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With the increasing variety and quantity of aircraft, there is a potential threat to the security of the Aircraft Communications
Addressing and Reporting System (ACARS) due to the lack of reliable authentication measures. This paper proposes a novel
specific emitter identification (SEI) algorithm based on a hybrid deep neural network (DNN) for ACARS authentication. Our
deep learning architecture is a combination of Deep Residual Shrinkage Network (DRSN), Bidirectional-LSTM (Bi-LSTM), and
attention mechanism (AM), which perform the functions of local and global feature learning and feature focusing, respectively,
so that the individual information hidden in the signal waveform can be thoroughly mined. We introduce soft thresholding as
a nonlinear transformation in the DSRN to enhance robustness against noise and adopt a low-cost training strategy for new
data using transfer learning. The proposed SEI algorithm is optimized and evaluated based on real-world ACARS signals
captured in the Xianyang airport. Experimental results demonstrate that our algorithm can distinguish authorized entities from
unauthorized entities and obtain an identification accuracy of up to 0.980. In addition, the design rationality and the
superiority over other algorithms are verified through the experiments.

1. Introduction

Aircraft Communications Addressing and Reporting System
(ACARS) is a datalink communication system established
between aircraft and ground stations via the very high fre-
quency/high frequency (VHF/HF) channel, which enables
real-time transmission of crucial information, including air-
craft registration number, planned track, position coordi-
nates, health conditions [1], etc. The ACARS is widely
used in civil aviation due to its long-term operation and ade-
quate surface infrastructure. However, ACARS is transmit-
ted in clear text over the open radio frequency channel [2].
Therefore, it is vulnerable to threats posed by unauthorized
entities that may disguise and tamper with information
using low-cost transceivers. In particular, active attackers
try to attempt to exploit avionic systems or create confusion
for air traffic control (ATC), thereby jeopardizing flight
security [3, 4].

Commercial airlines have adopted some authentication
measures based on bit-level security mechanism, such as

the ACARS message security (AMS) protocol defined in
ARINC Specific 823 [5], which run above the physical layer
of the Open System Interconnection (OSI) reference model.
But they are still at risk of being cracked by using compro-
mised or broken encryption keys, or by impersonating an
authorized device’s identity [6]. Fortunately, it is almost
impossible for unauthorized entities to imitate the intrinsic
characteristics at the physical layer, i.e. radio frequency fin-
gerprints (RFFs). The technique for identifying individual
emitters using RFFs is called SEI [7], enabling the authenti-
cation system to work without large-scale infrastructure
modification or protocol update, as shown in Figure 1.
Besides, SEI provides an additional guarantee of security to
detect unauthorized entities; therefore it can be used as a
low-cost complement to traditional authentication schemes.

In the past years, machine learning (ML) has been
proved to be an effective and efficient approach to realizing
SEI [8]. Feature engineering is one of the most critical
aspects of ML, which determines the upper bound of the
SEI. ML relies on manually extracted features, including

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 4748519, 15 pages
https://doi.org/10.1155/2022/4748519

https://orcid.org/0000-0002-1603-6599
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4748519


frequency and phase offset [9], IQ imbalance [10], discrete
wavelet transformation (DWT) [11], nonlinear characteris-
tics [12], etc. However, these features must be extracted for
the specific transient period or steady-state period of a com-
plete transmission, thereby undermining the generality of
SEI [13]. At the same time, due to the short duration of
the transient period, it is difficult to accurately extract the
features of the transient signal. Steady state signals are also
vulnerable to the impact of the acquisition environment,
resulting in the distortion of the features. Furthermore, fine
feature engineering consumes high computational costs
and depends on professional experience and domain knowl-
edge. Therefore, researchers tend to find more intelligent
means to replace ML for implementing SEI [14].

