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Nonnegative matrix factorization (NMF), which is aimed at making all elements of the factorization nonnegative and achieving
nonlinear dimensional reduction at the same time, is an effective method for solving recommendation system problems.
However, in many real-world applications, most models learn recommendation models under the supervised learning
paradigm. Since the recommendation performance of NMF models relies heavily on initialization, the user-item interaction
information is often very sparse. In many cases, supervised information about the data is difficult to obtain, resulting in a large
number of existing models for supervised learning being inapplicable. To address this problem, we propose an information
self-supervised NMF model for recommendation. Specifically, this model is based on the matrix factorization idea and
introduces a self-supervised learning mechanism based on the NMF model to enhance the sparse data information of sparse
data, and an easily extensible self-supervised NMF model was proposed. Furthermore, a corresponding gradient descent
optimization algorithm was proposed, and the complexity of the algorithm was analysed. A large number of experimental
results show that the proposed S2NMF has better performance.

1. Introduction

In the age of information explosion, information overload
has become a central issue faced by society. Recommender
systems play a vital role in solving this problem, as they help
determine what information to provide to individual con-
sumers and allow online users to quickly find personalized
information that suits their needs [1]. Recently, recom-
mender systems have become ubiquitous on e-commerce
platforms, such as Amazon for book recommendations,
http://Last.com/ for music recommendations, Netflix for
movie recommendations, and CiteULike for references.

The main recommendation methods include collabora-
tive filtering recommendation [2, 3], content-based recom-
mendation [4], knowledge-based recommendation [5], and
social network-based recommendation [6]. Collaborative fil-
tering recommendation generally adopts the nearest neigh-
bor technology, calculates the distance between users by
using the historical preference information of users, and
then predicts the preference degree of target users to specific
products by using the weighted evaluation value of the near-
est neighbor users, and the system makes recommendations
to target users according to this preference degree. The max-
imum advantage of collaborative filtering is that it has no
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special requirements on the recommended objects and can
deal with unstructured complex objects, such as music and
movies. Content-based recommendation is the continuation
and development of information filtering technology. It
makes recommendations based on the content information
of the project, without relying on users’ comments on the
project. It is more necessary to use machine learning
methods to get user interest information from the feature
description of content. Knowledge-based recommendation
can be regarded as a kind of inference technology, which is
not based on the needs and preferences of users.
Knowledge-based approaches differ markedly depending
on the functional knowledge they use. Social network-
based recommendation has previously been mostly
domain-based approach. Firstly, the social network of raters
was explored, and the scores of raters were aggregated to cal-
culate the predicted scores. And then, find the raters’
neighbors.

Learning high-quality user and item representations
from interaction data is the core idea of collaborative recom-
mendation. In early studies, such as matrix factorization
(MF) [7, 8], a single ID of each user (or item) is projected
into an embedding vector. Subsequent studies [9] enriched
single IDs with interaction histories to learn better represen-
tations. Typically, nonnegative matrix factorization (NMF)
[10, 11], a well-known dimensional reduction method in
data representation, has also been successively applied to
recommender system problems in recent years [12, 13].
Although NMF can be used for any nonnegative rating
matrix (e.g., ratings from 1 to 5), its greatest interpretability
advantage arises from the fact that users have the mecha-
nism to specify the liking entry but not to specify a disliking
entry. Such matrices include one-dimensional rating matri-
ces or matrices in which nonnegative entries correspond to
activity frequencies. These datasets are also referred to as
implicit feedback datasets.

However, the NMF model is essentially a nonconvex
optimization problem, and its sensitivity to initialization is
unavoidable, i.e., the recommendation performance of the
NMF model depends heavily on the initialization, and a
poor initialization matrix can significantly degrade the rec-
ommendation performance. A general recommendation sys-
tem uses only historical user-item interaction information
(explicit or implicit feedback) as input, which poses two
problems. First, in real-world scenarios, information about
user-item interactions is often sparse. For example, a movie
app may contain tens of thousands of movies, yet the aver-
age number of movies typed by a user may be only a few
dozen. Using such a small amount of observed data to pre-
dict a large amount of unknown information can greatly
increase the risk of overfitting the algorithm. For newly
added users or items, the system does not have their histor-
ical interaction information, so it cannot accurately model
and recommend them. This situation is called the cold start
problem.

