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Combined with the actual situation of smart airport construction, five listed airports in China are used as research objects, and
based on the Driving Force-Pressure-State-Impact-Response (DPSIR) conceptual model, 24 indicators were selected to form
the evaluation system. The Analytic Hierarchy Process (AHP) method and entropy weight method were used to assign
comprehensive weights to the indicators, and then, the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) method was introduced to evaluate the level of intelligence, combined with the coupling coordination model to
analyze the relationship between the two subsystems, by introducing the obstacle model to diagnose and analyze the
influencing factors; finally, based on the analysis results, optimization suggestions are provided for the airport intelligence level.
The results show that the intelligence level of each airport is between high (IV) and average (II). The pairwise coupling degree
of each subsystem is higher than 0.91 and presents a benign coupling. The airport intelligence level is mainly hindered by the
proportion of nonaviation revenue, the average travel time of passengers, and the regional fiscal revenue growth rate. The
research results are of great significance to the construction of smart airport and the development of regional economy
and transportation.

1. Introduction

Since the 21st century, smart technology has become a
research hotspot with the development of artificial intelli-
gence, Internet of Things, sensors, cloud computing, and
other technologies and has been widely used in civil aviation
[1, 2]. The high-quality development of civil aviation in the
new era requires accelerating the construction of “four types
of airports” with “safe airport, green airport, smart airport,
and humanistic airport” as the core, striving to build a mod-
ern civil airport integrating internal quality and external
taste and paying attention to the high-quality development
of quality, efficiency, and benefit. Among them, smart air-
port is the key support and implementation path to promote
the construction of the “four types of airports.” Therefore, it
is under the condition that the development of smart
airports has become a major trend in the development of
China’s air transport industry. The accurate assessment of
the level of airport intelligence has become a hot issue for
research at present.

Research on smart airports is scarce and mainly remains
in qualitative analysis and theoretical research on related
technologies. There is still no unified definition of smart
airports in the industry. As an extension of the concept of
smart cities, smart airports can still draw on the relevant
concepts of smart cities in the definition and construction
issues surrounding smart airports [3]. In terms of existing
research on the concept of smart airport technology,
Rajapaksha and Jayasuriya [4] analyzed empirical indicators
for implementing smart airport applications based on the
actual impact of airport operations; Zapolskyt et al. [5]
assessed the extent to which smart airport technology has
been implemented in Egyptian airports and analyzed the
factors that constrain the development of smart airports; in
terms of the evaluation system’s construction method, Xiang
and Ren [6] used the analytical network process to construct
a network diagram of the smart city evaluation system and
analyzed the mutual influence relationship between indica-
tors; De-Dao and Qiao [7] constructed a set of smart city
evaluation index system from the perspective of smart
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infrastructure, smart governance, smart life, smart economy,
smart environment, and smart planning and construction;
other scholars [8] used the DPSIR model and focused on
the influence mechanism among the factors. In terms of
evaluation methods, Voda and Genete [9] used principal
component analysis to study the level of smart city develop-
ment in 26 European countries and found that development
investment and gross domestic product were important
influencing factors for the smart development of cities; Kai
and Bao [10] proposed a method for evaluating the develop-
ment potential of smart cities based on grey relations and BP
neural networks and proved the scientific nature of the
results; Li et al. [11] used TOPSIS method and entropy
power method to evaluate the development level of
Kunming’s smart city and found problems in the process
of smart city development. In addition to the above research
methods, there are also multiobjective analysis method [12],
fuzzy comprehensive evaluation method [13], projection
tracing method [14], and so on.

In summary, existing theories have largely improved the
research on concepts, index systems, and evaluation methods
related to smart airports. However, there are still some short-
comings, such as in the research object, researchers mainly
focus on the operation, service and construction of smart air-
ports, etc. Although the research surface is relatively extensive,
few scholars have studied the interactions between the intrin-
sic factors affecting the development of smart airports; in the
evaluation method, the fuzzy comprehensive analysis method
tends to cause the neglect of secondary factors, resulting in the
evaluation results not being meticulous enough. In view of
this, this paper adopts DPSIR model-based evaluation index
system, combines AHP method and entropy weight method
to comprehensively assign weight, uses TOPSIS method to
evaluate and study the intelligence level of five listed airports
in China, and diagnoses the influencing factors through obsta-
cle degree model to put forward optimization suggestions for
their intelligence development, in order to provide reference
for the construction of future smart airport.