Thanks to advances in computer hardware and algo-
rithms, deep learning (DL), as a particular version of ML,
has achieved great success in the field of image and natural
language processing [15, 16], etc. Recently, various deep
architectures including convolutional neural network
(CNN), long short-term memory (LSTM), and residual net-
work (ResNet) have illustrated the outstanding potential for
radio signal classification. Quite a few SEI approaches still
use the manually extracted features as the inputs of the
DNN, such as Bispectrum [17], Hilbert-Huang transform
(HHT) [18], and differential constellation trace figure
(DCFT) [19]. However, the most significant advantage of
DL, namely automatic feature extraction, has not been
exploited to the full. In other works, traditional features are
abandoned, and deep features are extracted directly from
the raw time-series signal. Merchant et al. developed a
framework for training a CNN using time-domain complex
baseband error signals of the ZigBee devices [20]. Wang
et al. designed an efficient SEI method for the Internet of
things (IoT) based on a novel complex-valued neural net-
work (CVNN) [21]. Wu et al. proposed an LSTM-based
recurrent neural network (RNN) model that captures
hardware-specific features of IQ data at the output of the
analog-to-digital (ADC) of the USRP transmitter [22]. Of
course, there are also a few works that discuss the applica-
tion of deep learning to aircraft radio fingerprint identifica-
tion. Zha et al. converted ADS-B signals to Contour Stellar

Images (CSI) and applied the architectures of AlexNet and
GoogleNet to SEI [23]. Jian et al. used a deep architecture
named ResNet-50-1D to capture salient, discriminative fea-
tures from IQ samples transmitted by ADS-B radios [24].
Chen et al. used the inception-residual neural network
model structure for large-scale ACARS and ADS-B radio
signal classification [25]. These works focus on designing
suitable network structures for a stronger capability of fea-
ture learning. Nevertheless, these deep architectures are
designed for their respective target signals, and it is neces-
sary to perform specific preprocessing in front of the net-
work to guarantee the proper identification performance of
the ACARS signals.

In this paper, we propose a novel SEI algorithm under an
end-to-end DL architecture for ACARS authentication.
First, the valid part of the raw signal is intercepted through
preprocessing. Then, the inputs are propagated into a hybrid
architecture composed of DRSN, Bi-LSTM, and AM, which
perform the functions of local feature learning, global feature
learning, and feature focusing, respectively. To the best of
our knowledge, this is the first attempt to use a joint CNN
and RNN-based architecture on SEI in the authentication
system. Among them, DSRN uses a structure with soft
thresholding to enhance the noise elimination capability.
Based on the real-world captured ACARS signals from seven
civil aircraft in Xianyang airport, a series of trials and exper-
iments are carried out for hyperparameter selection and per-
formance validation. Through discussions of the
experimental results, the feasibility and superiority of the
SEI algorithm are adequately studied. Our main contribu-
tions are as follows:

(i) According to the ACARS protocol, the method of
signal preprocessing is studied, in which we mainly
discuss how to intercept the valid signal. This will
enhance the efficiency and accuracy of our
algorithm

(ii) A hybrid DRSN-BiLSTM-AM deep architecture is
proposed for the SEI of the ACARS authentication
system. The hyperparameters of the model are
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Figure 1: The SEI-aided ACARS authentication system, which contains RFF registration, emitter identification and authorization.
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adjusted to the optimization through trials. In this
way, the computational complexity and identifica-
tion accuracy are balanced well

(iii) Soft thresholding acts as a layer of the DRSN that
performs a nonlinear transformation, and the
branch of adaptive threshold selection is added
simultaneously. This will make our DNN model
insensitive to noise

(iv) The strategy of transfer learning is introduced using
limited training samples. This will greatly reduce
the cost of training of our algorithm on new data

The remainder of this paper is organized as follows: Sec-
tion 2 briefly describes the ACARS protocol and the corre-
sponding preprocessing technique. Section 3 proposes the
hybrid DNN model. Section 4 illustrates the implementation
of the proposed algorithm. The comparative experimental
results on a real-world dataset are covered in Section 5.
And, the conclusion is given in Section 6.

2. Brief Description of ACARS and
Signal Preprocessing

2.1. Brief Description of ACARS. The research content of this
paper is limited to the downlink signal in VHF band of
ACARS, whose protocol is defined in the Specification 618
by Aeronautical Radio, Inc. (ARINC) [26]. The protocol
aims to create character-oriented data connectivity between
aircraft and ground service providers. The encoding scheme
of ACARS adopts non-return-zero inverse (NRZI) with a bit
rate of 2400 bps. Besides, ACARS adopts amplitude
modulation-minimum shift keying (AM-MSK) composite
modulation, and its carrier frequency operates around
131.55MHz.