Moreover, most existing models learn recommendation
models in a supervised learning paradigm [14–16], where
the supervised signals are derived from observed user-item
interactions. However, the observed interactions are

extremely sparse compared to the entire interaction space
[8, 17], which makes it insufficient to learn quality represen-
tations. Moreover, in many cases, supervised information
about the data is difficult to obtain, making a large number
of existing models for supervised learning inapplicable.

Accordingly, this paper introduces a self-supervised
learning mechanism based on the matrix factorization idea
and NMF model. We propose an easily scalable self-
supervised nonnegative matrix factorization recommenda-
tion model framework based on matrix decomposition.

Self-supervised nonnegative matrix factorization
(S2NMF) was proposed, and a corresponding gradient
descent optimization algorithm was further proposed. The
complexity of the algorithm is analysed. Extensive experi-
mental results show that the proposed S2NMF has better
performance. The main contributions can be summarized
as follows:

(i) Based on the idea of matrix factorization, the self-
supervised learning mechanism is introduced on
the basis of the NMF model to realize the informa-
tion enhancement of sparse data

(ii) A self-supervised nonnegative matrix factorization
recommendation model S2NMF is proposed, and
a corresponding gradient descent optimization algo-
rithm is further proposed, and the complexity of the
algorithm is analysed

(iii) Extensive experimental results demonstrate that the
proposed S2NMF has superior performance on rec-
ommendation in comparison with comparison
algorithm

The rest of this paper is organized as follows. Section 2
briefly reviews random-walk-based, factorization-based,
and deep-learning-based approaches. Section 3 presents the
proposed CAHE and the corresponding optimization algo-
rithm. Section 4 analyses the performance of CAHE, includ-
ing the experimental results of node classification and
clustering. Finally, Section 5 concludes this work.

2. Materials and Methods

This section provides a detailed description of the proposed
model S2NMF and its model optimization algorithm and
gives the pseudocode of the S2NMF model optimization
algorithm and its time complexity analysis.

2.1. Problem Definition. Suppose there are M users U = fu1
, u2,⋯,uMg and N items V = fv1, v2,⋯,vNg. Let the scoring
matrix array R ∈ℝM×N , where Rij is the rating of user i for
item j. If the rating is unknown, we set Rij = unk. In detail,
and the symbol descriptions of the work are shown.

There are usually two ways to construct the user-item
interaction matrix Y ∈ℝM×N .

Yij =
0, if Rij = unk,

1, otherwise,

(
ð1Þ
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Yij =
0, if Rij = unk,

Rij, otherwise:

(
ð2Þ

Based on literature [18], most researchers usually believe
that all evaluations are equal to 1, and then, choose Formula
(1) to construct the interaction matrix Y . In this paper, we
choose Equation (2) to construct the interaction matrix Y ,
where the rating Rij of user ui for item vj remains in the
interaction matrix Y . Explicit recommendation rating is very
complicated for recommendation. Here, we express the
user’s preference degree for a certain product by Formula
(2) and mark the unknown rating as 0 by the method of
implicit feedback without preference. Usually, recommenda-
tion systems are formulated as a problem of estimating the
rating of each unobserved item in Y .

In order to better formalize the mathematical process of
this work, the detailed notation is shown in Table 1. The
tasks of a recommendation system can be divided into three
types: scoring prediction, top-N prediction, and click predic-
tion. Therefore, the proposed S2NMF model framework is
summarized as follows.

