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To deal with the difficulty in bearing remaining useful life prediction caused by the lack of history data, a data amplification
method based on the generative adversarial network (GAN) is proposed in this paper, and the parameters of generator and
discriminator in the GAN are determined by grid search algorithm. The proposed method is verified by the XJTU-SY bearing
data sets from Xi’an Jiaotong University. First, 15 time-domain features related to the bearing life are extracted as the training
data of the GAN to generate virtual data that can be used to build bearing life prediction models. Then, support vector
regression and the radial basis function neural network are used to construct the bearing prognostic model based on real data,
generated data, and mixed data. The results show that the proposed method can make up for the deficiency of data and
improve the accuracy of bearing remaining useful life prediction.

1. Introduction

Bearings are extremely important components in rotating
machinery, and precisely predicting their remaining life is
of vital significance for improving the reliability and safety
of mechanical systems. It can assist engineers to take reason-
able measures and reduce economic losses, which thus has
been attracting the attention of more and more researchers.
The data acquisition of bearing vibration signals requires
huge amount of economic and time costs, so the full life
cycle data for bearing life prediction is limited. It greatly
restricted the development and application of bearing life
prediction methods. Generative adversarial networks
(GAN), using an unsupervised learning method for training,
are equipped with powerful capabilities of data generating. It
can be widely used in both semisupervised and unsupervised
learning without complex Markov chains. Compared with
all other models, GAN can produce clearer and more realis-

tic samples, and it has been successfully applied in many
fields. Ledig et al. used GAN for image super-resolution
and implemented the first framework competent in inferring
realistic natural images from original ones accordingly for an
upscaling factor of 4 [1]. Moreover, Bai et al. used GAN to
directly generate faces in high resolution based on blurred
small ones to solve the problems of insufficient information
and ambiguous features caused by small sizes in face detec-
tion technology [2]. GAN were originally created to solve
image problems, yet image model training requires a large
amount of data sets, which will be quite costly if operations
of collecting and labeling are performed by human beings
entirely, whereas GAN are capable of generating data sets
by themselves so that it can provide low-cost training data.
GAN are applied to solve tricky puzzles of stock market
forecasting, order processing, image generation, semantic
segmentation, health care, privacy protection, etc. according
to references. Zhang et al. proposed a novel adversarial
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network architecture for stock market forecasting using mul-
tilayer perceptrons as discriminators as well as long-term
and short-term memory as generators for predicting stock
closing prices [3]. Kumar et al. proposed a kind of GAN
for orders on e-commerce websites to explore and process
all ambiguous orders [4]. Tirupattur et al. take advantage
of the malleability of adversarial learning by designing a con-
ditional GAN, taking the encoded EEG signal as input, and
generating the corresponding image [5]. Gecer et al. rebuilt
facial texture and shape from a single image by GAN and
deep convolutional neural networks (CNN), in which GAN
is utilized for training a very powerful generator for facial
texture in ultraviolet space [6]. Souly et al. used GAN for
semisupervised semantic segmentation and proposed a
semisupervised framework to force real samples to be close
to the feature space by adding large fake visual data [7]. Goel
et al. realized automatic screening for the coronavirus, using
an optimized GAN, able to generate more CT images [8].
Liu et al. applied GAN to privacy protection, adding
designed noise in model learning to make privacy differenti-
ation, and to improving model stability and compatibility by
controlling loss of privacy [9]. Pascual et al. mainly used
GAN to learn complex functions from a large number of
data sets for speech enhancement [10]. This paper mainly
illuminates the model of extracting 15 time-domain fea-
tures from a large amount of bearing vibration data to
expand the dimension of data and optimizing life predic-
tion, which exploit GAN, considered as the superior one
of most approaches in many cases, to accomplish the data
extension duty.