The default format of the transmission packet in ACARS
is depicted in Figure 2, which is made up of three parts: Pre-
amble, Message, and End Identifier. The Preamble consists
of Pre-key, Bit sync, and Character Sync. The Message con-
sists of Start of Header (SOH), Text, and Suffix. The End
Identifier consists of Block Check Sequence (BCS) and BCS
Suffix. Table 1 summarizes the detailed character structure
of the transmission packet.

2.2. Signal Preprocessing. In this subsection, we investigate
which part of the captured signal is considered as valid. As
depicted in Table 1, pre-key is of indefinite length consisting
of all binary “ones”. Its role concludes with receiver AGC
settling, transmitter power output stabilization, and local
oscillator synchronization [26]. The bit sync, character sync,
and the start of heading specify their respective character
formats. These four components, namely Pre-key, Bit Sync,
Character Sync, and the Start of Header are the most distin-
guishing part of the received signal. Furthermore, they con-
form to the standard message format and are not affected by
the different transmitted content. Therefore, these three
components best represent individual characteristics, and
the other components are discarded.

Next, we discuss how to locate and intercept the valid
signal using the synchronization sequences, including the
Bit Sync and Character Sync. Figure 3 depicts the prepro-
cessing framework proposed in this paper, and Figure 4
shows the output waveforms of several important steps.

As depicted in Figure 4(a), the received ACARS signal
rðtÞ is given by,

r tð Þ = R tð Þ cos 2πf ct + φ tð Þð Þ + n tð Þ, ð1Þ

where RðtÞ, φðtÞ, f c and nðtÞ is the envelope, phase shift,
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Figure 2: Frame structure of the transmission packet in ACARS.

Table 1: Character structure of transmission packet in ACARS.

Component Length Value

Pre-key 85ms All binary “ones”

Bit sync 2 characters <+> (0x2B), <∗> (0x2A)
Character sync 2 characters <+> (0x2B), <∗> (0x2A)
Start of header 1 character <SOH> (0x01)

Text 234 characters maximum \

Suffix 1 character <ETX> (0x03) or<ETB> (0x17)

BCS 2 characters \

BCS suffix 1 character <DEL> (0x7F)
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carrier frequency, and additive white Gaussian noise
(AWGN), respectively.

In order to obtain accurate timing information, we adopt
a method based on 1-bit differential noncoherent demodula-
tion [27], which does not require precise carrier recovery
and has a simple structure.

The delay-multiply signal is obtained with delay of Tb
and shifted-phase of π/2,

rmult tð Þ = R tð Þ cos 2πf ct + φ tð Þ½ �R t − Tbð Þ cos 2πf c t − Tbð Þ + φ t − Tbð Þ½ �
+ n′ tð Þ:

ð2Þ

After low pass filtering, the high-frequency components
are removed. We can obtain,

y tð Þ = 1
2R tð ÞR t − Tbð Þ sin 2πf cTb + φ tð Þ − φ t − Tbð Þ½ � + n″ tð Þ,

ð3Þ

where Tb = 1/2400s is the bit width, and n″ðtÞ denotes the
noise component. According to the characteristics of MSK
modulated signal, we have f cTb = k, k = 1, 2, 3,⋯, then yðtÞ
can be rewritten as,

y tð Þ = 1
2R tð ÞR t − Tbð Þ sin φ tð Þ − φ t − Tbð Þ½ � + n″ tð Þ: ð4Þ

Since RðtÞ and Rðt − TbÞ is always positive, yðtÞ has the
same polarity asφðtÞ − φðt − TbÞ. Therefore, when the trans-
mission bit is 1, yðtÞ is positive; when the transmission bit is
0, yðtÞ is negative. To estimate starting time τ of the syn-
chronization sequence, we do not perform sampling and
decision. Instead, we correlate the ideal synchronization
waveform zðtÞ and the received signal yðtÞ. As depicted in
Table 1, the synchronization sequence zðnÞ consists of 4
characters, which is generated through ASCII encoding by
a bit sequence as, 00101011001010100001011000010110.
After NRZI encoding for zðnÞ, we obtain z′ðnÞ as,

z′ nð Þ = −111 − 1 − 1111 − 111 − 1 − 111 − 11 − 111
− 1 − 1 − 11 − 11 − 1 − 1111 − 1:

