
Research Article
Toward Sequential Recommendation Model for Long-Term
Interest Memory and Nearest Neighbor Influence

Hongyun Cai ,1,2 Jie Meng ,1,2 Jichao Ren,1,2 and Shilin Yuan1,2

1School of Cyber Security and Computer, Hebei University, Baoding, 071000 Hebei, China
2Key Laboratory on High Trusted Information System in Hebei Province, Hebei University, Baoding, 071000 Hebei, China

Correspondence should be addressed to Jie Meng; mengjie_hbu@163.com

Received 10 May 2022; Accepted 10 September 2022; Published 2� September 2022

Academic Editor: Changyan Yi

Copyright © 2022 Hongyun Cai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sequential recommendation can make predictions by fitting users’ changing interests based on the users’ continuous historical
behavior sequences. Currently, many existing sequential recommendation methods put more emphasis upon users’ recent
preference (i.e., short-term interests), but simplify or even ignore the influence of users’ long-term interests, resulting in
important interest features of users not being effectively mined. Moreover, users’ real intentions may not be fully captured by
only focusing on their behavior histories, because users’ interests are diverse and dynamic. To solve the above problems, we
propose a novel sequential recommendation model for long-term interest memory and nearest neighbor influence. Firstly, item
embeddings based on item similarity and dependency are constructed to alleviate the problem of data sparsity in users’ recent
interest history. Secondly, in order to effectively capture long-term interests, the long sequence is divided into multiple
nonoverlapping subsequences. For these subsequences, the graph attention network with node importance factor is designed to
fully extract the main interests of subsequences, and LSTM is introduced to learn the dynamic changes of interest among
subsequences. Long-term interests of users are modeled through complex structure within subsequences and sequential
dependencies among subsequences. Finally, the user’s neighbor representation is introduced, and a gating module is designed
to integrate the user’s neighbor information and self-interests. The influence of users’ short-term and long-term interests on
prediction is dynamically controlled by considering nearby features in the gating network. The experimental results on two
public datasets show that the proposed sequential recommendation model can outperform the baseline methods in hit rate
(HR@K) and normalized discounted cumulative gain (NDCG@K).

1. Introduction

With the rapid development of information technology, com-
plex and diverse data are flooding people’s lives. To deal with
the problem of information overload, recommender systems
have emerged as a pervasive part of online platforms. Different
types of recommendation model have been developed, e.g.,
collaborative filtering recommendation [1], sequential
recommendation [2], social recommendation [3], and group
recommendation [4]. Among these models, sequential recom-
mendation can effectively learn the changing of user’s interests
and provide more accurate recommendations, which has
become a research hotspot in recent years [5, 6].

Nowadays, deep learning models (e.g., convolutional
neural networks (CNN) [7], recurrent neural networks

(RNN) [8], attention mechanisms [9], and graph neural net-
works (GNN) [10]) are widely used in sequential recom-
mender systems. However, the existing sequential
recommendation models based on deep learning mainly
focus on the users’ behavioral interactions in the recent
period and use the users’ short-term interests to predict their
subsequent choices, while the rich feature information con-
tained in the users’ long-term historical behaviors has not
been further explored. In fact, people usually have stable
and dynamically changing interests though user interests
are complex and diverse. Previous studies [11–14] also
showed that the selection of users in recommender systems
is not only affected by their recent intentions but also related
to their long-term stable interests. However, due to the long
length of user behavior sequences and the complex
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relationship between items, it is difficult to effectively learn
users’ long-term interests. Therefore, in sequential recom-
mendation, the recommendation performance can be
improved if we can further excavate the stable features of
users’ long-term interests on the basis of the dynamic
changes of short-term interests.

In addition, the gating network can adaptively control
the degree of information retention; the short-term interests
and long-term interests of users can be dynamically fused
through the gating network in sequential recommendation
[15, 16]. However, if the prediction is only based on the
user’s own historical behaviors, the attention of the model
is limited to the interest memory in the user’s historical
behaviors, which affects the recommendation effect. In fact,
users are also interested in items selected by their similar
neighbors [17]. The existing recommendation methods con-
sidering the nearest neighbor influence [18, 19] lack the dual
attention to user behavior sequence and neighbor users or
adopt a simple fusion approach [20] ignoring the interaction
between the two aspects.

To address the above problems, we propose a sequential
recommendation model for long-term interest memory and
nearest neighbor influence (SRLIN for short). The proposed
model deeply mines the user’s long-term interests on the basis
of learning the user’s recent interests and incorporates the user’s
neighbor influence into the gating network. Specifically, based
on the two different perspectives of item similarity and depen-
dency, the item embeddings are first generated. Interest changes
within recent sequences are learned by using a bidirectional
LSTM (i.e., BiLSTM), and then, the self-attention network is
used to obtain the user’s short-term interests. Secondly, to effec-
tively capture long-term interests, we propose a long-term inter-
est modeling method including the interest extraction layer and
the interest fusion layer. For each user, its long sequence is
divided into multiple disjoint subsequences. In the interest
extraction layer, the graph attention network with node impor-
tance factor (NIF_GAT for short) is designed, which can fully
extract the main interest features of subsequences by learning
the importance of different items in each subsequence and the
complex relationship between items. In the interest fusion layer,
we use the LSTM to learn the sequential dependencies of inter-
est features in different time periods. The user’s long-term inter-
est representation is obtained through this hierarchical
structure. Finally, the neighbor features of each user are
extracted based on the ordered user sequences of the items,
and the gating network that considers the neighbor features is
introduced to adjust the influence of short-term interest repre-
sentation, long-term interest representation, and nearest neigh-
bor representation on prediction.