(i) Input. The observed user-item interaction matrix R

(ii) Output. The predicted user-item interaction matrix
R̂

3. Model Framework

3.1. Classical NMF Model. Nonnegative matrix factorization
(NMF) was proposed by Lee and Seung in 1999 in Nature
[19] that can achieve nonlinear data dimensionality reduc-
tion and has strong interpretability. With the extensive
attention of researchers, NMF has gradually become a
mature and reliable multidimensional data processing model
that is widely used in recommendation systems, pattern rec-
ognition, signal processing, computer vision, and network
science. It is widely used in research fields such as recom-
mendation systems, pattern recognition, signal processing,
computer vision, and network science [20]. In addition, it
can reveal the potential feature-to-feature relationship quite
accurately and can also be used for other related relation-
ships between features and for related tasks, such as node
importance identification [21, 22], link prediction [23–25],
and evolutionary analysis [26, 27].

In recent years, many researchers and scholars have
applied NMF to recommender system discovery [14, 17,
28], which effectively improves the accuracy and efficiency
of personalized recommendation results. Normally, the user
product is represented as a data matrix R ∈ℝN×N . The
matrix R can represent the interaction characteristics of
users and products, such as the rating matrix and click-
through rate matrix. NMF decomposes the matrix R into
two nonnegative matrices and optimizes them iteratively
such that R ≈WHT , where W,H ∈ℝN×K

+ , and K is the pre-
determined number of hidden features. In a normal situa-
tion, W denotes the basis matrix, while H denotes the data
in the reduced feature space, also called the combined coef-

ficient matrix of the basis. In fact, Wik can denote the prob-
ability that user i likes topic k, and Hjk can denote the
propensity of topic k includes item j. So I have no reason
to believe that R̂ij =∑kWikHjk can represent the probability

that user i likes item j. Then, how can R̂ =WHT be made
as close to R as possible? This involves the construction of
the NMF model and the optimization process of solving it.
The goal is to make WHT as close to R as possible, and it
may be assumed that Rij −∑kWikHjk is a Gaussian distribu-
tion obeying a mean of 0 and a variance of σ.

Rij −〠
k

WikHjk ~N 0, σ2
� �

: ð3Þ

Assuming that Rij −∑kWikHjk is independently and
identically distributed, the likelihood function can be
obtained from the Gaussian probability density function as

L =
YN
i=1

YN
j=1

1ffiffiffiffiffiffiffiffi
2πσ

p exp −
1
2

Rij −∑kWikHjk

σ

� �2 !
: ð4Þ

The maximized likelihood can be transformed to maxi-
mize the log-likelihood, which is

log L =〠
ij

−
1
2

Rij −〠
k

WikHjk

 !2 !
+ c = −

1
2

〠
ij

Rij −〠
k

WikHjk

 !2 !
+ c:

ð5Þ

In Equation (5), c denotes a constant, since

kR −WHTk2F =∑N
i=1∑

N
j=1ðRij − ∑kWikHjkÞ2 denotes the Fro-

benius norm and the Euclidean distance. Maximizing the
log-likelihood translates into minimizing the Euclidean dis-
tance, which can then be expressed as

min
W,H≥0

O1 W,Hð Þ = min
W,H≥0

R −WHT�� ��2
F:

ð6Þ

Similarly, if Rij − ∑kWikHjk is assumed to obey Poisson
distribution, its log-likelihood function is distance, which
can then be expressed as

log L =〠
i,j

Rij log
Rij

WHð Þij
− Rij + WHð Þij

 !
+ c: ð7Þ

This corresponds to the K‐L scatter, which also denotes
the K‐L distance. Then, maximizing the log-likelihood
translates into minimizing the minimizing the K‐L distance,
which can be expressed as

min
W,H≥0

O2 W,Hð Þ = min
W,H≥0

〠
i,j

Rij log
Rij

WHð Þij
− Rij + WHð Þij

 !
:

ð8Þ

In optimizing Equations (6) and (8), the objective func-
tions O1 and O2 are nonconvex for both W and H, but they
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are convex if W or H are considered alone. Therefore,
although it is not practical to find the global minimum of
O1 and O2, the local optimal solution can always be found
by iterative optimization. Lee and Seung [15] proposed a
corresponding update rule based on the gradient descent
approach. For Equation (6), the update rule is