ð5Þ

Thereafter, the continuous training signal is given by,

z tð Þ = 〠
32

n=1
z′ nð Þ ⋅ δ t −

n
Rb

� �
∗ g tð Þ

� �
, ð6Þ

where ∗ is the convolution operation, and gðtÞ is the pulse
shaping filter, which is given by,

g tð Þ =
1
0

(
 

t ∈ 0, Tbð �
otherwise

: ð7Þ

The cross-correlation between zðtÞ and yðtÞ is given by,

corr τð Þ =
ðTz

0
z∗ tð Þy t − τð Þdt, τ ∈ 0, Tzð �, ð8Þ

where Tz is the time span of zðtÞ. As depicted in Figure 4(b),
the starting of the synchronization sequence τ is given by，

τ = arg max
τ

corr τð Þ: ð9Þ

Once τ is determined, we can locate the valid signal in rðtÞ.
Marked by τ in the received ACARS signal rðtÞ, signals of
lengths Tp = 85ms and Tq = 40Tb = 16:67ms are intercepted
at the forward and backward directions, respectively, which is
shown in Figure 4(c). In fact, in order to ensure that there are
no redundant sampling points during signal segmentation in
the subsequent operation, 1.83ms at the end of the signal is dis-
carded. Thus, the duration of the valid signal vðtÞ is Tv =
99:84ms, as shown in Figure 4(d). Note that the objects
described above are continuous signals, but the captured signals
are processed in a discrete form. We collect signals at the sam-
pling rate of 400kHz in the experiments. Therefore, the signal
of Tv is discretized into 39936 sampling points. For the sake
of presentation, we use the raw and original data to represent
the ACARS signals before and after the signal interception.

The original signal is then divided into 39 nonoverlap-
ping segments and each segment contains 1024 complex
sampling points. The segments are randomly grouped into
training dataset and testing dataset by the ratios of 80%
and 20%. It should be noted that all the segments in one
sample belong to the same dataset. For the training dataset,
the segments are labeled with the true emitter category,
and then the order of them is randomly shuffled.
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Figure 3: Framework of the preprocessing for the ACARS signal.

4 Wireless Communications and Mobile Computing



3. The Hybrid DNN Model

This section describes the deep learning architecture and its
main components of our algorithm. In order to extract fea-
tures more effectively and improve identification perfor-

mance, DRSN, Bi-LSTM, and AM are integrated into a
hybrid DNN model. As depicted in Figure 5, the proposed
architecture consists of four essential blocks: local feature
learning block, global feature learning block, attention block,
and identification block. At first, DRSN is used to extract
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Figure 4: Waveform diagrams of several key steps in signal preprocessing.
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local features from the time series segments in the local fea-
ture learning block. These local features are then transferred
in sequence to the Bi-LSTM layer to learn global features. In
the attention block, AM assigns various attention scores,
accentuating the influence of the more significant element
of the feature map, and aids in making more correct deter-
minations. Finally, we stack the dense and output layer in
the identification block to perform the final identification.
Each block of the proposed DNN model is demonstrated
in detail below.

3.1. Local Feature Learning Block. In this block, we hope to
obtain deep and invariant local features. The deep mining
of features can be realized through the Deep Residual Net-
work (DRN), which is composed of the stacked standard
residual units (RUs). As shown in Figure 6(a), a standard
RU consists of two batch normalization layers, two Rectified
Linear Units (ReLUs) of activation layer and two convolu-
tional layers. The input and output of RU is connected via
shortcut, so as to solve the degradation problem in deep net-
work. Noise interference will introduce variance to the fea-
tures. In order to suppress the interference, the RUs in the
DRN are replaced with the residual shrinkage units (RSUs),
thus forming the residual shrinkage network (DRSN) [28].
Based on RU, soft thresholding is introduced as a nonlinear
activation layer to eliminate noise-related features, which is
calculated as,

y =
x − κ x ≥ κ

0 −κ ≤ x < κ

x + κ x < κ

8>><
>>:

, ð10Þ

where x is the input feature map, y is the output feature map,
and κ is the threshold, i.e., a positive parameter. Unlike
ReLU setting the negative features to zero, soft thresholding
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Table 2: Local feature learning network parameters.

Unit (number) Number/size/stride of kernels
Output

dimension

Input — 1024×2
Conv 4/5× 1/1 4× 1024×2
RSU 4/5× 1/2 4× 512×2
RSU (×3) 4/5× 1/1 4× 512×2
RSU 8/3× 1/2 8×256×2
RSU (×3) 8/3× 1/1 8×256×2
RSU 16/3× 1/2 16× 128×2
RSU (×3) 16/3× 1/1 16× 128×2
GAP — 16
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sets the near-zero features to zeros to retain the useful nega-
tive features [28].