The main contributions of this paper are summarized as
follows:

(1) To effectively alleviate the sparsity problem of
sequence recommendation, we propose an item
embedding method based on item similarity and
dependency

(2) To more accurately capture user stable and changing
long-term interests, we propose a long-term interest

modeling method including the interest extraction
layer and the interest fusion layer. In the interest
extraction layer, we first model the complex struc-
ture of subsequences and learn the main interest fea-
tures within different subsequences by the improved
graph attention network with node importance fac-
tor. Then, we use LSTM to learn the sequential
dependencies of interests among different subse-
quences in the interest fusion layer

(3) To further improve the recommendation perfor-
mance, we design a gating fusion module based on
the influence of neighbors, which can automatically
adjust the weights of short-term and long-term
interests by considering the neighbor information
and deal with the situation where it is difficult to
fully capture the user’s intention only by relying on
the user’s own interests

(4) Experimental results on two public datasets, i.e.,
MovieLens 1M and JD, show that our SRLIN model
can outperform the state-of-the-art sequential rec-
ommendation methods

2. Related Work

2.1. General Sequential Recommendation. Ding et al. [21]
and Lathia et al. [22] studied recommendation models based
on time awareness. Based on the collaborative filtering algo-
rithm, a time decay factor was introduced to describe the
change of user interests over time. Subsequently, Rendle
et al. [23] proposed an FPMC model based on matrix factor-
ization and Markov chains, which combined the sequential
behaviors of different users by establishing a three-
dimensional transformation matrix, and used a first-order
Markov model to model the user’s historical behaviors.
The FPMC model fully integrates the advantages of matrix
factorization and Markov chains and improves the accuracy
of sequential recommendation method. He et al. [24]
extended on FPMC, which adopted a higher-order Markov
chain to learn the complex relationship of data [25]. In addi-
tion, Sahoo et al. [26] proposed a collaborative filtering rec-
ommendation method based on hidden Markov model.
Considering that the traditional Markov chain is difficult
to model long-term historical sequences of users, Lonjarret
et al. [27] proposed the REBUS model which uses frequent
sequences to capture the most relevant parts of user history
for recommendations.

2.2. Deep Learning-Based Sequential Recommendation. Deep
learning can automatically learn features, which has
attracted extensive attention in sequence recommendation
in recent years. Tang et al. [7] transformed sequence data
into “images” with temporal information and used convolu-
tional filters to learn sequence features. Kang et al. [9]
adopted a stacked self-attention mechanism to effectively
capture the high-order features of the sequence, in which
the model structure is similar to the Encoder of the Trans-
former. Hidasi et al. [8] proposed a new loss function used
in the recurrent neural network model, which can alleviate
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the gradient vanishing problem of sequential recommenda-
tion. Among many deep learning models, recurrent neural
networks have received extensive attention due to their
unique properties of sequential learning. The recurrent neu-
ral network uses the output of the previous node as a new
part of the input and does not add additional biases, which
can track the user’s interest changes in essence. However,
these methods only take random initialization of item num-
bers as input, which cannot clearly describe the relationship
between items and have poor interpretability. Therefore,
Huang et al. [28] proposed the ATST-LSTM model for the
next POI recommendation, which applies the time interval
and distance interval as auxiliary information on the time
steps of the LSTM. The application of auxiliary information
can greatly alleviate the problem of data sparsity and
improve the prediction effect. However, this kind of auxil-
iary information only relies on the user’s own historical
behaviors, which cannot help to fully capture the user’s
implicit interests. Therefore, we measure the similarity and
dependency between items from a global perspective; based
on which, item embeddings can be generated.

In addition, the above models mainly focus on users’
recent behaviors. However, some studies have shown that
in addition to the recent interactions, the user’s interests
are also affected by her/his early choices [2]. Therefore, some
scholars divided user history records into recent sequences
and global sequences and proposed long-short term interests
fusion models. Gan et al. [29] proposed an R-RNN model,
which uses LSTM to focus on user’s recent behaviors and
applies MLP to fuse long-term and short-term interests.
Ying et al. [30] proposed a hierarchical attention network,
which uses the attention mechanism to learn short-term
interests and fuse long-term with short-term interests. The
fusion of long-term and short-term interests comprehen-
sively considers long-term and short-term features, which
can improve the accuracy of recommendation. But the above
methods just adopt some simple ways to learn the users’
long-term interests. To make better use of the rich informa-
tion contained in long sequences and improve the problem
of imperfect long-term interest modeling, Lv et al. [15] used
an attention mechanism to learn different aspects of long-
term interests and introduced a gating module to extract fea-
tures related to short-term interests in long-term interests.
Lin et al. [31] improved the attention mechanism in long-
term interest learning, which improved the recommendation
performance. However, it is difficult to track the dynamic
change trend of user interests by directly modeling the whole
long sequence, which is prone to the phenomenon of recom-
mendation performance degradation. Quadrana et al. [32]
proposed a hierarchical RNN model HRNN. For long
sequences, the model implements RNN-based session
modeling at the bottom layer for each session and uses
RNN at a higher level to track the evolution of user interests
for cross-sessional learning. The splitting of long sequences
can reduce the difficulty of overall modeling and simplify
complex problems. The experimental results of HRNN
model also prove that the hierarchical model can obtain bet-
ter recommendation performance than the overall modeling
of long sequences. However, the model is susceptible to

noise. The reason is that the underlying RNN of HRNNmodel
performs the strict order in the session. For example, when a
user is browsing the shopping page, he or she may click some
products out of curiosity. The interest offset caused by noise
makes it difficult to track the real interests of users in the ses-
sion, while the inaccuracy of this low-level interest learning
further reduces the learning effect of user interests at higher
levels and affects the recommendation performance. Different
from the above research, we divide the long sequence into sub-
sequences in different time periods and use the improved
graph attention network and LSTM to learn the complex
structure within subsequences and the sequential dependen-
cies among the subsequences, respectively. The graph atten-
tion network with node importance factor can fully extract
the interests of users in different time periods, and LSTM
can learn the dynamic changes of interests among different
time periods. Unlike short-term interests, which are modeled
based on sequential dependencies of recent interactions,
long-term interests are modeled on long and complex
sequences. Therefore, for long sequence, the strict order within
subsequences not only has little effect on the entire sequence
but also is prone to noise effects. And due to the complexity
of long sequences, the use of graph attention network with
node importance factor can effectively learn the importance
of different items in the subsequence and the complex associ-
ation between items, which reduces the noise effect and high-
lights the extraction of main interests.