2. Index System Construction and
Source of Data

2.1. Construction of the Index System. The research object of
airport intelligence is the complex airport transportation sys-
tem, and the research scope is not only limited to the airport
but also to the cities connected with it. The evaluation index
system under the DPSIR [15] framework enables effective
monitoring of the continuous feedback mechanism between
various types of indicators. This enables it to seek effective
ways to coordinate local economic development, intelligent
technology development, and transportation service enhance-
ment [16]. Using this model, the airport intelligence level sys-
tem is divided into five parts: driving force, pressure, state,
impact, and response. The establishment of airport intelli-
gence horizontal DPSIR model is shown in Figure 1.

The core of smart airport lies in “intelligence.” In fact, it
is an extended application of the concept of “smart city”
[17]. Based on the requirements for the construction of smart
airports in the “Outline of Action for the Construction of Four

Types of Airports in China Civil Aviation (2020-2035)” and the
“Guidelines for the Construction of Four Types of Airports”
and taking into account the current social and economic devel-
opment of the city where the airport is located and the charac-
teristics of the intelligence level construction, 24 evaluation
indicators are selected from five dimensions: driving force,
pressure, state, impact, and response, to build an evaluation
index system for the airport intelligence level (shown in
Table 1, see below for the method of determining the weights).

The driving force subsystem of airport intelligence level
come from social, economic, and demand factors. Among
them, gross domestic product (GDP) per capita and regional
fiscal revenue growth rate measure the regional economic
development driver; the number of permanent residents
and the proportion of tertiary industry characterize the
social state driver; annual air passenger volume and annual
air cargo volume reflect the airport demand driver.

The pressure subsystem of airport intelligence level comes
from the factors of resources and travel. The hours of work per
person in ground service and labor cost ratio represent the
pressure on airport resource allocation; the air-rail intermodal
transport level and the average travel time of passengers repre-
sent the pressure on airports to facilitate passenger travel.

The state subsystem of airport intelligence characterizes
the current construction intelligence of the airport. Among
them, fixed assets and intangible assets reflect the overall
condition of the existing hardware and software of the air-
port; the number of self-service consignment devices and
the number of self-service check-in devices reflect the status
of the airport’s intelligent infrastructure; the free Wi-Fi
coverage and the number of passenger service applets reflect
the status of the airport’s information technology.

The impact subsystem of airport intelligence level is the
impact generated by airport intelligence building. The total
airport revenue and the proportion of nonaviation revenue
represent the impact of airport intelligence on airport reve-
nue and revenue structure, the passenger satisfaction reflects
the impact on passenger travel experience, and the compre-
hensive environmental protection level reflects the impact
on airport sustainability.

The response subsystem of the airport intelligence level is
the response of the measures taken for the airport intelligence
construction. The degree of propaganda of intelligence concept
and intangible assets and research and development (R&D)
investment characterize the response to airport intelligence
promotion; the degree of policy support and fixed asset invest-
ment reflect the response to airport intelligence planning.

2.2. Source of Data. The data in this paper is obtained from
the statistical yearbooks of the provinces and cities where
China’s listed airports are located in 2020 and annual reports
publish by each airport and literature such as the Civil
Aviation Airport Production Statistics Bulletin, as well as
field visits and questionnaire surveys.

3. Empirical Analysis

3.1. Overview of Listed Airports in China and Their Regions.
The five listed airports in China, A, B, C, D, and E, are located in
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Figure 1: Framework for the airport intelligence level based on the DPSIR model.

Table 1: Evaluation index and weights for airport intelligence level.