An additional branch of adaptive threshold calculation is
added in RSU, as shown in the violet part of Figure 6(b).
First, we use a global average pooling (GAP) layer to com-
press the absolute values of x into a one-dimensional (1D)
vector, which is fed into a two-layer dense network to obtain
the intermediate variable z [29]. z is then scaled to the range
of (0, 1) using the sigmoid function, which is given by,

α = 1
1 + e−z

: ð11Þ

After that, the scaling parameter α is multiplied by the
average value of jxj to obtain the threshold. This is moti-
vated by the fact that the threshold needs to be positive
and cannot be too large. Thus, the threshold used in the
RSU is given by,

κ = α ⋅ average
i,j,c

xi,j,c
�� ��, ð12Þ

where i, j, and c are the indexes of width, height, and channel
of x, respectively. In this way, the threshold is controlled in a
reasonable range with respect to the input feature map.

In the local feature block, we stack several RSUs to
achieve the following objectives: (a) extract deeper-level fea-
tures, which aids in better representation of the input data;
(b) gradually eliminate the noise-related features layer-by-
layer. The number of RSU stackings is 12, the rationality of
which is discussed later. Since the input of the Bi-LSTM
layer must be a 1D array, the output of the local feature
block is flattened into 1D data by the global average pooling
(GAP) layer. The DRSN parameters are shown in Table 2.

3.2. Global Feature Learning Block. As the original inputs
and the learned local feature maps represent the time course
of electromagnetic activity of ACARS emitters, a RNN-based
structure can be used to learn from the input along the time
sequence in a parameter-sharing manner and memorize the
context through their internal states [30]. An improved var-
iant of RNN is LSTM, whose advantage is that it solves the
problems of long-term memory and gradient disappearance
in RNN while remaining computational cheap. In this paper,
we adopt the structure of Bi-LSTM which has a forward and
a backward LSTM layer. The forward one can process the
past data information, whereas the reverse one can obtain
the future data information. As shown in Figure 7, the local
feature vectors are propagated into the Bi-LSTM layer in
sequence, and the outputs are summed into a local-focused
global feature vector, which encapsulates features from the
context of the current step in both forward and backward
directions. Both LSTM layers have 128 units, so the length
of each local-focused global feature vector is 128. Finally,
we use GAP to obtain a single output vector for the identifi-
cation block.

3.3. Attention Block. Different kinds of information related
to the emitter individual have different influence on the
identification results. AM selectively focuses on some more
influential information, so as to boost the expected informa-
tion. The essence of AM is a mapping from a query to a
sequence of key-value pairs, as depicted in Figure 8. The cal-
culation of AM involves the following three stages.

At the first stage, the preliminary attention score is given
by,

st = tanh Whht + bhð Þ, ð13Þ

+++

LSTM LSTM LSTM LSTMLSTM LSTM…

GAP

Local feature 1 Local feature 1 Local feature N

…

Global feature

Figure 7: Schematic diagram of global feature extraction block.
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where Wh, bh are the weight and bias of AM, respectively,
and ht is the input vector. Then, the score is normalized
using the softmax function,

at =
exp stð Þ
∑texp stð Þ , ð14Þ

regarding the score coefficient, the final attention score is
obtained by weighted summation as shown,

c =〠
t

atqt: ð15Þ

The above process shows that AM determines the most
significant information by allocating higher scores to the fea-
ture map [31]. Thus, it has a positive optimization impact on
our DNN model, and thus improves identification accuracy.

3.4. Identification Block. The dense layers map the distrib-
uted feature representation to the sample tag space via non-
linear transformations. We have two dense layers in the final

block, and the first one has 128 neurons, while the second
one has 7 neurons (corresponding to 7 categories). The first
activation function uses ReLU to accelerate the back-
propagation of gradients. The second activation function
uses softmax to predict the probability distribution over
the 7 categories.