For the fusion of long-term interests and short-term
interests, Feng et al. [33] used the hyperparameter to control
the addition of long-term and recent interests. However, the
simple combination is difficult to capture the correlation of
interests, and it is easy to make the model lose universality.
Previous studies have shown that gating modules have more
obvious advantages than simple concatenation or addition
[15]. Tan et al. [2] proposed a dynamic memory-based
attention network and used a gating module to adaptively
adjust the importance of long-term and short-term interests.
Tang et al. [16] proposed a mixture model M3, which fuses
feature representations from different time scales based on
the gating mechanism of Mixture-of-Experts (MOE). The
above methods usually only consider the user’s own infor-
mation, ignoring the influence of neighbor users. Li et al.
[18] proposed an FNUS model for finding similar neighbors
from multiple perspectives, which divides the item set into
three subspaces and searches for neighbor users from differ-
ent subspaces, respectively. Banerjee et al. [19] used social
network information to measure the correlation between
users and combined it with scoring data and project charac-
teristics. However, social network information is difficult to
obtain. In order to further improve the recommendation
performance, we integrate the neighbor features into the gat-
ing network and adaptively balance the influence of the
users’ short-term interests and long-term interests by aggre-
gating neighbor information.

3. The Proposed Approach

Figure 1 shows the overall framework of the model proposed
in this paper, which contains three main components, i.e., a
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short-term interest module based on BiLSTM and self-
attention network, a long-term interest module based on
the interest extraction layer and interest fusion layer, and a
gated fusion module based on neighbor influence.

3.1. Notations and Problem Formulation. Let U = fu1, u2,
⋯, umg and V = fv1, v2,⋯, vng denote the user set and the
item set, respectively. For ∀u ∈U , the behavior sequence of
u refers to an ordered item set, which is sorted according
to the interaction time of items selected by u in ascending
order and denoted as Lu = fvu1 , vu2 ,⋯, vujLujg, where vui ∈ V
represents the ith item on Lu. In order to facilitate interest
extraction, the user behavior sequence is further divided into
multiple subsequences if its sequence length exceeds the
length threshold lenthrs or time span exceeds the time inter-
val threshold Δt. Moreover, for two adjacent items on Lu,
they are split into different subsequences if their time
interval is greater than Δt or the length of the subsequence
is greater than lenthrs. Let Suk = fvuk,1, vuk,2,⋯, vuk,jSuk jg be the

kth subsequence on Lu, and Su be the partition of Lu

which is composed of all these subsequences. For ∀u ∈U ,
let the latest subsequence before prediction time t be the
short-term interest sequence LuS , and the set of subse-
quences on the behavior sequence be the long-term inter-
est sequence LuL.

3.2. Item Embedding Based on Item Similarity and
Dependency. Embedding is a common technique which
transforms discrete values of data into numerical vectors
that can be processed by the model. The neural network is
usually used to convert sparse feature data into dense
embeddings on the basis of one-hot embeddings. However,
the method that only takes random initialization of item
numbers tends to limit the focus of the model to historical
records and ignores the potential relationship between items,
which makes it difficult to capture the implicit interest fea-
tures of users. In particular, on sparse datasets, it is difficult
to achieve a good recommendation effect only by encoding
the item numbers. Therefore, we learn item embeddings

Prediction

Figure 1: The overall framework of SRLIN.
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from the perspectives of item similarity and dependency in
the paper.

On the one hand, the item attribute information is the
static features of the item itself, which can reflect the similar-
ity between items. It shows that the corresponding feature
vectors of items with the same attributes are also similar.
Let F be the item attribute set; we get one-hot embedding

x fi for ∀f ∈F of item vi and convert x fi to dense embedding

pf
i ∈ℝ

df according to the learnable embedding matrix Wf .
Next, these dense embeddings are concatenated to obtain
the similarity embedding for item vi, which is denoted as
pi ∈ℝd and defined as follows:

pf
i =Wf x

f
i ,

pi = concat func pf
i f ∈Fj

n o� �
,

ð1Þ

where concat funcð⋅Þ means to connect the dense embed-

ding pf
i of different attributes f .

On the other hand, inspired by association rules [34], we
learn the item dependency embeddings from the global
dependency of user history. Item dependencies not only
reflect the similarity of users in their selection but also reflect
the complementarity and cooccurrence relationship between
items. For ∀u ∈U , vi and vj on Lu = fvu1 , vu2 ,⋯, vujLujg repre-

sent two dependent items. The item dependencies on all user
history sequences are extracted, and a global dependency
graph G = hV ,Ei is constructed accordingly. The global
dependency graph is a directed graph. The nodes in the
graph represent items, the directed edge eij ∈E represents
the successive clicks of items vi to vj, and the edge weight
represents the cooccurrence degree between items, which is
the number of times vi to vj appears repeatedly on different

user sequences. Let qi ∈ℝd be the dependency embedding of
item vi on the global dependency graph G , which is gener-
ated by using the Node2vec algorithm. By reflecting the
characteristics of each node’s neighbors through BFS, the
probability of adjacent items appearing can be maximized.

Finally, the item embedding of ∀vi ∈ V is obtained by
combining the two perspectives of the item similarity
embedding pi based on static attributes and the dynamic
item dependency embedding qi, which is defined as follows:

gi = σ Wg pi, qi½ � + bg
À Á

, ð2Þ

where Wg ∈ℝd×2d is the learnable weight matrix, σ is the

sigmoid activation function, gi ∈ℝd is the item embedding
of vi, and d is the item embedding dimension.

3.3. Short-Term Interest Representation Based on BiLSTM
and Self-Attention Network. Recurrent neural network [35]
plays a prominent role in modeling sequential dependencies
and is widely used in sequence recommendation, which can
transmit and memorize the association among information
to track the changing trend of user interests. Therefore, we
make full use of the forgetting and remembering properties

of recurrent neural networks over time here. However, the
simple RNN is difficult to deal with relatively long data
due to its own structure, which makes it unable to meet
the memory function of sequence data. In addition, consid-
ering that all user interactions in the recent period have an
effect on predicting the choice of the next time. In order to
take full advantage of the effect of different behaviors, we
adopt BiLSTM to obtain the features of each time step in
the users’ recent sequences bidirectionally, which can model
the dynamic changes of the users’ short-term interests by
mining the sequential dependencies of recent sequences.