Wik ⟵Wik ⊙
RHð Þik

WHTH
� �

ik

,Hjk ⟵Hjk ⊙
RTW
� �

jk

HWTW
� �

jk

:

ð9Þ

For Equation (8), the update rule is

Wik ⟵Wik ⊙
∑j RijHjk/∑kWikHjk

� �
∑jH jk

,Hjk ⟵Hjk ⊙
∑i RijWik/∑kWikHjk

� �
∑iWik

:

ð10Þ

By updating the rules, Equations (9) and (10) are itera-
tively updated to obtain locally optimal W and H. Then,
usually by reconstructing R byW and H, we obtain the com-
plementary matrix R̂, which is

R̂ =WHT : ð11Þ

There are many deformations of NMF methods [20],
among which the more commonly used is symmetric NMF
(SymNMF) [29, 30]. SymNMF decomposes the observation
matrix A into two identical matrices, A ≈HHT . SymNMF
inherits the advantages of NMF, because the observed
matrix A can fuse the similarity between data points and
has fewer parameters. In addition, in 2013, Wang and Zhang
[20] performed a systematic review of various expansion
methods of NMF, and they classified NMF methods into
the following: basic NMF, constrained NMF, structured
NMF, and generalized NMF. In recent years, NMF-related
models have been widely used by many researchers for
graph image processing [31–33], complex network analysis
[21, 34, 35], and recommendation systems.

3.2. S2NMF Model. The proposed S2NMF model framework
is shown in Figure 1. First, the super similarity matrix S is
constructed by taking the score matrix R as input. Secondly,
the NMF was repeated B times randomly, and B dimension-
ality reduction representations were analysed. Thirdly, B
area indicator matrices are obtained by analytic strategy,
and a new super similarity matrix S is obtained by combina-
tion and reconstruction. The above stochastic matrix factor-
ization process is repeated to guide convergence to obtain
the predicted scoring matrix. The S2NMF model framework
proposed in this paper is an intelligent recommendation
model with self-enhancement of information based on dif-
ferent types of NMF models and fusion of self-supervised
information. Due to space limitations, this paper takes the
classical NMF [19] as an example to introduce it in detail.

As mentioned earlier, NMF is required to solve a non-
convex optimization problem that is sensitive to the initiali-
zation of variables. The details are shown in Figure 1. We
propose self-supervised NMF (S2NMF). By exploiting the
sensitivity of NMF, the model can gradually improve the
recommendation performance without relying on any addi-
tional information. First, based on the classical NMF model,
R is decomposed into two nonnegative matrices W0 and H0.
Based on the NMF basis introduced in the previous subsec-

tion, we assume that the Rij − ðW0H0TÞij errors obey a
Gaussian distribution. Then, the model optimization prob-
lem at time t can be constructed as

min
W0,H0≥0

R −W0H0T
��� ���2

F
, ð12Þ

where R ∈ f0, 1gM×N is the scoring matrix, W0 is the basis
matrix of M × K , and H0 is the combined coefficient of N
× K matrix.

Since the NMF model factorization has some random-
ness, the factorization operation is repeated randomly B
times in this paper. fW0

b ∈ℝ
M×KgjBb=1, fH0

b ∈ℝ
N×KgjBb=1,

where K represents the number of hidden features and the
number of associations. In terms of physical meaning, it rep-
resents that users can cluster into K groups of similar

Table 1: Symbol description.

Symbol Definition

M Number of users

N Number of projects

U Set of users, U = u1, u2,⋯,uMf g
V Set of projects, V = v1, v2,⋯,vNf g
R User-item interaction matrix, the elements are generally nonnegative scores

R̂ The predicted user-item interaction matrix

W The basis matrix

H The data in the reduced feature space, also called the combined coefficient matrix of the basis

C The community indication matrix

B The number of repetitions of matrix decomposition
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hobbies. Therefore, the community delineation can be
divided by resolving the community affiliation matrix H0

b
to obtain the community indication matrix for each user.