For life prediction of bearings, experts at home and
abroad have carried out a lot of research on it and
achieved certain results. Lu et al., who conducted research
of the relationship between bearing clearance and load
distribution under interference fit, studied the effect of
bearing installation dimensional accuracy and surface
machining accuracy of surrounding structural components
on fatigue life and bearing load-carrying characteristics by
establishing the model of the low-speed spindle drive sys-
tem of the fan [11]. Shen et al. proposed a new method
for predicting remaining life based on relative characteris-
tics and multivariable support vector machines (SVMs).
Shen et al. proposed a new method for predicting remain-
ing life based on relative features and multivariate support
vector machines [12]. This method evaluates the decline
rule of bearing performance, which is not affected by indi-
vidual bearing difference. The correlation analysis is used
to select sensitive features as input to construct a model
that combines the dual advantages of multivariable regres-
sion and small sample prediction to predict the remaining
life of bearings. Although the characteristics and methods
are different, the idea is very similar to the general idea
of this paper. Aiming at the shortcomings of the tradi-
tional life prediction method, that is, the inability to pre-
dict the life of space rolling bearings, Dong studied and
used the support vector machine method. The phase space
reconstruction method is used to select the input parame-
ters of the support vector machine, the particle swarm
algorithm is used to optimize the internal parameters of

the support vector machine, and a degradation trend pre-
diction model based on the optimized parameters is
established to predict the degradation trend and remaining
life of space rolling bearings [13]. However, our research is
to establish a prediction model based on extended dimen-
sion and quantity of parameters, which has the same
purpose. In the prediction of the remaining life of bear-
ings, neural networks have been widely used, of which
one typical method is long short-term memory (LSTM)
[14–16]. But due to the computational complexity of this
method being large and time-consuming, this paper uses
two other methods: the support vector regression (SVR)
method and the radial basis function neural network
(RBFNN) method.

In order to solve the problems of difficulty in establish-
ing the model of bearing life prediction and low accuracy
due to insufficient historical data for the input of the life pre-
diction model, a bearing life prediction method based on
condition monitoring data is proposed in this paper. First,
multiple time-domain features of vibration signals related
to bearing life are extracted and used as training data for
GAN; then, the training data is input into GAN, and adver-
sarial optimization training is performed; then, the
generated virtual time-domain feature data is used for life.
Based on the generated data for prediction, finally, the pre-
diction of remaining life is carried out by two methods,
SVR and RBFNN.

2. Generative Adversarial Network

2.1. Generative Adversarial Network Theory. The generative
adversarial network is a typical generating algorithm model.
GAN’s idea is inspired by the two-man zero-sum game in
game theory. It has two modules called the Generator and
the Discriminator. They can learn from each other to pro-
duce better and better output [17]. The basic framework is
shown in Figure 1.

The generator receives a random noise, through which
new samples are generated. The discriminator network is a
binary discriminator. Training samples and generated sam-
ples are taken as inputs to distinguish whether the current
input is from the training sample or the generated sample,
so as to judge the generation quality of the current generator.
When entering the training sample data, the expected output
of the discriminator is true. When entering the generated
sample data, the expected output of the discriminator is
false. The generator needs to make the discriminator
expected output true as much as possible, making it consis-
tent with the performance of the training sample, thus form-
ing an anticompetition relationship. The optimization
process of alternating training between two models can be
regarded as a minimax game problem. Through the adver-
sarial learning mechanism, the performance of the discrimi-
nator and the generator is continuously improved. After
much training, the discriminator and generator can reach a
balance, which is known as the Nash equilibrium. After the
GAN training is completed, the generator can well estimate
the distribution of training samples and generate new data
consistent with the distribution of training samples, so as
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to achieve the purpose of expanding the data [18]. Its objec-
tive function is shown in the following formula:

min
G

max
D

V D,Gð Þ = Ex~pdata xð Þ
log D xð Þ½ � + Ez~pnoise zð Þ log 1 −D G zð Þð Þð Þ½ �:

ð1Þ

In the formula, Eð∗Þ represents the expected value of the
distribution function, PdataðxÞ represents the distribution of
the real samples, and PnoiseðzÞ is defined in the low-
dimensional noise distribution. By mapping the generator
with the parameter θg to the high-dimensional data space,
we can get Pg =Gðz, θgÞ.