The LSTM unit includes an input gate iut , a forgetting
gate fut , an output gate out , and a memory unit cut for state
update. The calculation formulas are as follows:

iut = σ Wgigut +Whihut−1 + bi
À Á

,

fut = σ Wgf gut +Whf hut−1 + bf
À Á

,

out = σ Wgogut +Whohut−1 + bo
À Á

,

ĉut = tanh Wgcgut +Whchut−1 + bc
À Á

,

cut = fut cut−1 + iut ĉut ,
hut = out tanh cutð Þ,

ð3Þ

where the input of LSTM is the item embeddings fgu1 , gu2 ,
⋯, gujLuS jg in the recent sequence of user u and jLuS j is the

length of the recent sequence. The gate structure of LSTM
is learned from the hidden state hut−1 ∈ℝd of the previous
output and the item embedding gut ∈ℝd of the current input,
which is used to control the reception of current informa-
tion, the memory of historical information, and selective
output features. σ is the sigmoid activation function, Wgi,

Whi, Wgf , Whf , Wgo, Who, Wgc, Whc ∈ℝd×d are learnable
weight matrices, and bi, bf , bo, bc are biases.

BiLSTM includes forward and backward LSTM. They
have the same structure and the same input data, but the
direction of the sequence input is different. At time t,
BiLSTM can be expressed as

huct = huft, hubt½ �, ð4Þ

where huft is the output of the forward LSTM, hubt is the out-
put of the backward LSTM, and huct ∈ℝ2d is obtained by con-
necting huft and hubt .

We input huct into a fully connected layer, and the result-
ing Hu

t ∈ℝ
d is regarded as the output of the BiLSTM layer at

time t:

Hu
t = σ WHhuct + bHð Þ, ð5Þ

where WH ∈ℝd×2d is the learnable weight matrix and σ is
the sigmoid activation function.

However, there may be random or accidental behaviors
in the recent sequence of users, which affect the learning
effect of the recurrent neural network on the users’ interests
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and deviate from the users’ true intention. Different from the
recurrent neural network, the attention network regards the
input content as a whole, which alleviates the influence of
noise by assigning higher weights to the important interests
of users. Therefore, on the basis of using BiLSTM to model
the sequential dependencies of users’ short-term interests,
we use the self-attention network to amplify the key parts
of users’ short-term interests that are conducive to
prediction.

To further extract the important information of users’
short-term interest representations, we input Hu = fHu

1 ,
Hu

2 ,⋯,Hu
jLuS jg into the self-attention network.

The self-attention network can be described as

Zu
LuS
= attention Qu,Ku,Vuð Þ = soft max

Qu Kuð ÞTffiffiffi
d

p
 !

Vu,

ð6Þ

where Zu
LuS
∈ℝjLuS j×d is the output of the self-attention net-

work, jLuS j is the recent sequence length, Qu, Ku, Vu ∈
ℝjLuS j×d are obtained from the input Hu through the linear
transformation of the weight matrices WQ, WK , WV ∈ℝd×d,
respectively, that is, Qu =HuWQ, Ku =HuWK , and Vu =Hu

WV .
Finally, short-term interest representation Zu ∈ℝd of

user u is calculated by average pooling on Zu
LuS
:

Zu = Avg Zu
LuS

� �
: ð7Þ

3.4. Long-Term Interest Representation Based on Interest
Extraction Layer and Interest Fusion Layer. As the user’s
long-term behavior sequence often contains noise and has
a relatively large time span, it is difficult to directly model
the overall long-term sequence, resulting in unsatisfactory
recommendation results. Therefore, we divide the long
sequence into multiple subsequences. Each subsequence
reflects the user’s interests over a period of time. By using
the hierarchical mechanism of interest extraction layer and
interest fusion layer, the different associations between items
in subsequences and the sequential dependencies among
subsequences are modeled to jointly generate long-term
interest representations of user. The interest extraction layer
can effectively extract the main interests in the subsequences,
and the interest fusion layer can dynamically learn the order
changes of user interests among different subsequences.

3.4.1. Interest Extraction Layer. Each subsequence corre-
sponds to a time period. Users have different interests in dif-
ferent periods and may also have multiple interests in the
same period. In order to highlight the important parts that
affect prediction in different time periods, we use the graph
attention network with node importance to extract the main
interests in different subsequences, respectively.

The graph attention network is a graph neural network
combined with attention mechanism, which uses self-

attention to learn the graph structure and has efficient paral-
lel computing capabilities. The update of the feature of each
node in the graph relies on the attention calculation of its
neighbor nodes, which is realized by assigning different
weights to the neighbor nodes.

Different from the simple sequential structure, the graph
attention network can more clearly model the complex correla-
tion between items. By analyzing the internal structure of the
item graph, the more complex and implicit connections
between user clicks can be captured. Unlike the features of each
item in the recent sequence, which have an impact on the learn-
ing of short-term interests, the graph attention network does
not consider the sequential association between items. The rea-
son is that the main interests of the subsequences are more
emphasized in the subsequence interest extraction stage. For
example, in the online shopping system, users may have multi-
ple needs at the same time, and the purchase order may be “a
shirt, a bunch of flowers, a basket of apples, a bunch of bananas,
a vase.” The relationship between “flower” and “vase” should be
closer, but it is interrupted by “apple” and “banana” in the
actual purchase. If we follow the strict order of the subse-
quences, it is difficult to extract the main interest of the subse-
quence. Therefore, the sequential relationship within the
subsequence is a negative effect on the long sequence composed
of multiple subsequences. It not only reduces the model effi-
ciency but also easily affects the recommendation effect.

In addition, since there may be behaviors deviating from
the user’s interests in the subsequences, adopting a graph
attention network can further reduce the influence of noise
while learning the relationship between items. The reason
is that the attention mechanism can amplify the features that
are helpful for decision-making and ignore unimportant or
irrelevant information.

It can be said that the graph attention network can
model the complex relationship between different items,
automatically learn the important features in the graph,
and suppress the influence of noise. The attention mecha-
nism enables the graph structure to better achieve neighbor
aggregation, and the graph structure also provides a degree
of interpretability for the attention mechanism.

For any subsequence Suk on the long sequence LuL, the
items of the subsequence Suk are regarded as nodes. Consid-
ering that almost no items in the short sequence are clicked
repeatedly, we use the similarity between items to describe
the connection relationship between nodes. In this way, the
subsequence data Suk = fvuk,1, vuk,2,⋯, vuk,jSuk jg is transformed

into a subgraph structure Gu
k = hVu

k , Eu
ki, where item vuk,i is

represented as node i ∈ Vu
k . For the sake of simplicity, there

exists an edge between two item nodes only if their similarity
is more than 0. The input data of the graph attention net-
work is the node features fguk,1, guk,2,⋯, guk,jSuk jg, where guk,i ∈
ℝd represents the feature of the ith node in the subsequence
and jSuk j is the length of the subsequence.