Cb,mk =
1, if k = arg max

k∈ 1,2,⋯,Kf g
H0

b,mk,

0, otherwise:

8<
: ð13Þ

Considering that this community indication matrix Cb is
more discriminative than the scoring matrix R, this paper
constructs a super similarity matrix S as

S = 〠
B

b=1
αbCbC

T
b , ð14Þ

where αm is the mth element of the vector αϵℝb×1. This
weight matrix is mainly used to balance the contribution of
each association degree of each association. The obtained
supersimilarity matrix S can be resolved as a recommenda-
tion indicator matrix. Again, using the super similarity
matrix S as input, a new community affiliation matrix can
be obtained by the NMF model, and the experiment is
repeated several times to obtain a better recommendation.
The experiment is repeated several times to obtain better
recommendation results. This process is repeated until the
stopping criterion is reached or the maximum number of
iterations. We represent the above process as a constrained
optimization model.

min
Wb ,Hb ,S,α

〠
B

b=1
αb S −WbH

T
b

�� ��2
F
 s:t:Wb,Hb ≥ 0,∀b, α1 = 1, α ≥ 0,

ð15Þ

where 1ϵℝb×1 denotes the full 1 vector. Clearly, by minimiz-
ing Equation (15), a better set of Wb and Hb will result in a

smaller kS −WbH
T
b k2F , and accordingly, a larger weighting

factor αb will be assigned. Thus, the value of αb can measure
the quality ofWb and Hb, and by resolving Hb, S can be con-
structed. However, there is a nonnegative constraint on α.

Equation (15) imposes an implicit weighted L2 parametriza-
tion on α. This may lead to a rather sparse solution in the
optimization of Equation (15); most elements of α are equal
to or close to zero. Since our goal is to combine the contribu-
tions of multiple clusters, the extreme sparsity α is not a per-
fect choice. For this reason, a hyperparameter τ is
introduced to control the distribution of α terms, and the
final model is rewritten as

min
Wb ,Hb ,S,α

〠
B

b=1
αbð Þτ S −WbH

T
b

�� ��2
F
 s:t:Wb,Hb ≥ 0,∀b, α1 = 1, α ≥ 0,

ð16Þ

where τ belongs to (1, +∞). When τ is close to 1, only a few
elements of α are valid. When τ tends to +∞, the process of
minimizing the equation causes equal weights to be assigned
to α.

Therefore, τ should not be too large or too small, and the
size needs to be appropriate. In this paper, we empirically set
τ to 2.

By solving the equation, the final community indication
matrix Cbðb ∈ ½1, B�Þ can be obtained. Meanwhile, a better
super similarity matrix S and contribution vector α are
determined.

3.3. Model Optimization Algorithm. To solve the objective
Equation (16), an alternating iteration strategy is proposed
in this paper. First, using the fixed of S and multiple random
nonnegative initialization matrices W0 and H0, solving W
and H and α for the objective equation, we obtain the fol-
lowing:

min
Wb ,Hb ,α

〠
B

b=1
αbð Þτ S −WbH

T
b

�� ��2
F
 s:t:Wb,Hb ≥ 0,∀b, α1 = 1, α ≥ 0:

ð17Þ

In this paper, a simple and effective criterion for adaptive
termination Algorithm 1 is proposed.

In this paper, a simple and effective criterion for adaptive
termination Algorithm 1 is proposed, and the pseudocode is

Score matrix

R

R

Superior
affinity
matrix

S

Base matrix

Community
membership

matrix

Community
indicator

matrix

Combination

Weight vector

Does it converge?Recommendation True

False

Cyclic
combination

reconstruction

Initialize

NMF was
repeated

randomly
for B
times

1

b

B

W1
H1

HB CB

C1

WB

B𝛼

S2NMF

Figure 1: Schematic of S2NMF model.
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given in Algorithm 1. It is reasonable to assume that in the
first few iterations, the association detection of all partitions
can be gradually improved and the consensus between them
can also be increased. When the maximum consensus is
reached, the consensus among them will remain at such a
high level that it may even decrease and fluctuate due to
the randomness of variable initialization in the iterations.
Therefore, we use a different partition for the degree of
agreement between them to construct the stopping criterion.