Target layer
Subsystem

layer
Indicator layer Nature

AHP
method

Entropy
method

Combined
weights

Airport intelligence level
evaluation

Driving force

GDP per capita + 0.0617 0.0361 0.0489

Regional fiscal revenue growth rate + 0.0543 0.0528 0.0536

Number of permanent residents + 0.0580 0.0273 0.0426

Proportion of tertiary industry + 0.1109 0.0495 0.0802

Annual air passenger volume + 0.0580 0.0288 0.0434

Annual air cargo volume + 0.0305 0.0418 0.0362

Pressure

Hours of work per person in ground
service

- 0.0136 0.0469 0.0303

Labor cost ratio - 0.0473 0.0593 0.0533

Air-rail intermodal transport level + 0.0306 0.0379 0.0342

Average travel time of passengers - 0.0215 0.0322 0.0269

State

Fixed assets + 0.0739 0.0378 0.0559

Intangible assets + 0.0418 0.0512 0.0465

Number of self-service consignment
devices

+ 0.0466 0.0286 0.0376

Number of self-service check-in
devices

+ 0.0180 0.0464 0.0322

Free Wi-Fi coverage + 0.0442 0.0375 0.0408

Number of passenger service applets + 0.0112 0.0254 0.0183

Impact

Total airport revenue + 0.0331 0.0304 0.0318

Proportion of nonaviation revenue + 0.0153 0.0579 0.0366

Passenger satisfaction + 0.0217 0.0454 0.0335

Comprehensive environmental
protection level

+ 0.0100 0.0375 0.0237

Response

Degree of propaganda of intelligence
concept

+ 0.0235 0.0284 0.0259

Intangible assets and R&D investment + 0.0334 0.0394 0.0364

Degree of policy support + 0.0516 0.0387 0.0452

Fixed asset investment + 0.0893 0.0828 0.0860
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four first-tier cities—Shanghai, Guangzhou, Shenzhen, and
Beijing—and one subprovincial coastal city, Xiamen, each of
which is at the forefront of China’s economic and population
development and urban modernization. By 2020, the annual
per capita GDP of each city where the five listed airports are
located is higher than 120,000 RMB, and the proportion of
tertiary industry is higher than 60%, with high quality of urban
development. The five listed airports play a pivotal role in
China’s air transportation system, accounting for 19.06% of
the country’s total passenger volume and 53.35% of the
country’s total cargo volume in 2020. As the earliest listed
international airports in China, each airport has implemented
the concept of “smart airport” in terms of configuration and
design, and there are a large number of self-service equipment
in the airport, so passengers can enjoy self-service check-in,
self-service baggage check-in, passenger service miniprogram,
and other self-service processes. By evaluating the intelligence
level of listed airports and diagnosing and analyzing its
influencing factors, it is of great significance to provide reliable
reference for the construction and transformation of future
airport intelligence.

3.2. Airport Intelligence Level Evaluation

3.2.1. Determination of Weight Methods. Firstly, the AHP
method is used to the advantages and disadvantages of each
indicator in the system by two-by-two comparison between
relevant indicators, and use the judgment results to compre-
hensively calculate the weights among the indicators. Then,
the weights are determined according to the entropy weigh
method based on how much information is available about
the indicators, which objectively reflects the importance of
the indicators in the evaluation [18]. In the evaluation index
system of this paper, the AHP method and the entropy
weight method are equally important, and the comprehen-
sive weights are calculated by averaging and weighting in
order to reflect the airport intelligence level more rigorously.

(1) AHP method

The main idea of AHP method [19] is to decompose the
required objectives into multiple component factors according
to the nature of the research object, to hierarchize them accord-
ing to the interrelationship between the component factors to
form a hierarchical structure model, and then analyze them
by layer to finally obtain the importance weights of the highest
layer. The basic process of AHP method is shown in Figure 2.

(2) Entropy weight method

The initial matrix for evaluation is specified as follows:

X =

x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋮

xm1 xm2 ⋯ xmn

2
666664

3
777775
: ð1Þ

xij is the data for indicator j for airport i.