In the graph attention network, the importance of the
neighbor node j to the current node i is defined as

euij = LeakyReLU WT
a Wguk,i Wguk,j




h i� �
, ð8Þ
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where W ∈ℝd×d represents a learnable shared weight matrix
which is used to improve the expressive ability of item fea-
ture guk,i and || represents connecting the features of node i
and node j. The attention function is a single-layer feedfor-
ward neural network.Wa ∈ℝ2d is used to learn the influence
of node j on node i, and LeakyReLU denotes nonlinear
activation.

The attention coefficient is calculated by considering the
first-order aggregation of all neighbor nodes on node i,
which is defined as follows:

αuij = softmax j euij
� �

=
exp euij

� �
∑x∈Ni

exp euixð Þ , ð9Þ

where Ni is the neighbor set of node i (including i).
The feature vector of node i can be obtained by applying

the attention coefficients to the corresponding neighbors of
node i and combining the features, which is denoted as

~guk,i = σ 〠
j∈Ni

αuijWguk,j

 !
: ð10Þ

The weights of nodes in the graph attention network are
learned through weighted aggregation of their neighboring
nodes. However, due to the normalization of softmax, the
importance attribute of nodes in the whole graph is not bet-
ter highlighted. For subsequences, the importance of differ-
ent item nodes has a great influence on the extraction of
main interests. Generally speaking, the more adjacent nodes
a node is associated with, the higher the importance of the
node. Therefore, we improve the attention coefficient of
the graph attention network to more clearly distinguish the
importance of different nodes.

The calculation process of the new attention coefficient is
shown in Figure 2.

In Figure 2, the importance of nodes is reflected by the
degree of nodes. By normalizing the degree values of all
nodes in the subsequence, the importance βu

i of any node i
can be obtained. Wγ ∈ℝ1×2 means that the information of
node importance βu

i and attention coefficient αuij is fused to
obtain a new attention coefficient γij.

γuij =Wγ αuij, β
u
i

h i
: ð11Þ

After applying the new attention coefficient γuij to the

feature combination, the final output features ĝuk,i ∈ℝd of
node i is obtained.

ĝuk,i = σ 〠
j∈Ni

γuijWguk,j

 !
: ð12Þ

fĝuk,1, ĝuk,2,⋯, ĝuk,jSuk jg denotes the output of the subse-

quence data through the graph attention network.
Finally, the output is aggregated into a vector ruk ∈ℝd by

average pooling, which represents the main interests of the
kth subsequence.

3.4.2. Interest Fusion Layer. In the interest fusion layer, the
subsequence feature ruk ∈ℝd of each time period is regarded
as the basic unit, and we use LSTM to learn the sequential
dynamic changes of user interests among different time
periods because there is a relative order among different
periods. In period k, the LSTM unit can be abbreviated as

ĥuk = LSTM ruk , ĥ
u
k−1

� �
, ð13Þ

where fru1 , ru2 ,⋯, rujSujg is the feature set of subsequences

obtained through the graph attention network, jSuj is the
number of subsequences, and ĥuk−1 ∈ℝd is the output of the
previous period.

The outputs of all time steps of LSTM are fused to obtain
the long-term interest representation Pu ∈ℝd of user u:

Ĥu = Suj j
k=1ĥ

u
k




 ,

Pu = σ WPĤ
u + bP

� �
,

ð14Þ

where j j means to connect the outputs of different subse-
quences of LSTM and σ is the sigmoid activation function.

3.5. Gating Fusion Mechanism Based on Neighbor Influence.
The interests of users change dynamically over time and the
degree of change varies for different users, which indicates
that the long-term and short-term interests of different users

Wgu
k,i

Wa
T

W𝛾

eij
u 𝛼ij

u 𝛾ij
u

𝛽ij
u

Wgu
k,j

LeakyReLU softmaxj

Figure 2: Attention coefficients.
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have different degrees of influence on their interest predic-
tions [36]. However, in addition to relying on their own
interests, user intentions may also be affected by their neigh-
bors. Thus, we introduce the gating network to fuse the
user’s own interests and neighbor features, which adaptively
adjust the weights of long-term and short-term interest fea-
tures by considering the influence of neighbors.

In a real system, users may keep some of their attributes
secret out of privacy; that is, users may obscure information
such as gender and age. Considering the defect of incom-
plete user attribute information, we learn the nearest neigh-
bor representations of users from the perspective of
historical behavior data. First, for each item, all users who
interact with the item is regarded as a text, and each user
is regarded as a word in the text. The user’s word embedding
is obtained by using the word2vec algorithm. Then, these
user embeddings are clustered by using the K-means [37]
algorithm, where the number of clusters K is determined
according to the elbow method. Finally, the average of user
embedding in each class is calculated and denoted as the
nearest neighbor embedding Nu ∈ℝd .

The user’s short-term interest representation Zu ∈ℝd ,
the long-term interest representation Pu ∈ℝd , and the near-
est neighbor representation Nu are used as the input, and the
gating network is designed as follows:

Gu = σ WG Zu, Pu,Nu½ � + bGð Þ, ð15Þ

whereWG ∈ℝd×3d is the weight matrix of linear transforma-
tion, σ is the sigmoid activation function, and the gate vector
is Gu ∈ℝd .

Finally, by adaptively allocating the proportion of long-
term and short-term interest through the gate vector, the
user interest representation vector is obtained, which is
denoted as Ou and defined as follows:

Ou =Gu ⊙ Zu + 1 −Guð Þ ⊙ Pu, ð16Þ

where ⊙ denotes element-wise multiplication.

3.6. Model Optimization. To obtain the user’s recommenda-
tion list, the predicted probability distribution is generated
through the softmax layer, and the cross-entropy is used as
the loss function to train the predicted probability of the tar-
get item vutar. Considering the large number of items in the
real system and the high computational cost, we use
sampled-softmax [2] to speed up training, which is defined
as follows:

L = −〠
N

log
exp gutarð ÞTOu

� �
∑j∈Kexp gTj Ou

� � , ð17Þ

where K is the sampling subset selected from the item set V
according to the sampling function, gutar is the embedding
vector of the target item vutar, and Ou is the user interest
vector.