For the objective equation of the S2NMF model (see
Equation (17)), the derivation of the update rule is similar
to that of NMF and can be found in [15]. Since this objective
equation has W, H, and α multiple parameters to be opti-
mized, it belongs to a nonconvex optimization problem.

Based on the gradient descent approach, only the other
parameters can be fixed separately to optimize the current
parameters. Similar to Equation (9), it is easy to obtain
Wik and Hjk to update the equation as

Hb,ik ⟵Hb,ik⨀
SHbð Þik

WbH
T
b Hb

� �
ik

, ð18Þ

Hb,jk ⟵Hb,jk⨀
STWb

� �
jk

HbW
T
bWb

� �
jk

: ð19Þ

Unlike the classical NMF, which fixes the parameters W
and H and optimizes α, the objective equation can be rewrit-
ten as

min
Wb ,Hb ,α

〠
B

b=1
αbð Þτχb s:t:∀b, α1 = 1, α ≥ 0, ð20Þ

where χb = kS −WbH
T
b k2F . Then, the Lagrangian function of

Equation (20) can be expressed as

L = 〠
B

b

αbð Þτχb − λ 〠
B

b

αb − 1
 !

s:t:,α ≥ 0: ð21Þ

Taking the first-order partial derivative of αb and setting

it to 0 yields the following:

αb =
λ

τχb

� �1/τ−1
,∀b: ð22Þ

Since ∑B
bαb = 1, λ can be expressed as

λ =
1

∑B
b τχbð Þ1/1−τ

 !τ−1

: ð23Þ

Then, bringing λ into Equation (22), we obtain α as

αb =
τχbð Þ1/1−τ

∑B
b τχbð Þ1/1−τ

: ð24Þ

Clearly, the numerator and denominator of Equation
(24) are greater than 0. Then, we have that αb > 0 is always
greater than 0, which satisfies both the nonnegative con-
straint of αb. The solution of Equation (24) satisfies the
KKT (Karush-Kuhn-Tucker) condition of Equation (20),
and it is a locally optimal solution. However, since the solu-
tion of Equation (20) is a convex problem, Equation (24) is a
globally optimal solution of Equation (20).

In summary, the detailed optimization process of model
S2NMF objective Equation (16) is summarized in Algo-
rithm 2, and the pseudocode is given in Algorithm 2. The
algorithm stops iterating if the difference in the maximum
change of variables during two adjacent iterations is less
than 0.001, e.g., max ðkWt

b −Wt−1
b k∞, kHt

b −Ht−1
b k∞,

kαt − αt−1k∞Þ < 10−3. W, H, and α are updated iteratively
by updating the rules until the objective function converges.

3.4. Model Complexity Analysis. For the computational com-
plexity of Algorithm 2, one of the two alternating iterative
solutions Wb, Hb, and αb are fixed first. For the solution
of Wb and Hb, the computational complexity is OðMNKBÞ
, and the complexity of the solution of αb is OðBÞ. Therefore,
the complexity of each iteration of Algorithm 2 is OðMNK
BÞ.

Algorithm 1 solves Algorithm 2 repeatedly with the
computational complexity OðMNKBN iterÞ, where N iter is
the maximum number of iterations of Algorithm 2. The

Input: Observed user-item interaction matrix R τ = 2B;
Output: Observed user-item interaction matrix R̂;
Initialize:Niter =1, maxIter =10, S = R;
while Niter < maxIter do

Update according to algorithm 2: Wb, Hb, αb, bϵf1,⋯,Bg;
Update according to equation (3): S;
if satisfy stop condition then

Break;
Niter = Niter+1;

R̂ =∑B
b=1ðαbÞτWbHT

b ;
Return R̂;

Algorithm 1: Optimization algorithm of S2NMF objective Equation (16).
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computational complexity of constructing S is OðMNKÞ of S
. Therefore, the complexity of each iteration of Algorithm 1
is OðMNKBN iterÞ.