2.2. Optimization of Generative Adversarial Networks. To
optimize both networks to generate generated samples that
are as consistent as the training sample distribution, if the
generator and discriminator are optimized simultaneously,
the implementation principle is complex and most likely
not the desired effect. Therefore, the discriminator and gen-
erator are optimized alternately: First, fix the generator, so
that the discrimination accuracy of the discriminator reaches
the maximum, that is, the most accurate discrimination of
the discriminator. Then, the discriminator is fixed, so that
the minimum discrimination accuracy of the discriminator
discrimination is the most inaccurate; that is, the generator
generation accuracy is the largest. During the training
process, both are constantly optimized to improve the
accuracy of their respective model fault identification and
parameter generation ability, until the discriminator and
generator reach the Nash equilibrium, and finally complete
the GAN training.

The grid search method is an exhaustive search method
for specifying parameter values. By optimizing the parame-
ters of the estimation function with cross-validation
methods, we can get the optimal learning algorithm. The
grid search method is used to find a better generator and dis-
criminator node number setting, which can not only opti-
mize the neural network parameters of the neural network
as much as possible, but also make the training number
and time as little as possible. While improving the quality,
it also improves the training efficiency of GAN.

2.3. Feature Extraction. We used the data collected from the
Xi’an Jiaotong University experiment—XJTU-SY Rolling
Bearing Acceleration Life Test Data Set (data set 1: 35Hz,
12 kN, bearing 1_1; data set 2: 37.5Hz, 11 kN, bearing 2_
1). It collects 32,769 data points per minute, and for the full
life cycle, data set 1 was collected for 123min and data set 2
was collected for 491min. Select the vertical direction of the
vibration signal therein. In addition, because each bearing is
trained separately, the accuracy of the bearing life prediction
results has no direct relationship with the vibration fre-
quency and force of the bearing and has nothing to do with
whether it is the same bearing or not. For a segment of the
vibration signal x = ½xmin, xmax,⋯, L�, the 15 time-domain
features are calculated using the following formula:

xmin = min xnð Þ,
xmax = max xnð Þ,

�x = 1
N
〠
N
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N
〠
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In the formula, xmin is the minimum, xmax is the maxi-
mum, �x is the mean, j�xj is the absolute average, δ is the var-
iance, σx is the standard deviation, S is skewed, K is steep,W
is the waveform index, xr is the root amplitude, xrms is the
root mean square, C is the peak indicator, I is the index of
pulses, and L is the margin index.

3. Bearing Life Prediction Method

3.1. Support Vector Regression. In traditional regression
models, such as the simplest linear regression, the loss is cal-
culated by the difference between the f ðxÞ of the model out-
put and the y-value of the real output. Support vector
regression (SVR) [19] assumes that the model can tolerate
an eps size deviation between the output f ðxÞ and the real
y-value. It means that as long as the predicted value of the
sample falls on the interval band where the absolute value
difference between the f ðxÞ sides in the y-axis direction is
less than the eps, the prediction is correct. If a sample falls

3Wireless Communications and Mobile Computing



into the interval band, the sample that falls into the interval
band does not calculate a loss; that is, only the support vec-
tor has an impact on its function model. By minimizing the
total loss and maximizing the intervals, we can get the opti-
mized model, as shown in Figure 2.

Compared to traditional regression, SVR has the advan-
tages of low generalization error, low computational com-
plexity, and ease of interpretation and can solve high-
dimensional problems. Therefore, this paper uses the SVR
method for life prediction.

In the SVR algorithm, the kernel function adds new fea-
tures through feature transformation, making the linearly
inseparable problem in low dimensional space transform to
the linear separable problem in high dimensional space.
Thus, the choice of the appropriate kernel function has a
very large impact on the regressiveness of the SVM and
the final results [20].