Standardization of raw data

Positive indicators : r+ij =
xij −min xij

� �
max xij

� �
−min xij

� � ,

Negative indicators : r−ij =
max xij

� �
− xij

max xij
� �

−min xij
� � ,

ð2Þ

which gives the standardization matrix R = frijgmn
, where

rij is the standardized value of indicator j for airport i.
Calculating weights

yij =
rij

∑m
i=1rij

,

ej = −K〠
m

i=1
yij ln yij,

ð3Þ

where ej is the information entropy, yij is the weight of
airport i indicator j, K is a constant, K = 1/ln m, and when
yij = 0, set ln yij = 0.

This leads to the definition of the weight entropy wj

as follows:

wj =
1 − ej

∑j1 − ej
, ð4Þ

where wj ∈ ½0, 1� and ∑m
j=1wj = 1.

Construct a
judgement

matrix

Calculate
relative
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Single sort
consistency
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Total sort
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Figure 2: Basic process of AHP hierarchical analysis.
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According to the equation wj, the combined weight aver-
age Wj by the AHP hierarchical analysis and the entropy
weight method can be obtained (as shown in Table 1 above).

3.2.2. Evaluation Method. Airport intelligence level evalua-
tion belongs to the system engineering category. The TOP-
SIS model can be used to study the distance between the
airport intelligence level and the ideal state. The model is
an effective multi-indicator, multiprocessing decision analy-
sis method, which is mainly ranked by detecting the distance
between the evaluation object and the optimal solution and
the worst solution, and if the evaluation object is closest to
the optimal solution and far from the worst solution, it is
the best, and vice versa is the worst [20]. The TOPSIS model
has the advantages of easy calculation, small sample size
requirement, and reasonable results. This paper improves
the accuracy of the TOPSIS model by using a combination
of subjective and objective approaches to determine the indi-
cator weights and by building a decision matrix from the five
subsystems of the DPSIR model.

(1) Construction of a weighted canonical matrix

C = cij
� �

m×n =Wjrij ð5Þ

(2) Calculate the positive ideal solution

C+ = max
i∈m

cij j = 1, 2,⋯,nð Þ
n o

= c+1 , c+2 ,⋯,c+mf g ð6Þ

Negative ideal solution

C− = min
i∈m

cij j = 1, 2,⋯,nð Þ
n o

= c−1 , c−2 ,⋯,c−mf g ð7Þ

(3) Calculate the distance to the positive ideal solution

S+i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

j=1
cij − C+� �2

vuut i = 1, 2,⋯,mð Þ ð8Þ

Distance to negative ideal solution

S−i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

j=1
cij − C−� �2

vuut i = 1, 2,⋯,mð Þ ð9Þ

(4) Calculating the posting schedule

f i =
S−i

S−i + S+ið Þ , 0 ≤ f i ≤ 1 ð10Þ

(5) The airport intelligence level is evaluated according
to the value of f i. The higher the value of f i, the
higher the airport rating, and the higher the airport
intelligence level and vice versa (see Table 2).

3.2.3. Airport Intelligence Level Evaluation Results. Accord-
ing to the above research method, the comprehensive evalu-
ation value of the intelligence level of five listed airports in
China can be calculated (Table 3). The evaluation results
are positively correlated with city and airport realities. Air-
ports located in better economic regions with better facilities
achieved higher rankings. According to the evaluation
results, airport D has the highest intelligence level, with an
overall score of over 0.64 and a high level (IV), followed by
airport A and airports B and C, with an overall score of
around 0.52 and a relatively high airport intelligence level
(III), respectively, and airport C and airport E have an over-
all score of 0.3872 and 0.2731, with a general intelligence
level (II). The intelligence level of each airport is most influ-
enced by the development level of the city where it is located.
Airports D and A with a high intelligence level are located in
Beijing and Shanghai, respectively, where the city’s econ-
omy, policies, and urban construction have experienced
many years of development and precipitation, and the air-
port construction has developed steadily throughout the
year. Similarly, Guangzhou and Shenzhen, where airports
B and C are located, are located in the most economically
developed Pearl River Delta region of China, with developed
trade and thus airport development, but Shenzhen airport is
slightly below the higher standard due to its development
history and location overlap with Guangzhou. The airport
E in Xiamen, on the other hand, is constrained by the city’s
economic, demographic, and policy factors and is in a more
passive state, so the intelligence level is relatively low.

