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With the development of 6G, the rapidly increasing number of smart devices deployed in the Industrial Internet of Things (IIoT)
environment has been witnessed. The radio environment is showing a trend of complexity, and spectrum conflicts are becoming
increasingly acute. User equipment (UE) can accurately sense and utilize spectrum resources through radio map (RM). However,
the construction and dissemination of RM incur a heavy computational burden and large dissemination delay, which limit the
real-time sensing of spatial spectrum situations. In this paper, we propose an RM construction and dissemination method
based on deep reinforcement learning (DRL) in the context of mobile edge computing (MEC) networks. We formulate the
dissemination modes selection and resource allocation problems during RM construction and dissemination as a mixed-integer
nonlinear programming problem. Then, we propose an actor-critic-based joint offloading and resource allocation (ACJORA)
algorithm for intelligent scheduling of computational offloading and resource allocation. We design a novel weighted loss
function for the actor network, which combines the discrete actions for offloading decisions and the continuous actions for
resource allocation. And the simulation results show that the proposed algorithm can reduce the cost of dissemination by
optimizing the offloading strategies and resources, which is more applicable for real-time RM applications in MEC networks.

1. Introduction

With the development of 6G and the rapid growth of mobile
data traffic, new business scenarios are constantly emerging.
The Industrial Internet of Things (IIoT) is expected to be a
crucial technology changing the manufacturing way [1–3].
IIoT is a variety of acquisition or controllers with sensing
and monitoring capabilities. And it integrates mobile com-
munication, intelligent analysis, and other technologies into
all aspects of the industrial production process, thereby
greatly improving manufacturing efficiency and realizing
the intelligence of traditional industries. However, with the
explosion of IIoT applications, the radio environment has
become increasingly complex, which brings unparalleled
challenges such as scarce spectrum resources, intermittent
wireless connections, and high propagation delays. Further
research is needed to address the above issues.

Radio map (RM) is an important tool for understanding
radio environments and analyzing network performance. It
incorporates geographic information to describe the radio

environment from multiple dimensions such as time, fre-
quency, space, and power [4]. RM can not only effectively
acquire the distribution of the radio spectrum resources,
but also utilize the multidimensional spectrum data and
manage the spectrum resources in a straightforward and
flexible way. It has been widely used in cognitive radio
[5–7], interference management [8], coverage analysis
[9–11], and active resource allocation [12–14]. The spectrum
data can be collected by interconnected sensors or smart
devices, and the spectrum data needs to be further processed
to be constructed as an RM. In the traditional cloud-based
network architecture, all spectrum data must be uploaded
to a centralized cloud server, constructed as an RM, and dis-
seminated to user equipment (UE). Due to the large size of
RM, the traditional dissemination scheme from cloud server
to UE consumes more bandwidth and time, which cannot
meet the low-latency requirements of IIoT.

In recent years, edge intelligence has integrated edge
computing and artificial intelligence (AI) technologies to
effectively promote edge-end collaboration [15]. In mobile
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edge computing (MEC) systems, various services originally
deployed on the central cloud server can be deployed on
MEC servers, which fundamentally shortens the data trans-
mission delay [16]. At the same time, AI technology repre-
sented by reinforcement learning (RL) can schedule the
computation offloading and resource allocation in MEC net-
works [17–19], which improves the efficiency of edge com-
puting. The authors in [20] explored the joint optimization
of computational offloading and resource allocation in
dynamic multiuser MEC systems and proposed a Q-learn-
ing-based method and a double deep Q-networks-
(DDQN-) based method to determine joint strategies for
computational offloading and resource allocation. [21] con-
siders both the multiuser computation offloading and edge
server deployment in an unmanned aerial vehicle- (UAV-)
enabled MEC network. The authors proposed two learning
algorithms to minimize the system-wide computation cost
under a dynamic environment. To solve the joint optimiza-
tion of computing offloading and service caching in the edge
computing-based smart grid, the authors in [22] proposed a
gradient descent allocation algorithm to determine the com-
puting resource allocation strategy, and an algorithm based
on game theory to determine the computing strategy. The
authors in [23] proposed a method of saving the content ser-
vice provider (CSP) based on a method of motivating drivers
and deep Q-networks (DQN). [24] proposed an auction
algorithm and a dynamic task admission algorithm to max-
imize the system average throughput in a 5G-enabled UAV-
to-community offloading system. [25] proposed a deep rein-
forcement learning (DRL) additional particle swarm optimi-
zation algorithm to maximize the long-term utility of all
mobile devices in the MEC-based mobile blockchain frame-
work, which takes into account the limited bandwidth and
computing power of small base stations. Edge intelligence
technology empowers edge users with more powerful infor-
mation processing and content delivery capabilities by
scheduling computing, storage, and other resources for
users. It profoundly changes the function of mobile applica-
tions and the utilization mode of network resources. What is
more, it provides inspiration for constructing and dissemi-
nating RM with computational complexity, high bandwidth,
and delay-sensitive requirements.

