distance s, nð Þ > radius or there are obstacles,

(

ð12Þ

Coverage rate = 1
M

· 〠
M

i=1
〠
N

j=1
Coverage sj, ni

À Á !
, ð13Þ

where s represents the sensor and n represents the mea-
sured node, N represents the total number of sensors, and
M represents the total measured nodes. Then, we will carry
out simulation experiments on the two problems of achiev-
ing the maximum coverage under a certain node and the
minimum number of sensors to achieve a certain coverage.

5.1. The Maximum Coverage Rate under a Certain Number
of Sensor Nodes. Different algorithms are used to optimize
the problem of maximum coverage rate under a certain
number of sensor nodes in this subsection. The radius of
sensors is set to 5m, and the number of sensors is set to
30, 40, 50, and 60, respectively. When the number of sensors
is the same, different algorithms are used to optimize the
coverage rate. The larger the coverage rate, the better the
solution effect of the algorithm. Each group of experiments
is carried out 10 times to ensure the accuracy of experi-
ments, and the mean value is used as the experimental result.
At the same time, we also calculate the standard deviation.
Table 8 shows the results of simulation experiments.

Table 8: The simulation results of maximum coverage rate.

Sensor number
30 40 50 60

Average std Average std Average std Average std

PSO 47.53% 0.0073 56.87% 0.0140 63.94% 0.0095 70.44% 0.0079

GA 46.64% 0.0077 55.94% 0.0078 64.44% 0.0107 70.24% 0.0061

WOA 48.04% 0.0086 57.56% 0.0139 65.74% 0.0132 71.44% 0.0124

BH 49.25% 0.0135 58.43% 0.0070 66.16% 0.0128 72.47% 0.0144

ncPSO 55.07% 0.0111 65.46% 0.0125 72.65% 0.0118 79.02% 0.0154

cPSO 48.86% 0.0112 58.87% 0.0098 66.50% 0.0124 72.83% 0.0116

cABC 47.08% 0.0114 56.38% 0.0085 64.42% 0.0100 70.31% 0.0085

cBA 44.06% 0.0146 53.76% 0.0133 61.05% 0.0220 68.28% 0.0226

cSCA 43.32% 0.0096 51.97% 0.0098 61.34% 0.0207 66.42% 0.0150

Sensor

Measuring node 1 Measuring node 2

Surface of terrain
Height

Figure 6: Obstacle model in sensor networks.
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Figure 7: The convergence process of algorithms.
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The maximum coverage rate and the minimum stan-
dard deviation of all algorithms are set in italics in
Table 8. When the number of sensors is 30, 40, 50, and
60, respectively, the coverage of ncPSO to the simulation
environment can reach 55.07%, 65.46%, 72.65%, and
79.02%, respectively. Table 8 shows that although the stan-
dard deviation of ncPSO is not the smallest, the optimiza-
tion effect of ncPSO is much better than that of other
algorithms. In other words, the ncPSO has the best opti-
mization effect on 3D coverage because of its excellent
optimization ability. It can be seen from Table 8 that as
the number of sensors increases, the coverage rate of sim-
ulation environment also increases. In order to show the
operation process of the algorithm, the optimization pro-
cesses are shown in Figure 7.

Figure 7 shows that algorithms constantly update the
positions of sensors, so that the coverage rates constantly
increase. Compared with other algorithms, ncPSO has a
greater improvement in coverage rate with different number
of sensors. In the whole process, ncPSO has a strong ability
to jump out of the local optimum, so it improves the cover-
age rate greatly compared with other algorithms.

5.2. The Minimum Number of Sensor Nodes to Achieve a
Certain Coverage Rate. How to use the minimum number
of sensors to achieve a certain coverage rate will be dis-
cussed in this subsection. When the number of sensors is
limited, it is necessary to consider how to arrange the sen-
sor positions to minimize the number of sensors to achieve
the specified coverage. The radius of sensors is set to 5m,
and the coverage rates are set to 70% and 80%, respectively.
We also conduct 10 simulation experiments per group to
ensure the accuracy of the data. The number of sensors
required by different algorithms is tested by simulation
experiments. Table 9 shows the results of simulation
experiments.

The minimum number of sensors to achieve the speci-
fied coverage and the minimum standard deviation are set
in italics in Table 9. It can be seen from Table 9 that in order
to achieve 70% coverage, ncPSO needs 58.2 sensors on aver-
age and cPSO needs 57.4 sensors on average. Compared with
other algorithms, ncPSO requires fewer sensors to achieve
70% coverage. Because of good optimization ability of
ncPSO, ncPSO requires fewer sensors than other algorithms
to achieve 80% coverage.

6. Conclusion

We propose the ncPSO in this paper. This algorithm reduces
memory usage and also improves the problem that tradi-
tional compact algorithms tend to fall into local optima. This
novel algorithm uses a Pareto distribution of the long-tailed
distribution to describe the position of particle swarms. The
ncPSO uses Pareto distribution and Gaussian perturbation
to avoid feasible solutions falling into local optima. Then,
we conduct the performance test of the proposed ncPSO
on CEC2013 and compare it with the conventional heuristic
and compact algorithms. The results show that the ncPSO
has good optimization ability in most cases compared with
other algorithms. Finally, we apply the ncPSO to the 3D sen-
sor coverage problem and compare it with other algorithms.
The simulation results show that the ncPSO can achieve bet-
ter results in solving these problems.
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