3.2.4. DPSIR Subsystem Evaluation Result Analysis. Base on
the same methodology, the above results were further ana-
lyzed to calculate the subsystem evaluation values for each
subsystem of the airport intelligence level subsystem (Table 4).

According to Table 5, the level of airport intelligence for
each subsystem is analyzed as follows:

(1) Driving Force Subsystem. Airport Intelligence Level
Driving Force Subsystem Posting Progress Ranking
and Comprehensive System Ranking Consistent. On
the one hand, the development of economic and
social factors brings about the development of the
overall intelligence level of the city and also brings
about the continuous improvement of the passenger
and cargo transportation volume of the airport. On
the other hand, the high quality of the economic
and social development promotes the coordinated
development of the smart city and the smart airport.
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(2) Pressure Subsystem. The pressure subsystem posting
progress of each airport intelligence level is around
0.4, which is at a high level, mainly because the busy
degree of city and airport is negatively related to the
pressure system posting progress. With the construc-
tion of smart airports in recent years, working hours
of ground service staff and airport labor costs are
being reduced. At the same time, a more complete
air-rail network and smarter airports have led to a
continuous reduction in passenger airport travel
time, resulting in a higher level of stress subsystems.

(3) State Subsystem. All airports except airport E have an
intelligence level state subsystem posting progress

higher than 0.4, mainly because of the large gap in
total fixed assets and intangible assets among air-
ports, with airport E’s fixed assets less than 1/6 of
those of airports A, B, and D and intangible assets
significantly lower than those of other airports.
Therefore, more complete smart airport hardware
and software facilities can effectively suppress the
impact of stress systems on the airport intelligence
level and increase the overall intelligence level post-
ing progress.

(4) Impact Subsystem. There is no excessive polarization
in the posting progress of each airport’s intelligence
level impact subsystem, and all airports are higher
than 0.4 except for airport C, which is 0.3726.
Mainly, the proportion of nonaviation revenue and
the passenger satisfaction have a greater impact on
the impact subsystem, and their combined weights
reach 0.0366 and 0.0335, respectively. A healthy
airport revenue structure characterizes a strong mul-
tifaceted airport development, which can enhance
the travel experience of passengers at the airport
and indicates that the airport needs to continuously
improve its internal structure, including strengthen-
ing the development of smart facilities and commer-
cial and humanistic features.

(5) Response Subsystem. All airports except airport A
have a response subsystem posting rate below 0.4.
The reason for this is that each airport is affected
by the COVID-19 epidemic, both government
subsidies and the airport’s own investment and oper-
ations are hit to varying degrees in 2020, and the
construction of airport E focuses on “humanistic
airport,” resulting in the overall low progress of
response subsystem posting. The fixed asset invest-
ment accounts for the most in the response subsys-
tem, which reaches 0.0860, indicating that airport
infrastructure construction plays an important role
in the airport intelligence level, which can effec-
tively promote the rise of the response subsystem
posting progress.

Collectively, it is possible to analyze the internal rela-
tionships between subsystems according to the DPSIR
framework. Under the overall driving force of social devel-
opment, the development of airport intelligence level is
under a certain degree of pressure, leading to changes in
the airport state, and the high-intensity driving force can
improve the posting progress of the pressure and state
subsystem. The impact subsystem is the feedback of each
subsystem state change, and the response subsystem can
regulate each subsystem state and play a role in improving
the level of intelligence. The evaluation results are in line
with the airport construction and socioeconomic develop-
ment, and it can be observed that the overall progress of
the posting of the response subsystem of each airport is
the lowest, which indicates that the multifaceted invest-
ment in airport intelligence is the point that needs to be
focused on improvement.

Table 2: Airport intelligence level evaluation scale.