In this paper, we decompose the RM construction task
into two subtasks, which are deployed in the MEC server
and UEs according to offloading modes. In MEC net-
works, RMs are compressed before transmission in order
to reduce bandwidth consumption. Then, we propose an
actor-critic-based joint offloading and resource allocation
(ACJORA) algorithm for intelligent scheduling of compu-
tation offloading and resource allocation in MEC net-
works. Our principal contributions are summarized as
follows:

(1) We propose three modes of disseminating RMs in
MEC networks and formulate the process as a
mixed-integer nonlinear programming (MINLP)
problem. Our objective is to minimize the energy
consumption and delay of RM construction and
dissemination

(2) To solve the above problem, we propose a DRL algo-
rithm based on actor-critic for joint computation
offloading and resource allocation. Considering the
offloading decision actions are discrete and resource
allocation actions are continuous, we design a
weighted loss function including the two types of
actions in one actor network, which significantly
reduces the number of training parameters and
improves the convergence efficiency of the algorithm

(3) Simulation experiments prove that the proposed
ACJORA algorithm can find offloading and resource
allocation strategies for RM dissemination effec-
tively, which is more applicable for real-time RM
applications

The remaining sections of this paper are organized as
follows. Section 2 reviews the related work on the problem.
Then, the network model and problem formulations are
introduced in Section 3. Section 4 specifies the implementa-
tion details of our ACJORA algorithm. Performance evalua-
tions are provided in Section 5, and Section 6 concludes the
paper.

2. Related Work

2.1. Construction of RM. Accurate RM can provide better
services, and the ways to improve the accuracy of RMmainly
include optimizing the deployment of sensor devices and
improving the accuracy of spatial interpolation [26, 27].
However, in some cases, sensor devices are predeployed
and the deployment may not be optimal [28]. What is more,
it is an uneconomical way to increase the number of sensor
devices. Therefore, the interpolation accuracy needs to be
improved under the limit of the number of sensors [29].
However, the construction complexity also increases as the
accuracy increases. At present, RM is mainly constructed
in the central cloud server, which is used for network plan-
ning or spectrum management and control in advance or
for a long period. Some research has been carried out to
reduce the complexity of RM construction. The authors in
[30] proposed a method based on the Kalman filter. The
work in [31] proposed a method based on regression kriging
and incremental clustering. Both works of [30, 31] reduced
the complexity of RM construction. [32] proposed RM con-
struction method based on a superresolution (SR) algorithm
which greatly shortens the construction time while improv-
ing the accuracy. This algorithm contains two phases: offline
training and online conversion. In the offline training phase,
RM images with different interpolation resolutions are used
to train the return forest model with the best parameters. In
the online conversion phase, the trained model can directly
convert LR RM to high-resolution (HR) RM. In addition,
the dissemination of accurate RM requires the scheduling
of computing and communication resources, and edge intel-
ligence provides us with solutions.