4. Experimental Results and Analysis

4.1. Datasets and Parameter Settings. We conduct experi-
ments on two public datasets, i.e., MovieLens 1M dataset
and JD dataset.

(1) MovieLens 1M: the MovieLens dataset is a rating
dataset provided by the GroupLens group of the
Minnesota Computer Institute, which includes user
statistics, movie information, rating time, and rating
values. The MovieLens 1M dataset contains
1,000,209 ratings of 3,952 movie items by 6,040
users, and each user has rated at least 20 items. The
higher the user’s rating on an item, the more the user
likes it

(2) JD: the JD dataset records the user shopping behav-
ior data of the JD e-commerce operation platform
from February 1, 2018, to April 15, 2018. It is a rel-
atively sparse dataset with a relatively short time
span, which contains 37,214,269 records of 378,457
commodity items by 1,608,707 users

On the datasets, the user history records are sorted by
time, and each sequence is divided into multiple subse-
quences according to the division rules. The data is prepro-
cessed with reference to the experimental setting of the
model DMAN [2], the last and penultimate interactions of
each user are used as testing and validation, respectively,
and the rest is used for training. We run five experiments
repeatedly and take the average of the five results as the
experimental results.

The model is optimized using Adam with a learning
rate of 0.001, and the batch size is 512. In order to ensure
the consistency of the experiments, the item embedding
dimensions are set to 128. In the gating network based
on the influence of neighbors, the number of user clusters
k is determined according to the elbow method. To
quickly and effectively determine the range of neighbors,
the elbow method is used to calculate the degree of distor-
tion. The degree of distortion is the sum of the squared
errors (SSE) of the distance between the particle in each
class and the sample points in the class. By constructing
the distortion degree image of the number of clusters,
the elbow position with the most obvious distortion degree
change is taken as the best cluster k value. Figures 3 and 4
show the variation of the distortion degree SSE with the
cluster k value on the MovieLens 1M and JD datasets,
respectively. It can be seen from Figure 3 that the change
of SSE is most obvious when k value is between 25 and 50
on MovieLens 1M dataset; we set the number of user clus-
ters k to 40. In Figure 4, when the cluster k value on the
JD dataset is around 25, the change of SSE is the most
obvious. Therefore, the number of user clusters k is set
to 25 on the JD dataset.

4.2. Comparison Methods. In order to verify the effectiveness
of the proposed model, the following methods are selected
for experimental comparison:
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(1) GRU4Rec+ [8]: GRU4Rec [38] is a classic RNN-
based model for session recommendation. Based on
GRU4Rec, GRU4Rec+ proposes a new ranking loss
function and improves the sampling strategy

(2) Caser [7]: it models the user’s recent behaviors as an
“image” based on time and latent features and learns
the image through CNN. Applying both horizontal
and vertical convolutional filters to image learning
can capture complex features such as point-level,
union-level sequence patterns, and skipping behav-
iors in sequences

(3) SASRec [9]: SASRec is a neural network model com-
posed of stacked self-attention which uses the self-
attention mechanism to assign different weights to
sequence data and learn more complex feature trans-
formations through the hierarchical network

(4) SHAN [30]: SHAN is a sequential recommendation
method based on hierarchical attention network.
The first layer learns the user’s long-term interests,
and the second layer comprehensively considers the
user’s long-term interests and short-term interests.
Both layers of attention network use user embedding
vector as attention query for interest learning, which
realizes personalized recommendation

(5) SDM [15]: SDM is a novel sequence deep matching
model which used the multihead self-attention
mechanism to obtain the recent diverse interests of
users and learned the long-term interests of users
by modeling long-term features of different catego-
ries. In this model, according to the obtained user’s
personalized interests, a gating module is used to
fuse the short-term interest related parts of the com-
plex and diverse long-term interests

(6) DMAN [2]: the DMAN model designs the recursive
self-attention network to model users’ short-term
interests and preserves the important content of
long-term interests as much as possible by maintain-
ing a set of dynamically updated memory blocks.
This model also used a gating network to combine
long-term and short-term interests for
recommendation

4.3. Comparison Methods. In order to evaluate the recom-
mendation performance of different methods, we use hit rate
(HR@K) and normalized discounted cumulative gain
(NDCG@K) as evaluation metrics.

HR@K (Hit Rate@K) represents the percentage of items
in the top-K of the ranking list in the test case, which is used
to measure the accuracy of recommendation and defined as

HR@K =
1
N
〠
N

i=1
hit ið Þ, ð18Þ

where N is the number of test cases and hitð⋅Þ is the indica-
tor function. hitð⋅Þ = 1 means that the item selected by the

user appears in the top-K recommendation list; otherwise,
hitð⋅Þ = 0.

NDCG@K (normalized discounted cumulative gain
(NDCG)) is an evaluation metric about ranking. The higher
the ranking of the correctly recommended item, the better
the recommendation effect and the higher the NDCG value.
This metric considers the order of recommendation results
and denoted as

NDCG =
1
N

〠
n∈N

DCG
IDCG

: ð19Þ

DCG is the cumulative gain of loss and defined as

DCG = 〠
K

i=1

2ri − 1
log2 i + 1ð Þ , ð20Þ

where ri is the correlation of the item at position i. If the rec-
ommended item is in the test case, ri = 1; otherwise, ri = 0.
The higher the ranking of related items, the higher the value
of DCG. IDCG is the DCG that rearranges the items in the
recommendation list according to their relevance. Consider-
ing that the DCG values of different users may vary greatly,
IDCG is used to normalize the DCG of different users to
obtain the evaluation metric NDCG.

4.4. Comparison with Baseline Methods. Table 1 lists the
experimental results of our model and six baselines on
MovieLens 1M and JD datasets, where the bold ones repre-
sent the best results and the underlined ones are the second
best results.

As listed in Table 1, we can make the following
observations.