3.2. Life Span Prediction Method Based on Support Vector
Regression. First, the sample data is divided into the training
sample data and test sample data. Then, the SVR model is
trained using the training sample data, so that the model
has good parameters. Finally, the test sample data is fed into
the SVR model already trained to obtain the results of pre-
dicted life.

During the implementation, most of the sample data was
taken out as the training data. The SVR model is trained
with the training data first. After the training is completed,
the test data is imported, and the sliding window is adopted
to predict the value of the next moment, so as to achieve the
purpose of life prediction.

3.3. Radial Basis Function Neural Network. With regard to
the radial basis function neural network (RBFNN) [21], it
has three layers: the first layer is the input layer, the second
layer is the hidden layer, and the third layer is the output
layer. The weights between the input layer and the hidden
layer are all 1. The neurons of the activation function of
the hidden layer are radial basis functions. Radial basis func-
tion is a real-valued function whose value depends only on
the distance from the origin and is commonly used by a

Gaussian radial basis function [22]. The hidden layer and
the output layer is the connection relationship of ordinary
neural networks, and the weight between them can be chan-
ged through training. The linear output layer weights the
output of the hidden layer nodes, and the number of neu-
rons in the linear output layer is the same as the output vec-
tor dimension [21]. Radial basis function neural network is
an efficient feed forward neural network with global features
and the best approximation performance. Its training speed
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is fast with a simple structure. So this method is also used to
predict the life of bearings.

The role of the RBFNN hidden layer is to nonlinear
transform the input vector, transforming the sample point
from the input space to a high-dimensional feature space.
Use a linear model in the feature space to model the training
samples, or make the training sample linearly separable in
the high-dimensional feature space. Figure 3 shows the
topology of the radial basis function neural network.

RBFNN has been demonstrated by experts in the related
fields that its radial basis function has the best approxima-
tion performance. As long as there are enough hidden layer
nodes, we can approximate the multivariate nonlinear con-
tinuous function with arbitrary precision. At present,
RBFNN has been widely used in the fields of information
processing, fault diagnosis, physical modeling, judgment
and recognition, and image processing.

3.4. Life Span Prediction Methods Based on Radial Basis
Function Neural Networks. The key to RBFNN lies in the
determination of the radial basis function. The function
value of a point is only related to the distance of the point
from the central point, so the position of the center point,
the choice of radial basis width, and the number of radial
basis functions will all affect the effect of the neural network.
This paper determines the center of the radial basis function
by the orthogonal least square method. Its training method
is the same as the ordinary neural networks. The difference
is that the ordinary neural network only trains the weights
between the neural networks, while the RBFNN also trains
the activation function. The hidden layer uses the radial
basis function as the neuron of the activation function, and
the connection between the hidden layer and the output

layer is identical with that of ordinary neural networks;
that is, the weight between them can be changed by train-
ing. The width vector affects the range of action of the
neuron on the input information: the smaller the width,
the narrower the shape of the action function of the corre-
sponding hidden layer neuron. Determination of width σ:
it is artificially stipulated that σ = dmax/

ffiffiffiffiffiffiffi

2m
p

, where dmax is
the maximum distance between the centers, and m is the
number of hidden layer nodes, that is, the number of
basis functions.

4. Experimental Verification and Analysis

4.1. Introduction to the Development Environment. The bear-
ing life prediction experimental platform in this paper is
built on the Windows 10 system, with MATLAB software;
the CPU is an Intel Corei7-8565U processor, 16GB RAM,
and 1TB storage.

4.2. The Process of the Experiment

4.2.1. Data Analysis and Computing. The data bearing 2-1 is
the vibration signal of the bearing life cycle collected in 491
minutes, and the data bearing 1-1 is the vibration signal of
the bearing life cycle collected in 123 minutes, and 32,769
vibration signals are collected per minute. 15 vibration
time-domain features related to bearing life are extracted
from the vibration signal, and 15-dimensional raw data sam-
ples are obtained.