4. Results and Discussion

To verify the effectiveness of the S2NMF recommendation
model proposed in this paper, this section designs compari-
son experiments on several standard data sets, focusing on
the experimental setup, experimental results, and discussion
of parameter sensitivity. The computer configuration used in
our experiment is as follows: CPU: I5 6500, graphics card:
Sotai 1600, and memory: 16G.

4.1. Experimental Settings. To test the performance of the
S2NMF recommendation model, four widely used datasets
in recommender systems are selected to evaluate the model
in this section: MovieLens 100K (ML-100 k), Movie-
Lens10M (ML-1M) (https://grouplens.org/datasets/
movielens/), Amazon music (Amusic), and Amazon movies
(Amovie) (http://jmcauley.ucsd.edu/data/amazon/). The sta-
tistics of the four datasets are listed in Table 2.

4.2. Comparison Algorithm

(i) ItemPop. This is a ranking of items based on their
popularity and the number of interactions they
have. It is a nonpersonalized method and usually
uses performance as a benchmark for personaliza-
tion methods

(ii) ItemKNN [36]. This is a standard item-based collab-
orative filtering method used commercially by the
Amazon method

(iii) BPR [37]. It is a generalized personalized ranking
recommendation algorithm derived from the Bayes-
ian analysis of the problem of the maximum a pos-
teriori estimate

4.3. Evaluation Indicators. To comprehensively evaluate the
effectiveness of the model proposed in this chapter, the
experiments in this chapter use five evaluation metrics to
evaluate the algorithm: recall, mrr, ndcg, hit, and precision.

These metrics examine the recommendation accuracy of
the algorithm.

(i) Recall. It is an evaluation metric that is the same as
accuracy and indicates the proportion of relevant
content in the returned recommendation list to all
relevant content, regardless of the order of the
returned results. It is defined as the percentage of
resources preferred by users in the test set that
appears in the recommendation list. It reflects the
proportion of correctly predicted content in the
returned recommendation list as a percentage of
all known content. R = 0 when there are no accu-
rately predicted resources in the user’s test set at
all, and R = 1 when all resources in the user’s test
set are accurately predicted. Thus, a higher recall
indicates a more comprehensive prediction of the
user’s preferred resources

(ii) mrr: Mean Reciprocal Rank (MRR). The indicator
response is whether we find these items placed in
a more obvious position of the user, emphasizing
the location relationship in a sequential manner

(iii) ndcg. The whole process is called normalized dis-
counted cumulative gain (NDCG), which is used
as an evaluation metric for ranking results and eval-
uates the accuracy of the ranking

(iv) Hit. Hit rate (HR) reflects whether the recom-
mended sequence contains the items that the user
in the recommendation sequence, i.e., whether the
item selected by the user is in the recommendation
sequence. This value is 1 if it exists and 0 if not

(v) Precision. Accuracy, which is a common unordered
evaluation index, indicates the proportion of the
returned results that indicate the proportion of rele-
vant content in the returned results, without consid-
ering the order of the returned results. When the
user’s recommendation list P = 0, there are no accu-
rate resources in the user’s recommendation list,
and P = 1 when all predictions are accurate, so the

Input: S τ = 2B;
Output: W,H, α;
Initialize:Niter =1, Randomly initialize a nonnegative matrix W and H
while Niter <500 do
For b ∈ f1,⋯,Bg do

Update according to equation (18): Wb;
Update according to equation (19): Hb;
Update according to equation (24): αb;

if the convergence of objective function then
Break;

Niter = Niter +1;
Return W,H, α;

Algorithm 2: Optimization algorithm of objective Equation (17).
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higher the hit rate, the more the recommendation
list matches the user’s actual situation

4.4. Comparison Experiments. To fully validate the perfor-
mance of the S2NMF model proposed in this chapter, the
comparison results of the four data sets in Table 2 under
three comparison methods and five evaluation metrics are
given in this subsection, and the results are discussed and
analysed in detail.