(1) For GRU4Rec+, Caser, and SASRec, which focus on
short-term interest modeling, they do not perform well
on two experimental datasets. GRU4Rec+ has the worst
recommendation, which may be because the recurrent
neural network of sequential modeling cannot effec-
tively deal with the interest offset behaviors in the
sequences and is easily affected by noise. Caser has bet-
ter results due to considering more user personalization
information. The performance of SASRec is signifi-
cantly better than that of GRU4Rec+ and Caser. On
the one hand, it shows that the attention network with
position bias is beneficial to extract users’ dynamic
interests and alleviate the influence of noise. On the
other hand, it shows that the stacked hierarchical atten-
tion network has significant advantages in dynamic
modeling, which also explains the effectiveness of our
model using a hierarchical structure

(2) For SHAN, SDM, and DMAN, which consider lon-
ger interaction sequences, the recommendation per-
formance of these models is generally higher than
those of the short-term interest models, i.e.,
GRU4Rec+, Caser, and SASRec. These results show
that the long-term interests of users are also impor-
tant for predicting users’ choice. Therefore,
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considering long-term interests based on short-term
interests modeling can further improve the perfor-
mance of recommendation

(3) For SHAN, SDM, and DMAN, which consider long-
term interests and short-term interests, the recommen-
dation results of SDM consistently outperform those of
SHAN in evaluation metrics HR@10, HR@50, and
NDCG@100. This is mainly due to the difference
between the two models in the fusion of long-term
and short-term interests. SHAN adopts a hierarchical
attention network to integrate long-term and short-
term interests, while SDM adopts a gating network.
The gating network is more effective than the hierarchi-
cal attention network for learning the interest expres-
sion. In addition, the attribute feature extraction of the
input data by SDM further improves the expressive
ability of the model. DMAN can achieve better recom-
mendation results than SDM because DMAN employs
a dynamic memory-based attention network to contin-
uously aggregate long-term representations into a set of
memory blocks. By dividing subsequences, complex
problems can be simplified. It is easier and more effec-
tive than SDM that directly extracts interests from the
whole long-term sequence and can better express the
users’ long-term interest features

(4) For our proposed model SRLIN, it shows excellent
recommendation results on both datasets. Compared
with SDM, SRLIN has an average improvement of
3.92% in HR@10, 4.36% in HR@50, and 1.18% in
NDCG@100. Compared with DMAN, SRLIN
improves by 1.79% and 0.39% in HR@10, and 2.6%
and 0.62% in HR@50, respectively. The overall effec-
tiveness of our model can be attributed to several
aspects. First, embedding representations of items are
learned frommultiple perspectives, which helps allevi-
ate data sparsity issues. Second, in the long-term inter-
est modeling, the graph attention network with node
importance is used to learn the main features of the
subsequences, which can not only accurately and fully
extract stable changing long-term interests but also
effectively eliminate the noise influence in the subse-
quences. Third, the long-term and short-term inter-
ests of users are comprehensively considered, and the
interests are fused through the gating network

together with the neighbor user information. The
application of neighbor user features makes the model
consider the influence of neighbor information while
focusing on the user’s own personalized data, which
can enrich the prediction of user intention and
improve the recommendation performance

(5) It is noted that the SRLIN model can achieve the best
recommendation effect in the metric of NDCG@100
on the MovieLens 1M dataset, while the experimen-
tal result on the JD dataset is suboptimal. This is
because the time span of the JD dataset is relatively
short and the average sequence length of users is
not long, which makes it difficult to fully learn stable
changing long-term interests when modeling long-
term representations. Comparing the HR@K metrics
on the two datasets, we find that SRLIN achieves the
average improvement of 1.09% on HR@10 and
1.61% on HR@50. It shows that the recommenda-
tion effect of the SRLIN model can be improved
compared with the baselines as the length of the rec-
ommendation list increases, which further explains
the reason why the ranking metric NDCG of SRLIN
on the JD dataset is not the best

4.5. Effect of Graph Attention Network with Node Importance
Factor. To explore the advantages of SRLIN using graph
attention network with node importance factor in the inter-
est extraction layer, we design three additional variants, i.e.,
SRLIN-RNN, SRLIN-AT, and SRLIN-GAT.

(1) SRLIN-RNN: LSTM is used to learn the interests of
subsequences. Because of the order-dependent prop-
erty of LSTM itself, the order relationship within
subsequences is considered when extracting interests

(2) SRLIN-AT: the attention network is used to learn the
interests of subsequences, and the attention mecha-
nism can capture the main features of subsequences

(3) SRLIN-GAT: the main interests of subsequences are
learned using graph attention network without con-
sidering the importance of nodes

Table 2 lists the experimental results in the evaluation
metric of HR@50 for different subsequence interest extrac-
tion methods on MovieLens 1M and JD datasets.

Table 1: Performance evaluation of different recommendation models (%).

Models
MovieLens 1M JD

HR@10 HR@50 NDCG@100 HR@10 HR@50 NDCG@100

GRU4Rec+ 17.69 43.13 16.90 27.65 38.73 23.40

Caser 18.98 45.64 17.62 29.27 40.16 24.25

SASRec 21.02 47.28 19.05 33.98 44.89 27.41

SHAN 21.34 49.52 19.55 37.72 50.55 29.80

SDM 23.42 51.26 20.44 40.68 55.30 34.82

DMAN 25.18 53.24 22.03 44.58 58.82 36.93

SRLIN 26.97 55.84 22.66 44.97 59.44 34.96
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By observing the results in Table 2, the following can be
found:

(1) The SRLIN-RNN method, which uses LSTM to learn
subsequence interests, performs the worst among the
four models. This is because the interest offset
caused by random, combined, jumping, and other
behaviors in the historical sequences, which makes
the recurrent neural network susceptible to noise
when modeling subsequence sequential dependen-
cies. The information loss of the bottom layer LSTM
can further affect the learning of the upper layer
interest changes, resulting in poor recommendation
effect

(2) The performance of SRLIN-AT with attention net-
work is better than that of SRLIN-RNN. The reason
is that the attention mechanism pays more attention
to important interest features, which alleviates the
noise effect caused by interest offset in subsequences
to a certain extent

(3) SRLIN-GAT uses graph attention network to extract
the main interests of subsequences and can obtain
better results than SRLIN-AT, which shows the
effectiveness of modeling complex associations of
items. The graph structure of the graph attention
network visually draws the neighbor aggregation of
items, which can capture more implicit connection
relationship between items and help the attention
mechanism to extract the main interests

(4) These results show that our SRLIN model outper-
forms the three variants. The reason why SRLIN is
better than the best variant SRLIN-GAT is the intro-
duction of the importance of item nodes. It shows
that in a period of time, the importance of different
items has a strong impact on user interests, reflecting
users’ different degrees of preferences. The more the
number of nodes related to a node, the higher the
importance of the node, and the contribution of
the node to the subsequence is also greater. There-
fore, considering the importance of different items
in the subsequence is beneficial to the extraction of
the main interests

4.6. Effects of Individual Components. To verify the effective-
ness of each part of the model, we design two additional var-
iants, i.e., SRLIN-S and SRLIN-G. SRLIN-S removes the
long-term interest modeling module of SRLIN, while the
gating module of SRLIN-G only considers the user’s long-
term and short-term interests.