2.2. Edge Intelligence-Based IIoT. There has been a lot of
research on edge intelligence in recent years, and some are
used to solve problems in IIoT. The authors in [33] make a
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review of research results that expounds on the development
and convergence process of IIoT and edge computing. They
propose an architecture for edge computing in IIoT and
comprehensively explain it from multiple performance met-
rics. The authors in [34] considered the energy cost optimiza-
tion problem of computing and caching in the Internet of
Vehicles and integrated a deep deterministic policy gradient
(DDPG) algorithm to solve this problem. [35] constructed a
blockchain-enabled crowdsensing framework in intelligent
transportation system. The authors proposed a DRL-based
algorithm and a distributed alternating direction method of
multipliers algorithm for distributed traffic management.
[36] proposes a novel framework for optimizing edge collabo-
rative network (ECN) to improve the stability between edge
devices and the performance of edge computing tasks. [37]
proposed a multiagent imitation learning-enabled UAV
research deployment approach, which enables different UAV
owners to provide services with differentiated service capabil-
ities in a shared area. In a survey paper [38], the authors
explored the emerging opportunities brought by 6G technolo-
gies in IoT networks and applications. They shed light on
some 6G technologies that are expected to empower future
IIoT networks, including edge intelligence, massive ultrareli-
able and low-latency communications, and blockchain.

2.3. Video Streaming Based on Edge Intelligence. Since the
transmission of video streams is time-sensitive, and many
video streaming tools (i.e. smartphones and VR devices) are
limited by energy and computational capacity, just like the
case we proposed. There are some research on video streaming
transmission. The authors in [39] used a DRL algorithm to
simultaneously optimize energy consumption and quality of
service (QoS) for users during video streaming in edge net-
works. [40] proposed a peer-to-peer video streams transfer
method based on MEC, which can perceive QoS for different
users. The author modeled the transmission, computation,
and offloading problem of video streams as a problem of max-
imizing QoS for users and then implemented an anti-fuzzy
particle swarm optimization algorithm to optimize it. Distrib-
uted edge computing was used to optimize bandwidth con-
sumption during video streaming [41]. The above methods
of video streaming transmitting in edge intelligent networks
mainly focused on computation offloading and resource allo-
cation. However, RM dissemination needs to consider the
construction and dissemination of RM at the same time. It is
necessary to optimize the construction algorithms and com-
pression coding of RM to reduce the use of computing and
communication resources. Therefore, further research is
needed on the construction and dissemination of RM.

3. System Model and Problem Formulation

We consider a MEC network with a base station (BS), a
MEC server, and N UEs, as shown in Figure 1. The set of
UEs is denoted by N = f1, 2,⋯,Ng. UEs have radio
receivers that collect spectrum data 5 times/sec based on
crowdsensing without deploying radio receivers additionally.
They send spectrum and location information to the BS with
newly collected spectrum data.

We adopt the RM construction method based on the SR
model in [32], which was trained by RM images with differ-
ent interpolation resolutions. Due to the small size of the
trained SR model, it consumes less bandwidth for transmis-
sion. The construction task of RM can be divided into two
subtasks, e.g., the kriging interpolation algorithm and the
SR model. The kriging interpolation algorithm can construct
spectrum data as low-resolution (LR) RMs, and SR models
convert LR RMs into HR RMs. In order to reduce time
and energy consumption, the task of RM construction is
decomposed and offloaded to the MEC server and UE.
Therefore, it can transform the task of disseminating RMs
into the task of disseminating mode with a small amount
of data. The MEC server can determine whether it is neces-
sary to offload RM construction task to the UE due to com-
putation resources and bandwidth resources in the
downlink. The dissemination mode decision variable of UE
i can be denoted as mi ∈ f0, 1, 2g. The three dissemination
modes are described as follows:

(a) All server (mode 0, mi = 0): in this mode, the con-
struction task of RM only occurs on MEC server.
First, the edge server completes the construction of
the HR RM. Then, the HR RM is compressed and
sent to UEs. This mode is suitable for situations in
which the bandwidth of the dissemination link is
abundant or the processing power of UE i is limited

(b) Partial offloading (mode 1, mi = 1): in this mode, UE
i needs to execute part of RM construction task.
First, the edge server completes the construction of
the LR RM and the training of the SR model. Then,
the edge server disseminates the compressed LR
RM and SR model to UE i, and UE i only needs to
complete the SR conversion task. This mode is suit-
able for situations in which the dissemination link
bandwidth is abundant and UE i has a certain pro-
cessing capability

(c) All local (mode 2, mi = 2): in this mode, MEC server
disseminates the raw spectrum data of all UEs and
trained SR model to UE i. UE i constructs the raw
spectrum data into an LR RM. Then, it is trans-
formed into an HR RM by the SR model. This mode
is suitable for situations in which the bandwidth of
the dissemination link is limited or UE i has a certain
processing capability