4. Implementation of the Proposed
SEI Algorithm

4.1. Overall Procedure of the Proposed Algorithm. In this
paper, our proposed SEI algorithm contains three main
steps: data preparation, model training, and model applica-
tion, shown in Figure 9. In data preparation, the ACARS sig-
nals are collected in the out-field of the Xi ‘an Xianyang
airport emitted by seven civil aircraft, whose registration
numbers are B1867, B30ER, B3229, B5180, B6469, B6695,
and B9936. 1250 samples are collected from each aircraft.
Subsequently, all samples are pre-processed in the same
manner as section 2 described. The inputs are divided into
training and testing data, which have a size of 1000 samples

F (Q,K) F (Q,K) F (Q,K) F (Q,K)

Softmax 

Key 1 Key 2 Key 3 Key N

Value 3

Query

Attention
value 

…

…

Value NValue 2Value 1

× × × ×

Figure 8: Schematic diagram of attention block.
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Figure 9: Flow chart of the proposed algorithm based on the DNN model.
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and 250 samples, respectively. We set the mini-batch size of
the input data to 30. In model training, all aircraft that
require certification must be registered offline. First, we con-
struct the proposed DNN model with the determined initial
parameters, and the training data from authorized entities
are fed into the network to achieve forward propagation.
We use cross-entropy as the loss function and the Adam
algorithm as the optimizer. This training process will con-
tinue until the maximum epoch 200 is achieved. In model
application, the online authentication system realizes the
identification of the testing data through the trained DNN
and finally outputs the probability distribution of the pre-
dicted emitter category. Through these three steps, SEI is
implemented using the proposed algorithm.

The overall algorithm is run on a Linux machine with
Nvidia K80 GPU, Intel Xeon W2155 CPU and 64GB
RAM. The signal acquisition is implemented by TI
ADC32RF82 RF-sampling wideband receiver and the pre-
processing of the captured signals is performed on Matlab
2020b. The framework of the DNN model is constructed
in Keras 2.0.8 with Tensorflow 1.7 backend.

4.2. Hyperparameters Selection of the DNN Model. The
adjustments of model parameters are data-driven, but
hyperparameters need to be selected manually. Here, we
select several hyperparameters for balancing the perfor-
mance and computational cost through a few trials.

(a) Learning Rate: Learning rate controls the speed at
which the loss function descends along the gradient.
As shown in Figure 10, the curves of training loss
concerning various learning rates exhibit significant

differences. We have the minimum training loss
and the fastest convergence speed when we set the
learning rate to 0.001. Thus, our DNN model selects
the learning rate of 0.001 in the training process

(b) Hyperparameters of Local Features Learning Block: As
mentioned in Section 3, DRSN is designed to address
the problem of performance degradation as the net-
work deepens. Generally speaking, the deeper the resid-
ual network, the better the performance of feature
learning. However, since an RSU occupies many com-
puting resources, increasing the residual network depth
will lead to the burden of computational complexity.
Table 3 shows the identification accuracy and computa-
tional complexity concerning various numbers of
RSUs. Note that the identification accuracy described
here and below is for testing data.We can see that com-
pared with image processing which requires dozens or
even hundreds of layers of RSUs, feature learning for
the signal can achieve good performance without stack-
ing somany RSUs. The performance of feature learning
hardly increases when the number of RUs is more than
12, but the computational complexity increases by 0.83
MFLOPs. Thus, we select 12 RSUs as the main body of
the local feature learning block

(c) Hyperparameters of Global Features Learning Block:
We use dropout regularization in LSTM to prevent
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Figure 10: Training loss curve concerning different learning rate.
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model over-fitting. Therefore, the hyperparameters
closely related to model performance in the global
feature learning block include LSTM unit number,
dropout rate, and recurrent dropout rate. Table 4
shows the identification accuracy of various combi-
nations of the above hyperparameters. We obtain
the best performance when we have LSTM 128units,
0.5 dropout rate, and 0.2 recurrent dropout rate

4.3. Complexity Analysis of the DNN Model. Next, we analyze
the complexity of the proposed DNN model from time and
space dimensions. The time complexity can be calculated by
the FLoating-Point Operations (FLOPs), and our model has
12.6MFLOPs; the space complexity can be calculated by the
total weight parameters of the model, and our model has
4.7Mparas. Compared with the classical deep ResNet-50 net-
work for image processing, which has 410 MFLOPs and
25.5Mparas, our model has low complexity. This is because
we use the time series of signals as input, thus reducing the
dimension of features and the complexity of the FC layer is
greatly reduced due to fewer classification categories.