Intelligence level Standard

Low (I) f i ≤ 0:2
General (II) 0:2 < f i ≤ 0:4
Relatively high (III) 0:4 < f i ≤ 0:6
High (IV) 0:6 < f i ≤ 0:8
Very high (V) 0:8 < f i ≤ 1

Table 3: Results and values of S+i and S−i for each airport’s
intelligence evaluation.

Airport S+i S−i f i Rank

A 0.1220 0.1370 0.5289 2

B 0.1228 0.1340 0.5218 3

C 0.1539 0.0973 0.3872 4

D 0.0952 0.1800 0.6540 1

E 0.2033 0.0766 0.2737 5

Table 4: Evaluation results of each airport’s intelligence level
subsystem.

Airport
Driving force

(D)
Pressure

(P)
State
(S)

Impact
(I)

Response
(R)

A 0.5658 0.4458 0.6498 0.6174 0.4159

B 0.5130 0.3804 0.7450 0.5792 0.1948

C 0.4300 0.4048 0.4258 0.3726 0.1896

D 0.6295 0.6236 0.6358 0.4792 0.3341

E 0.3131 0.3902 0.0416 0.4135 0

Table 5: Classification of subsystem coupling coordination and
determination criteria for airport intelligence level.

Category Standard

Low coordination (I) D ≤ 0:3
Medium coordination (II) 0:3 <D ≤ 0:5
High coordination (III) 0:5 <D ≤ 0:8
Extreme coordination (IV) 0:8 <D ≤ 1
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3.3. Subsystem Coupling Coordination Analysis

3.3.1. Coupling Coordination Model. Airport intelligence is
a quantitative evaluation indicator that reflects the sustain-
ability of the relationship between airport and city, as well as
the interactive coupling between the “airport” as the founda-
tion of the transportation system and the “passenger travel”
as the carrier. By introducing the coupling degree (C∗), coor-
dination degree (D), and coordination index T to establish
the coupling model of the subsystems of the airport intelli-
gence level, the coupling coordination degree between the
subsystems of the airport intelligence level index is identified.

C∗ =
Qn

i=1ui
∑n

i=1ui/n½ �n
� �1/n

,

T = αu1 + βu2+⋯+ωun,
D = C∗ × Tð Þ1/n:

ð11Þ

In the formula, ui is the assessment value of the intelligence
level of each subsystem; n is the number of subsystems; T is
the coordination index between two of the five subsystems
of DPSIR. So in the formula, n = 2. α, β, etc., are coefficients
to be determined, here taken as 0.5.

The degree of coordination between two subsystems is
divided into four levels: low coordination (I), medium
coordination (II), high coordination (III), and extreme
coordination (IV) (Table 5), where the closer the value to
1, the higher the degree of coordination.

3.3.2. Analysis of Measurement Results. Bringing the above
results into equation (11), the intrinsic relationship between
the subsystems around the DPSIR model framework can be
obtained (Table 6). In terms of coupling degree, the coupling
degree between two of each subsystem is greater than 0.91,
which is at an extremely high level, indicating that each sub-
system has a strong degree of influence on each other; in
terms of coordination degree, all subsystems are in a high
state of coordination between two of each other, indicating
a high degree of benign coupling of each subsystem. Among
the subsystems of airport intelligence, changes in one
subsystem will largely affect the other subsystems and thus
have an impact on the whole, and the high coordination
degree indicates that the subsystems have a strong ability
to promote each other at a high level.

3.4. Obstacle Degree Diagnosis of Airport Intelligence Level

3.4.1. Obstacle Model. At present, China’s airports are in the
transition period of intelligence development, and finding
the weaknesses of smart airport development is an impor-
tant means to enhance the airport intelligence level, by
introducing an obstacle model to diagnose the obstacle
factors for each subsystem and individual indicator of the
airport intelligence level. Specifically, by introducing the
indicator contribution degree Gij, the indicator deviation
degree Iij, and the indicator obstacle degree Nij, the calcula-
tion steps are as follows:

Gij =wjzj,
Iij = 1 − Xij,

Nij =
Iij × Gij

∑24
j=1 Iij ×Gij

� � :
ð12Þ

In the formula, Xij is the value of a single indicator after
standardization, the value of Gij is the combined weight of
the jth indicator in the indicator layer after correction by
the entropy weight method, and zj is the weight accounted
for by each subsystem.