We denote the RM construction computation task of
UE i as τi = fsi, ci, Tmax

i g. Here, si expresses the size of
computation input data, ci represents the number of
CPU cycles required to accomplish the computation task,
and Tmax

i is the maximum tolerant delay of the task. In
our model, computation tasks are considered to be decom-
posable. As a result, we decompose the construction task
of RM into two subtasks, LR RM construction, and SR
transformation. In addition, there is also a process of com-
pression when MEC server disseminates RM to UE in
mode 0 and mode 1. Table 1 shows the computation tasks
in MEC networks.
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3.1. Edge Server Execution Model. We denote the computa-
tional capacity (i.e., CPU cycles per second) of the edge
server as F. And the computational capacity allocated by
the edge server to UE i is Fi. The energy consumption of
the edge server is calculated as

eserveri = kF2
i c

server
i , ð1Þ

where k = 10−27 is the effective switched capacitance of the
CPU, determined by the CPU hardware architecture. cserveri
is the number of CPU cycles of computation tasks of UE i
executed on the edge server, which is determined by the dis-
semination mode. (1) Mode 0: MEC server executes the
computation tasks of constructing the spectrum data into
an LR RM, constructing the LR RM into an HR RM, and
compression of the RM. So, the number of CPU cycles of
computation tasks executed by the edge server is cserveri =
ci,1 + ci,2 + ci,3. (2) Mode 1: MEC server executes the compu-
tation task of constructing the spectrum data into an LR RM
and compression of RM, cserveri = ci,1 + ci,3. (3) Mode 2: MEC
server does not execute the computation task, cserveri = 0. The
time for edge server to execute the computation task can be
expressed as

tserveri = cserveri

Fi
: ð2Þ

3.2. Cognitive User Execution Model. We denote the compu-
tational capacity of UE i as f i. The computation energy con-
sumption of UE i is calculated as

elocali = kf 2i c
local
i , ð3Þ

where clocali is the number of CPU cycles of computation
tasks executed by UE i, which is determined by the dissem-

ination mode. (1) Mode 0: UE does not execute the compu-
tation task of RM, clocali = 0. (2) Mode 1: UE executes the
computation task of SR model transformation, clocali = ci,2.
(3) Mode 2: UE executes the computation tasks of LR RM
construction and SR model transformation, clocali = ci,1 + ci,2.
The time for edge server to execute the computation task
can be expressed as

tlocali = clocali

f i
: ð4Þ

3.3. Communication Model. The total communication band-
width of the edge network isW, and the bandwidth allocated
to UE i isWi. Hence, the downlink transmission rate of UE i
is calculated as

ri =Wi log2 1 + phi
σ2

� �
, ð5Þ

where p denotes the transmit power of the base station
which is constant. hi expresses the channel gain between
UE i and the base station. σ2 represents the noise power.
The data transmission delay can be represented as

ttransi = di
ri
, ð6Þ

where di denotes the size of downlink transmission data
between BS and UE i, which is determined by the dissemina-
tion mode. (1) Mode 0: MEC server transmits the HR RM to
UE i, so the size of transmission data is denoted as di =
dmode0
i . (2) Mode 1: the edge server transmits the LR RM

to UE i, so the size of transmission data is denoted as di =
dmode1
i . (3) Mode 2: the edge server transmits the raw spec-

trum data and trained SR model to UE i, so the size of trans-
mission data is denoted as di = dmode2

i . The data of
computation and communication in different modes are
shown in Table 2.

The transmission energy consumption of the data trans-
mitted by MEC server to UE i can be calculated as

etransi = pttransi : ð7Þ

Figure 1: Network model.

Table 1: Computation tasks in MEC networks.

Computation tasks Input data CPU cycles

Spectrum data➙LR RM si,1 ci,1

LR RM➙HR RM si,2 ci,2

RM compression si,3 ci,3
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3.4. Problem Formulation. The total energy consumption of
RM construction and dissemination for UE i can be calcu-
lated as

Ei =we
servere

server
i +we

locale
local
i +we

transe
trans
i , ð8Þ

where we
server, w

e
local, and we

trans are the energy consumption
weights for edge server execution, UE execution, and com-
munication, respectively.