4.2.2. Generation and Training of Adversarial Networks. Two
neural networks are used as the generator and discriminator,
and the grid search method is used to select their number of
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nodes. The input is 15-dimensional raw data, and the output
is 5 ∗ 15-dimensional generated data, which is used for data
dimension expansion to make life prediction better. First,
initialize the generator and discriminator. During each iter-
ation, the generator is fixed first, and only the parameters
of the discriminator are updated. 90% of the data from the

original data set and 90% from the output of the generator
are selected, which means that the discriminator is prepared
with two sorts of inputs. The discriminator’s goal of learning
is that if the input is from the real data set, the output is 1; if
it is the data generated by the generator, the output is 0,
which can be regarded as a regression problem.
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Next, fix the parameters of the discriminator and update
the generator. Input the original data into the generator, get
an output, throw the output into the discriminator, and then
get a decimal. The generator needs to adjust its parameters
to make the output decimal as large as possible, which is
because larger means better.

4.2.3. Life Prediction Using SVR. Three groups of prediction
experiments were carried out: using real raw data to predict
life, using generated data to predict life and using mixed data
to predict life. In experiment 1, 80% of the real original data
(1 ∗ 15 dimensions) were evenly extracted as training sample
data. In experiment 2, 80% of the evenly spaced samples
from the generated data (5 ∗ 15 dimensions) were extracted

as training sample data. In experiment 3, evenly spaced 80%
of the real original data and generated data (6 ∗ 15 dimen-
sions) were extracted as training data [23]. The SVR model
was trained with the above three sets of training data. After
the training was completed, the test sample data was
imported to predict the value at the next moment using
the sliding window to extract the features, so that the life
prediction could be carried out.

In order to quantitatively measure the effect of the pro-
posed method, the mean absolute error (MAE) and root
mean square error (RMSE) of the three predictions were
calculated and compared. MAE can represent the mean of
the absolute error between the simulated values and the
observed values; all individual differences were equally

500

500

400

400

300

300

200

200

100

100

0

0

Real service life

Predictions made using only real data
Real data

Th
e p

re
di

ct
ed

 re
m

ai
ni

ng
 li

fe
 sp

an

Figure 7: The results of life prediction using only real data.

Table 1: The bearing life of data set 1 predicted by SVR method.

Serial number Data for predicting longevity MAE RMSE

1 Life span prediction of real data models 0.177 0.205

2 Life span prediction of generated data models 0.131 0.147

3 Life span prediction of the hybrid data model 0.127 0.146

Table 2: The bearing life of data set 2 predicted by SVR method.

Serial number Data for predicting longevity MAE RMSE

1 Life span prediction of real data models 0. 071 0. 081

2 Life span prediction of generated data models 0. 072 0. 082

3 Life span prediction of the hybrid data model 0. 073 0. 085
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weighted on the mean. RMSE is used to measure the devia-
tion between the observed value and its simulated values.
MAE is the simplest and most easily explained evaluation
index, which reflects the real error. RMSE has the same scale
as MAE, but after we find the results, we will find that RMSE

is somewhat larger than MAE. This is because RMSE is
squared first and then square, it actually amplifies the gap
between the larger errors. Therefore, the smaller the value
of RMSE, the smaller the significance in the measurement,
because its value reflects that its maximum error is also
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Figure 9: The results of life prediction using mixed data.
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relatively small. The expressions of MAE and RMSE are
shown in equations (3) and (4), respectively:

MAE = 1
N
〠
N

i=1
y ið Þ − p ið Þj j, ð3Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i=1 y ið Þ − p ið Þð Þ2

N

s

: ð4Þ

The smaller the RMSE, the better the fitting effect; simi-
larly, the smaller the MAE, the better the fitting effect.