Table 3 lists the experimental results in the evaluation
metric HR@50 for the three methods on MovieLens 1M
and JD datasets.

By analyzing the experimental results in Table 3, we find
that the experimental results of interest fusion models
SRLIN-G and SRLIN are always significantly better than
those of SRLIN-S, which indicates the effectiveness of
modeling long-term interest representations for recommen-

dation results. The user interest information carried by long-
term interest representation and short-term interest repre-
sentation plays an important role in the recommendation.
They complement and correlate with each other, which
can further improve recommendation performance. In addi-
tion, compared with SRLIN-G, our SRLIN model can cap-
ture the influence of neighbor user feature, which makes it
achieve better recommendation effect. These results show
that the gating network considering the neighbor features
can better balance the users’ long-term interests and short-
term interests so that it can obtain more accurate user inter-
est representations.

4.7. Effect of Item Embeddings from Multiple Perspectives. To
show the recommendation effect of different item embed-
ding methods, we design an additional variant SRLIN-RD,
which randomly encodes item embeddings based on item
numbers. We compare the variant with our SRLIN that fuses
item embeddings from multiple perspectives and validate
them using the evaluation metric HR@50. The experimental
results are shown in Table 4.

It can be seen from Table 4 that SRLIN has significant
advantages. In contrast, the performance of SRLIN-RD is
significantly reduced. In particular, on the JD dataset, the
effect of SRLIN-RD is much lower than that of SRLIN,
because the JD dataset has higher sparsity than the Movie-
Lens 1M dataset. These experimental results show that
learning item embeddings from multiple perspectives can
effectively alleviate the problem of data sparsity, thereby
improving recommendation performance.

4.8. Effect of Time and Length Thresholds. The time interval
threshold Δt and the subsequence length threshold lenthrs

Table 2: Comparison of hit rate for different interest extraction
methods (%).

Models MovieLens 1M JD

SRLIN-RNN 49.15 51.16

SRLIN-AT 53.02 54.64

SRLIN-GAT 55.66 56.18

SRLIN 55.84 59.44

Table 3: Comparison of hit rate for three methods with different
components (%).

Models MovieLens 1M JD

SRLIN-S 46.56 42.30

SRLIN-G 54.83 57.41

SRLIN 55.84 59.44

Table 4: Comparison of hit rate for two methods with different
embedding methods (%).

Models MovieLens 1M JD

SRLIN-RD 50.15 51.42

SRLIN 55.84 59.44
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are used in the sequence division. We verify the influence of
different time interval sizes and sequence lengths on the rec-
ommendation performance through experiments. In order
to intuitively show the effect of different thresholds, one
parameter is fixed to verify the effect of another parameter,
and the following experiments are designed for comparative
analysis.

For a user history sequence, the sequence is divided if the
time interval between adjacent items is more than the
threshold Δt. The time interval Δt is used to distinguish
the interests of users in different time periods. First, we fix
the subsequence length threshold lenthrs = 20 and set the
time interval threshold Δt to different values. The experi-
mental results are shown in Figure 5.

By analyzing the results in Figure 5, it can be seen that
the experimental result is optimal when the time interval
threshold is set to 1 hour on the JD dataset, which indicates
that most users choose products compactly within a period
of time. When the time interval exceeds 1 hour, the occur-
rence of the next behavior is highly likely to indicate that
the user reopens JD page, and the user may have new needs
at this time. On the MovieLens 1M dataset, we find that the
time interval has little effect on the recommendation results.

This is because user preferences tend to be stable in movie
selection, and the time interval does not clearly distinguish
user interest changes. For uniformity, we set the time inter-
val threshold Δt to 1 hour on both datasets.

Then, in order tomore accurately reflect themain interests
of users in a period of time, we further divide the subsequences
that meet the time interval requirements. When the subse-
quence length exceeds the threshold lenthrs, it is considered
that the user has started the next selection. Figure 6 shows
the effect of the length threshold lenthrs on the recommenda-
tion effect when the time interval is set to 1 hour. As shown in
Figure 6, the hit rate decreases as the subsequence length
increases when the subsequence length exceeds 20. These
results show that the user’s demand is usually determined
within 20 selection items. The observation also illustrates that
the user’s interests change dynamically over time. Therefore,
we set the subsequence length threshold to 20.

5. Conclusions

In this paper, we propose a sequential recommendation
model for long-term interest memory and nearest neighbor
influence. The model learns item embeddings from multiple
perspectives, which alleviates the problem of data sparsity by
capturing the implicit relationship between items. For the
case of long and complex behavior sequences of users, a
hierarchical processing method is introduced to capture
users’ long-term interests by modeling complex structure
within subsequences and sequential dependencies among
subsequences, which deals with the problem of imperfect
long-term interests modeling. In the interest extraction
layer, we design the graph attention network with node
importance factors which can fully learn the importance of
different items in the subsequence and the complex relation-
ship between the items and can focus on the important
interests of each subsequence. In addition, we also design a
gating network that considers the features of user neighbors.
It comprehensively learns the relationship among each
user’s neighbor representation, long-term interest represen-
tation, and short-term interest representation, so as to solve
the inadequacy of user interest prediction only relying on its
historical behaviors. Extensive experiments on the Movie-
Lens 1M and JD datasets show that our model outperforms
baselines in prediction performance.

On the JD dataset, many user sequences are short or
have a short time span, in which it is not suit for learning
the long-term stable interests. Therefore, in the future, we
will further explore the latent features of long-term interests
and strive to reduce the time cost of the model. In addition,
knowledge graph can provide more relevant information,
which is also worthy of further consideration.

Data Availability

The data used to support the findings of this study can be
downloaded from https://grouplens.org/datasets/movielens/
and https://jdata.jd.com/html/detail.html?id=8.
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