The total time spent on computation and communica-
tion can be calculated as

Ti =wt
servert

server
i +wt

localt
local
i +wt

transt
trans
i , ð9Þ

where wt
server, wt

local, and wt
trans are the execution delay

weights for edge server execution, UE execution, and com-
munication, respectively.

In order to minimize the sum cost of execution delay and
energy consumption for RM construction and dissemination,
we formulate the weighted sum of energy and delay as the total
consumption of the MEC system. Under the constraint of
computation and bandwidth capacity and maximum tolerable
delay, the problem can be optimized as follows:

min
m,W,F

〠
n

i=1
1 − ϖð ÞEi + ϖTi

s:t:C1 : mi ∈ 0, 1, 2f g
C2 : kf i

2clocali ≤ elocali

C3 : 〠
N

i

Fi ≤ Fmax

C4 : 〠
N

i

Wi ≤Wmax

C5 : 0 ≤ Tsum
i ≤ Tmax:

ð10Þ

In the above problem, ϖ is the weight for execution delay.
m = ðm1,m2,⋯,mnÞ is the offloading decision vector, W = ð
W1,W2,⋯,WnÞ is the bandwidth allocation, and F = ðF1,
F2,⋯, FnÞ is the computation resource allocation of edge
server. Besides, C1 represents the offloading mode of UE i. C
2 expresses the energy consumption of UE i that does not
exceed its remaining energy. C3 indicates the sum of compu-
tation resources allocated to all UEs that cannot exceed the
computation capacity of MEC server. C4 expresses that the
sum of the bandwidth allocated to all UEs cannot exceed the

available bandwidth of MEC network. C5 represents that the
sum time for RM construction and dissemination does not
exceed the tolerance time of the task. Tsum

i denotes the total
time of RM construction and dissemination.

Tsum
i = tserveri + tlocali + ttransi : ð11Þ

Note that the offloading decision variables and the
resource allocation variables correspond to integer variables
and continuous variables, respectively. Therefore, it is an
MINLP and NP-hard problem for the objective function,
which has no convex feasible set. And the complexity of the
feasible set grows exponentially with the number of UEs. Since
traditional model-basedmethods are incapable of dealing with
dynamic scenarios, we adopt a DRL approach, which is
model-free.

4. DRL-Based Joint Offloading and Resource
Allocation Algorithm

According to the optimization objectives and constraints of
the problem, we solve it with an ACJORA algorithm. This
section first defines the state space, action space, and reward
function of the model. Then, we introduce the proposed
actor-critic algorithm framework in detail.

4.1. State Space, Action Space, and Reward Function.
According to the system model, the state space, action space,
and reward function are defined as follows.

4.1.1. State Space. The state space can be presented by

S = st stj = elocalt , Fremain
t ,Wremain

t

� �
, t ∈M

n o
, ð12Þ

where st denotes the network state at step t. The available
resource state at t is represented as Fremain

t = Fmax −∑n
i Fi

and Wremain
t =Wmax − ∑n

i Wi. F
remain
t expresses the available

computation resources of the MEC server, and Wremain
t

denotes the available communication bandwidth resource
of the MEC network. The purpose of observing them is to
ensure meet the constraints of computational capacity and
communication channel capacity. In addition, we also needs
to observe the remaining energy of UEs elocalt to avoid that
the energy of UE is not enough to complete the computation
tasks allocated in the next period.

4.1.2. Action Space. The action space can be denoted as

A = at atj = mt , Ft ,Wtð Þ, t ∈Mf g, ð13Þ

which consists of three vectors: offload decision vector mt
= ðmt

1,mt
2,⋯,mt

nÞ, computation resource allocation vector
Ft = ðFt

1, Ft
2,⋯, Ft

nÞ, and spectrum resource allocation vec-
tor Wt = ðWt

1,Wt
2,⋯,Wt

nÞ. In a MEC system network,
MEC server disseminates offload strategies to UEs. Mean-
while, the computation and communication resources allo-
cated to UEs should also be determined.

Table 2: The data of computation and communication in different
modes.