We then analyze the average time cost by dividing the
total training and testing time by the dataset size. It can be
seen from Table 5 that using original ACARS signals as
inputs costs much more time than those using raw ACARS
signals as inputs. The size of the original signal is several

times smaller than that of the raw signal due to the pre-
processing. Thus, there are fewer segments in a sample that
corresponds to the raw signal, which greatly reduces the
time overhead.

5. Experiments and Discussions

5.1. Basic Identification Results. First, we conducted RF fin-
gerprint registration for all 7 aircrafts, that is, training the
collected samples through the network. The confusion
matrix is shown in Figure 11(a), from which we can see that
our algorithm is highly discriminative for the authorized air-
craft. Next, we treated the aircraft with registration number
B9936 as an unauthorized entity; namely, the corresponding
samples are tested directly without training. The confusion
matrix is shown in Figure 11(b), from which we can see that
the probability distribution of the identification results of the
unauthorized entity is scattered. Thus, we can set a threshold
on the diagonal of the confusion matrix, such as 0.6, to dis-
tinguish between the authorized and unauthorized entities.
We define the identification accuracy of the SEI algorithm
as the average of the correct identification probability of all
registered categories. In the case of Figure 11(a), the identi-
fication accuracy is 0.980, while in the case of Figure 11(b),
the identification accuracy is 0.977. Generally speaking, the
higher the proportion of registered entities in all categories,
the higher the identification accuracy. Samples of unautho-
rized entities are untrained, leading to possible confusion
with authorized entities. The identification accuracy
involved below corresponds to the case where all seven air-
craft have been registered.

Then, we evaluate the effect of valid signal interception in
preprocessing. As Section 3 highlighted, we use the terms
“raw ACARS signals” and “original ACARS signals” to repre-
sent the signals before and after the interception. As shown in
Figure 12, the use of the original data shows better identification
accuracy than that of the raw data. This is because we intercept
the most representative part of the signal that best characterizes
the individual information of each emitter in the preprocessing;
on the other hand, the remainder of the raw data may contain
differences in the message content, thus affecting the features
learned by the network. According to the discussion in Section
4(c), the preprocessing makes our algorithm more competitive
in identification accuracy and computational complexity.

5.2. Comparison with Other State-of-the-Art Algorithms. As
our algorithm is based on the end-to end learning, we
select three DL algorithms which learn deep features
directly from time series signals, namely CNN [20], LSTM
[22, 32], and ResNet-50-1D [24]. Besides, we also use
three manual feature-based machine learning algorithms
for comparison, namely Bispectrum-CNN [17], HHT-
DRN [18], and DCFT-CNN [19]. The identification results
for various algorithms are shown in Figure 13. It can be
observed that DL algorithms have better performance than
ML algorithms, which indicates that the deep features are
more reliable than the manual features. This may be due
to the loss of information in the process of signal transfor-
mation. Moreover, manual feature extraction as an

Table 3: Identification accuracy and computational complexity
concerning various hyperparameter settings for local feature
learning.

Number of
RSUs

Identification
accuracy

Computational complexity
(MFLOPs)

4 0.937 0.83

8 0.968 1.66

12 0.980 2.50

16 0.982 3.33

20 0.982 4.16

Table 4: Identification accuracy concerning various
hyperparameter combination settings for global feature learning.

No. of LSTM
units

Dropout
rate

Recurrent
dropout rate

Identification
accuracy (%)

128 0.4 0.2 0.973

128 0.5 0.1 0.978

128 0.5 0.2 0.980

64 0.5 0.2 0.962

256 0.5 0.2 0.967

Table 5: Average time cost with raw and original ACARS signals as
inputs of the DNN model.

Input ACARS signals Raw Original

Average training time (s) 48.2 14.7

Average testing time (s) 0.56 0.15
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additional operation will lead to a sharp rise in computa-
tional complexity, which is unfavorable to the practical
application. We find that the Bispectrum-CNN performs
the worst. For the local feature, the learning ability of
the ResNet is stronger than that of the CNN, as the short-
cut connections help the gradients propagate. The RNN-
based structure, namely, LSTM in this paper, does well
in characterizing temporal behavior but is poor at dealing
with very long sequences. The length of the sequence is
compressed after the local feature learning block, which

enhances the effectiveness and efficiency of RNN-based
structure to learn global features. Among all DL algo-
rithms, our DNN model based on DRSN and Bi-LSTM
has the highest identification accuracy, which indicates
that our hybrid deep architecture is competitive.