In Figure 2, the histogram of comparison results for the
data set ML-100K is given. Specifically, the horizontal coor-
dinate represents the type of evaluation metrics, and the ver-
tical coordinate represents the five evaluation metrics
calculated by recommending items to users according to
the top 10 items of the rating prediction value.

In addition, the four colours represent the four different
model results. As seen overall from the figure, the results of
S2NMF proposed in this chapter are all higher than the other
three commonly used benchmark methods.

In Figure 3, a histogram of the comparison results for the
data set M1-1M is given. Again, the horizontal coordinates
represent the type of evaluation metrics, and the vertical
coordinate represents the top 10 items recommended to
users according to the rating prediction value of the 5 calcu-
lated evaluation metrics. The overall figure shows that the
proposed S2NMF results are higher than those of the other
three commonly used benchmark algorithms.

In Figure 4, a histogram of the comparison results for the
Amusic dataset is given. Again, the horizontal coordinate
represents the type of evaluation metric, and the vertical
coordinate represents the five evaluation metrics calculated
by recommending items to users according to the top 10
items of the rating prediction value. It is generally seen from
the figure that the S2NMF results proposed in this chapter
are all higher than those of the other three commonly used
benchmark algorithms.

In Figure 5, a histogram of the comparison results for the
Amovie dataset is given. Again, the horizontal coordinate
represents the type of evaluation metrics, and the vertical
coordinate represents the five evaluation metrics calculated
by recommending items to users according to the top 10
items of the rating prediction value. It is generally seen from
the figure that the S2NMF results proposed in this chapter
are all higher than the other three commonly used bench-
mark algorithms.

Figure 6 shows the sensitivity analysis of the parameters
for the four data sets with respect to Algorithm 1. The hor-
izontal coordinate represents the number of iterations, and

Table 2: Basic statistical information about the dataset.

Statistical dimension ML-100 k ML-1M Amusic Amovie

Number of users 944 6,041 339,232 426,923

Number of items 1,683 3,707 83,047 23,966

Number of interactions 100,000 1,000,209 500,176 583,933

Sparsity 93.70% 95.53% 99.99% 99.99%
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Figure 2: Comparison of experimental results for data set ML-
100K.
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Figure 3: Comparison of experimental results for data set M1-1M.
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Figure 4: Comparison of experimental results for the Amusic
dataset.
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the vertical coordinate represents the number of iterations
that hit the indicator value. From the figure, it can be gener-
ally seen that the S2NMF proposed in this chapter is rela-
tively sensitive to the parameter (number of iterations) on
the four data at less than 4, while it does not change much
at greater than 4. And then, it becomes relatively stable as
the number of iterations increases. Accordingly, the
S2NMF model can choose a relatively small number of iter-
ations 4 to effectively reduce the computational cost without
affecting the model performance.

5. Conclusions

Based on the matrix factorization idea, this paper introduced
a self-supervised learning mechanism based on the NMF
model to achieve information enhancement of sparse data,
proposed an easily scalable self-supervised nonnegative
matrix factorization recommendation model framework
S2NMF, further proposed a corresponding gradient descent
optimization algorithm, and analysed the complexity of the

algorithm. Numerous experimental results showed that the
S2NMF proposed in this paper has superior performance.

From the contributions of this paper, the sparse data
problem of user-project interaction is solved, the interpret-
ability of the recommendation model is enhanced based on
the matrix factorization idea, and the self-supervised learn-
ing mechanism is introduced to realize the information
enhancement of sparse data. However, determining the
number of hidden features automatically is still an urgent
problem. Likewise, exploring deep hidden features and
expanding them to large-scale application scenarios is an
urgent problem, which has important research significance
in the field of recommendation systems.
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