Offloading
modes

Computing data at
edge server

Computing
data at UE i

Transmission
data

Mode 0 cserveri = ci,1 + ci,2 + ci,3 clocali = 0 dmode0
i

Mode 1 cserveri = ci,1 + ci,3 clocali = ci,2 dmode1
i

Mode 2 cserveri = 0 clocali = ci,1 + ci,2 dmode2
i
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4.1.3. Reward Function. The immediate reward function is
generally related to the objective function. In Equation
(10), our goal is to obtain the smallest sum cost of energy
and time consumption, while the goal of reinforcement
learning is to obtain the largest reward. Therefore, the value
of the reward needs to be negatively related to the value of
the sum cost. The sum cost of the system at time t is denoted
as costt . Thus, the immediate reward obtained by executing
policy at in state st can be defined as

rt = ‐costt: ð14Þ

4.2. DRL-Based Algorithm. Basically, reinforcement learning
algorithms can be classified into three types: actor-only,
critic-only and actor-critic [42]. Actor-only methods employ
policy functions (i.e., policy gradient methods) to learn sto-
chastic policies efficiently for models with large action spaces
and converge asymptotically to local optima, which is more
feasible for the models with continuous actions. However,
they often cause high variance in expected reward estimates
and slow learning. Critic-only methods with value functions
(i.e., action-value methods) typically use time difference
(TD) iterations and thus have lower variance in expected
reward estimates. However, they need to use optimizers in
each state encountered to find an action with the highest
expected rewards. Therefore, they are not effective to solve
problems with large action spaces, which is the case for the
problem that we have stated. Furthermore, they need to dis-
cretize continuous actions since they are based on discrete
action values. Consequently, we adopt an actor-critic
approach, which combines the merits of critic-only and
actor-only algorithms. The actor can produce continuous
or discrete actions without requiring an optimizer for the
value function. The critic employs the estimate function to
estimate the output of the actor, and the actor updates the
policy parameters according to the estimated value to make
the variance lower. [43, 44].

We propose an actor-critic algorithm to determine con-
tinuous actions for resource allocation and discrete actions
for task offloading, as shown in Figure 2. The actor-critic

model contains a critic network and an actor network. For
the actor network, we derive a novel weighted loss function
with two different action outputs, the continuous part and
the discrete part. The learning rate of discrete and continu-
ous action training is updated according to the weighted loss
function in the actor training phase. And the actor parame-
ters of continuous actions are iterated by gradient ascent
based on DDPG [45], which is given as

1
Z
〠
k

∇ac
Q s, μ s θμjð Þ θQ

���� ������
s=sk

∇θμμ s θμjð Þ
������
sk

, ð15Þ

where Z represents the size of sample batch; θQ and θμ,
respectively, express the weight and bias parameters in the
critic network and the actor network; μð·Þ and Qð·Þ corre-
spond to the output of actor network and critic network,
respectively; and ac is the continuous part action component
for resource allocation Ft and Wt . We compute the gradient
of Qðs, μðsjθμÞjθQÞ to ac instead of the whole μð·Þ. Then, we
consider it is constant for the discrete part action component
(i.e., offloading decision vector mt). The gradient of Qðs, μð
sjθμÞjθQÞ for the discrete action is calculated as

−
1
Z
〠
k

Q s, μ s θμjð Þ θQ
���� ������

s=sk

· ∇θμ
1
n
〠
i

mk
i p

k
i

 !
, ð16Þ

where mk
i ∈ f0, 1, 2g is the offloading decision variable in the

kth sample from the replay buffer and ðpk1, pk2,⋯, pknÞ denotes
the probability of offloading modes for UEs, which is the
first component of the actor output μð·Þ. Different from
Equation (15), the continuous part action ac and Qðs, μðsj
θμÞjθQÞ are, respectively, fixed at constant action and con-
stant weight. The weighted loss function for discrete and
continuous actions can be expressed as

Lactor = −wc〠
k

Q s, μ s θμjð Þ θQ
���� ������

s=sk

−wd〠
k

Q s, μ s θμjð Þ θQ
���� ������

s=sk

· 1
n
〠
i

mk
i p

k
i

 !
,

ð17Þ

where wc and wd , respectively, correspond to the weight of
the discrete and continuous part loss function. αd and αc
denotes the learning rates of discrete and continuous part
training phases. And they are update according to Equation
(17) to get a good convergence performance.