In addition, we also consider the role of AM in the
proposed DNN model. The result shows that the absence
of AM will lead to a decline in identification accuracy,
which indicates that AM indeed enhances feature learning.
Moreover, our pre-processing does not distinguish the
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transient signal from the steady-state signal, AM aids to
give different attention to the different signal periods to
improve the accuracy of identification.

5.3. Noise Sensitivity Test. Next, we judge the identification
performance of our algorithm under various signal qualities.
Due to the limitation of acquisition conditions, we adopt the
method of superimposing noise on the baseband signals.
AWGN is injected with signal-to-noise ratio (SNR) ranging
from 5dB to 20 dB. It should be noted that the original sig-

nal is regarded as the unnoisy signal, so the actual SNRs are
more miniature than the settings. For comparison, we use
the DRN composed of standard RU and the wavelet denoise
preprocessing. The wavelet denoising process is depicted in
Figure 14. The ‘db4’ wavelet is used to decompose the noise
signal in the 4th order. We then use soft thresholding to fil-
ter the wavelet coefficients and perform inverse wavelet
transformation to reconstruct the target signal [33].

Figure 15 compares the identification performance of
ACARS signals for different deep architecture at various
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Figure 13: Identification accuracy of various state-of-the-art algorithms.
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noise levels. It can be seen that compared with DRN, DRSN
can enhance the resistance of the algorithm to noise distur-
bance, which is attributed to the stackings of several RSUs.
Besides, the algorithm with denoise preprocessing performs
with that without denoise preprocessing. The result suggests
that denoising is not required in the preprocessing since part
of the subtle characteristics representing individual differ-
ences may be removed simultaneously.

5.4. Robustness Test for New Data. At last, a new signal
acquisition process was carried out a month after the first
acquisition to test the robustness of our algorithm. In this
experiment, we collected 1000 samples from each aircraft
and divide training data and testing data according to a var-
iable range. There are two strategies for the training process
of the new data: transfer learning or no transfer. For transfer
learning, the parameters are frozen in the local feature learn-
ing block, global feature learning block, and attention block,
and the new data is used to re-train the dense layers in the
identification block. This process can be called fine-tuning
[34]. For the no transfer method, the new data is directly
used to train the DNN model. In addition, the experiment
uses the identification performance of a sufficient training
set (containing 2000 samples) as the upper bound.

In Figure 16, we compare the two training strategies con-
cerning the ratio of the sample number of train-to-test. It
can be concluded that the performance will decrease with
the shrinkage of the size of the training dataset, but using
the transfer training strategy can significantly reduce the
need for the number of training samples when the train-to
test ratio is less than “60-40”. Since feature extraction is
the most time-consuming part of the training process, trans-
fer learning can also accelerate training [34]. However, as the

number of training samples increases gradually, transfer
learning even inhibits the optimization of the model, leading
to the decline of the identification accuracy. Therefore, we
recommend using 500-600 samples for transfer learning,
which can conduct the training process of new data in a rel-
atively short time and achieve an identification accuracy of
0.90 or so, which is close to the upper bound.

6. Conclusions

This paper proposed a novel SEI algorithm based on a
hybrid DNN for ACARS authentication. The deep architec-
ture combined DRSN, Bi-LSTM, and AM so that the hybrid
network has a strong ability for feature learning and focus-
ing. First, we preprocessed the captured signal to intercept
the valid part according to the ACARS protocol. Then, the
inputs were propagated into the hybrid DNN to obtain the
probability distribution of the predicted emitter category.
We introduced soft thresholding in DRSN to enhance the
robustness against noise interference and adopted the trans-
fer learning strategy to train new data in a low-cost manner.
The hyperparameters of the model were determined through
various trials. Finally, we performed a series of experiments
under the condition of real-world signal acquisition. The
results verify the rationality of the design and show consid-
erable advantages of our algorithm in terms of accuracy
and efficiency. The superior performance of the SEI algo-
rithm shows its tremendous potential for practical applica-
tion in ACARS authentication, thus providing a reliable
guarantee for aviation information security. However, our
signal acquisition process is all done on the ground, and
the dataset is limited in size. In future work, we will
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Figure 16: Performance on the robustness test for new data.
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investigate the effect of transmission channels and consider
applying large-scale datasets for validation.
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