140

120

100

80

60

40

20

0

10080604020 1200
Real service life

Predictions made using only the generated data
Real data

Th
e p

re
di

ct
ed

 re
m

ai
ni

ng
 li

fe
 sp

an

Figure 11: The results of life prediction using only the generated data.
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Data set 1 uses the SVR method for life prediction, and
the results are shown in Figures 4–6.

Because less data is collected in Table 1, the life predic-
tion lacks accuracy. Using the generated adversarial network
to amplify the data according to the distribution of the raw
data, which greatly saves the experimental cost and time
cost. And the prediction results of generated data and mixed
data are significantly better than those of real data, which
verifies the effectiveness of this method.

Life prediction using the method of SVR is performed in
Table 2, and the results are shown in Figures 7–9.

There is much data in data set 2, and the life prediction
results of SVR show that the prediction quality of the generated
data and the mixed data is not much different from the real
data, which can also show that the generated adversarial net-
work has a strong ability to generate data.

4.2.4. Radial Basis Function Neural Network Lifetime
Prediction. In the experiment, the raw sample data were nor-
malized, and 15 vibration time-domain signal characteristic
parameters were divided into two groups. Taking the first
80% of the data as a training sample of the RBFNN predic-
tion model, and being used to determine the model structure
and the training network parameters, real data were used as
test samples to test the model prediction accuracy and
divided into three groups of experiments. Experiment 1: take
80% of the evenly spaced extraction in the real raw data
(1 ∗ 15 dimensions) as the training sample data. Experiment
2: 80% of the evenly spaced extraction in the generated data
(5 ∗ 15 dimensions) was used as the training sample data.
Experiment 3 : 80% of the evenly spaced extraction from real
raw and generated data (6 ∗ 15 dimensions) was used as
training data [23]. Set the dimension of the input array of

Table 3: The bearing life of data set 1 predicted by RBFNN method.

Serial number Data for predicting longevity MAE RMSE

1 Life span prediction of real data models 0.360 0.447

2 Life span prediction of generated data models 0.263 0.378

3 Life span prediction of the hybrid data model 0.210 0.309

Table 4: The bearing life of data set 2 predicted by RBFNN method.

Serial number Data for predicting longevity MAE RMSE

1 Life span prediction of real data models 0.091 0.192

2 Life span prediction of generated data models 0.145 0.219

3 Life span prediction of the hybrid data model 0.333 0.431
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Figure 12: The results of life prediction using mixed data.
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RBFNN prediction model is M = 15, and the dimension of
the output array is N = 1. The RMSE (root mean square
error) and MAE (average absolute error) of the three predic-
tions are calculated for quantitative comparison.

Life prediction is performed on data set 1 using the method
of RBFNN, and the results are shown in Figures 10–12.

Table 3 lacks data, so the data dimension can be
expanded by using generating adversarial network methods,
which greatly improves the accuracy of data life prediction.

When we performed life prediction on data 2 with the
method of RBFNN, the results are found in the following table.

Table 4 has a lot of data, and the prediction quality of the
generated data and the mixed data is not much different
from the real data, which can reflect that the generated
adversarial network can generate the generated data close
to the original distribution, and can also reflect that the gen-
erated adversarial network has a strong ability to generate
data. To sum up, we can see that the life prediction of SVR
is better than that of RBFNN.

5. Conclusion

(1) When the lack of raw data leads to inaccurate life
prediction results, the use of generated adversarial
network for data amplification can obviously opti-
mize the results of model life prediction, so that the
model prediction life of mixed data and generated
data is more accurate than that of real data. This
result shows that the proposed method can compen-
sate for the data deficiency and improve the accuracy
of bearing residual life prediction

(2) Using the vertical vibration signal of these two data
sets, the vibration signal is extracted into 15 time-
domain features as the GAN training data, and the
support vector regression and radial basis function
neural network are used to predict the bearing life;
the support vector regression method is better than
the method of radial basis function neural network

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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