For the critic network, we use the average square error
loss function to iterate the parameters, which is defined as

Lcritic = 1
Z
〠
k

yk −Q sk, μ sk θ
μjð Þ θQ
���� �� �2

: ð18Þ

Based on the above definitions, the proposed ACJORA
algorithm is presented in Algorithm 1.

Value
function

Actor

Critic

Environment

 Continuous part

 Discrete part

Actor

Action

Reward

State

Figure 2: The actor-critic algorithm framework.
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5. Simulation Results

5.1. Parameter Setting. In the simulations, we consider a MEC
network as show in Figure 1, which includes a BS and N UEs.
A MEC server is connected to the BS. UEs are randomly dis-
tributed in an area of ½0, 200� meters from the BS. Communi-
cation bandwidth is W = 10MHz. The computational

capacity of MEC server is F = 8GHz, the CPU frequency of
the UE is random in the range ½0:5, 1:5�GHz. The LR RM size
is set as 100Kbit (e.g., a LR image is 1280 × 720 with 16 bit/
pixel, using a compression ratio of 150 : 1 [46]). And the HR
RM size is set as 250Kbit (e.g., a HR image is 1920 × 1080with
16 bit/pixel, using a compression ratio of 150 : 1). The maxi-
mum tolerated delay for RM construction and dissemination
is Tmax = 1 s. The transmit power of BS is p = 500mW.
Detailed simulation parameters are listed in Table 3.

5.2. Result Analysis. For fair performance evaluation, we
compare our proposed scheme with four baseline schemes:
(1) All server: the offloading decision variable of all UEs is
mi = 0. The MEC server constructs RM and disseminates
the compressed RM. (2) All local: the offloading decision

Input: actor network parameters θμ, critic network parameters θQ, actor target network parameters θμ′, critic target network param-

eters θQ′, discount factor γ, replay buffer B, batch size Z, epsilon greedy ε
Output: the best strategy ðm,W, FÞ
1: Initialize: randomly initialize θμ and θQ, θμ′ ⟵ θμ, θQ′ ⟵ θQ, B⟵∅
2: forepisode = 1 to Mdo
3: Initialize state s0
4: fort = 1 to Tdo
5: Actor output ðm̂t , F̂t , ŴtÞ⟵ μðst jθμÞ.
6: Add noise on μðst jθμÞ with ε-greedy on m̂t and Gaussian distribution with mean ðF̂t , ŴtÞ.
7: Get action at = ðm̂t , F̂t , ŴtÞ with exploration variance V .
8: Take action at , observe reward rt and next state st+1.
9: Store transition ðst , at , rt , st+1Þ in B.
10: Sample a random batch of Z transitions ðsk, μðskjθμÞ, rk, sk+1Þ from B.

11: Set yk = rk + γQ′ðsk+1, μ′ðsk+1jθμ′ jθQ′ÞÞ.
12: Update the critic with minimizing the loss Lcritic by Equation (18).
13: According to the loss Lactor, update the actor through the continuous part training phase lrc and the discrete part training
phase lrd by Equations (15) and (16)

14: Update the target networks: θQ′
⟵ λθQ + ð1 − λÞθQ′ , θμ′ ⟵ λθμ + ð1 − λÞθμ′ .

15: end for
16: end for

Algorithm 1: Actor-critic-based joint offloading and resource allocation algorithm.

Table 3: Simulation parameters.

Parameters Value

The number of UEs (N) 5

The communication bandwidth (W) 10MHz

The computational capacity of MEC server (F) 8 GHz

The computational capacity of UE i (f i) 0:5,1:5½ �GHz

The distance between BS and UEs 0, 200½ �m
The transmit power of BS (p) 500mW

The maximum tolerated delay for RM construction and dissemination 1 s

The LR RM size 100Kbit

The HR RM size 250Kbit

Discount factor (γ) 0.99

Replay buffer (B) 100

Batch size (Z) 32

Epsilon greedy (ε) 0.9

Table 4: The average latency of three scheme.

All
server

All
local

Random
offloading

DQN-
based

Proposed

Average
latency (ms)

878 643 735 286 194
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variable of all UEs is mi = 2, distributing global spectrum
information and constructing RM at user equipment. (3)
Random offloading: all UEs randomly select one of the three
dissemination methods: all server, all local, and partial off-
loading, mi ∈ f0, 1, 2g. (4) DQN-based: a resource schedul-
ing scheme based on deep Q-network (DQN), which is an
action-value method [47].

Table 4 shows the average latency of disseminating RM
to UEs in a scenario where the number of UEs is 5, the com-

putational capacity of MEC server is 8GHz/sec, and the
communication bandwidth is 10MHz. We conducted 5000
Monte Carlo experiments and took the average value of
the experimental results. The average delay of the proposed
scheme is 194ms, which is 77.90% lower than that of all
server construction scheme, 69.83% lower than that of all
local construction scheme, and 73.61% lower than that of
the random offloading scheme, 32.17% lower than DQN-
based scheme.
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Figure 3: The effect of interpolation resolution on the sum cost.
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Figure 4: The effect of the computational capacity for server on total consumption.
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As shown in Figure 3, with the increasing of interpola-
tion resolution (i.e., the number of interpolation points by
Kriging interpolation), the sum cost of all schemes increase
at the same time. Because the computational complexity
and the data size of RM dissemination will increase as the
interpolation resolution increases. The DRL scheme can effi-
ciently allocate computation and communication resources.
However, DQN-based scheme cannot produce continuous
actions, so it is need to discretize continuous variables. Thus,

the strategies of the DQN-based scheme are worse than that
of the proposed scheme in resource allocation. The proposed
scheme can achieve the best performance with minimal sum
cost with the increase of RM interpolation resolution.

Figure 4 illustrates the sum cost of the MEC system as
the computational capacity of the edge server increases.
The all local curve does not change with the increase of the
computation resources of MEC server because UEs does not
use the computation resources of the server. The other curves
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Figure 5: The effect of communication bandwidth on total consumption.
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decrease as the computational capacity of MEC server
increases. Because each UE is allocated more server computa-
tion resources, the computation timewill be shortened accord-
ingly. In addition, when F > 8GHz/sec, the sum cost of all
server scheme and the proposed scheme decreases slowly.
The result shows that when the computation resources of
MEC server are far more than the computation resource of
UE, the sum cost of MEC network is mainly limited by other
factors such as communication bandwidth resources.

Figure 5 depicts the sum cost of the MEC system as com-
munication bandwidth increases. Due to the small transmis-
sion data of the all local scheme, it is less affected by the
communication bandwidth. And the sum cost of the all local
scheme at W = 3MHz does not change with the increase of
communication bandwidth. The sum cost of other schemes
decrease with the increase of the communication bandwidth,
because each UE can be allocated more bandwidth
resources, and the communication transmission time will
be shortened. And the proposed scheme has the least sum
cost. Figures 4 and 5 show that the proposed scheme has
good adaptability in a varying radio environment.

We compared the convergence performance of DQN-
based scheme and proposed scheme in Figure 6. The sum
cost of the both RL learning schemes has decreased rapidly
with the number of episodes. Finally, the most effective off-
loading and resource allocation strategies are learned and
the sum cost of the system has stabilized. Compared with
the DQN-based scheme, the proposed scheme can converge
with fewer episodes, and its sum cost is less. Figure 6 shows
that the proposed scheme can efficiently train offloading and
resource allocation strategies.

6. Conclusions

RM is an important tool for cognitive radio in the 6G era,
which can provide data support for IIoT. To solve the prob-
lem of RM construction and dissemination in resource-
limited and delay-sensitive MEC networks, we have pro-
posed a joint RM construction and dissemination approach
based on DRL, which is described as actor-critic-based joint
offloading and resource allocation (ACJORA) algorithm. In
the algorithm, we designed a novel actor-critic model with
a weighted loss function for the actor network, which com-
bines the discrete actions for task offloading and continuous
actions for resource allocation. Compared with baseline
schemes, the proposed algorithm can effectively reduce the
energy consumption and delay of RM construction and dis-
semination, which significantly reduces the cost of acquiring
RM for UEs.
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