3.4.2. Diagnosis of the Main Obstacles at the Indicator Level.
According to Table 7, it can be seen that the main obstacles
to the intelligence level at each airport are the driving force,
state, response, and pressure subsystems. The proportion of
nonaviation revenue, the average travel time of passengers,
the regional fiscal revenue growth rate, the hours of work
per person in ground service, the degree of policy support,
the intangible assets, and R&D investment are also ranked
high in several airports. This shows that the main obstacles
to the level of airport intelligence are the proportion of non-
aviation revenue, the average travel time of passengers, and
the regional fiscal revenue growth rate. This also shows that
the improvement of airport intelligence has a high demand
for capital, airport revenue structure, airport equipment, and
services, so in the future, airport construction needs to focus
on improving the airport revenue structure and improving
the efficiency of airport management and operation.

3.4.3. Subsystem Obstacle Degree Diagnosis. According to the
analysis results of the obstacle degree of each index, the
obstacle degree of each subsystem can be obtained, and
the results are shown in Figure 3. As shown in Figure 3,
from the system level, the pressure subsystem and impact
subsystem barrier degree fluctuation are less in each air-
port, in the range of 0.5 to 1.5, which reflects the pressure
subsystem and impact subsystem barrier degree of each air-
port is close. The same trend of changes in the state subsys-
tem and the driving force subsystem confirms the intrinsic
connection between the two subsystems and their impor-
tant role in the system of airport intelligence level. From
the airport level, the state subsystem is the primary obstacle
for airport C and airport A, the pressure subsystem is the
primary obstacle for airport A and airport D, the driving
force subsystem is the primary obstacle for airport B, and
the state and pressure subsystems have the highest fre-
quency and are the main obstacles for airport intelligence
level. In a comprehensive view, in the future development
and construction of airport intelligence level, it is necessary
to focus on improving the coordination and structural opti-
mization of the development of the driving force, state, and
response subsystems, to focus on regulating the pressure
subsystem. Meanwhile, it is necessary to take into account
the continuous improvement of the impact subsystem in
order to improve the airport intelligence level.
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4. Conclusions and Discussion

4.1. Conclusion. This paper takes five listed airports in China
as the research object, and based on the DPSIR model, 24
indicators are selected to build an airport intelligence level

evaluation index system, to evaluate the airport intelligence
level of five airports in 2020, and to analyze and summarize
their influence factors.

(1) The five listed airports in China are divided into
three levels of intelligence, with airport D having
the highest level of intelligence with a high rating,
recorded as IV; followed by airport A and airport B
with a relatively high intelligence level recorded as
III; and lastly airport C and airport E with a general
level of intelligence, recorded as II

(2) In terms of subsystem posting progress, the response
subsystem posting progress is at a low value overall,
while the rest of the subsystem posting progress is
relatively close to each other overall. The pairwise
coupling degree of each subsystem is higher than
0.91, which is a benign coupling

(3) From the viewpoint of obstacles, the main obstacle to
the level of airport intelligence is the state subsystem,
followed by the pressure, driving force, response, and
impact subsystems. The main obstacles of each
subsystem can be refined as the proportion of

Table 6: Airport intelligence level subsystem coupling coordination degree.

Coupling
coordination

Driving force ∗
pressure

Pressure ∗
state

State ∗impact
Impact ∗
response

Response ∗
driving force

Response ∗
pressure

Response ∗
state

Coupling degree 0.9991 0.9994 0.9999 0.9307 0.9313 0.9166 0.9281

Coordination 0.7148 0.7182 0.7041 0.5790 0.5785 0.5906 0.5812

Degree of
coordination

Highly
coordinated

Highly
coordinated

Highly
coordinated

Highly
coordinated

Highly
coordinated

Highly
coordinated

Highly
coordinated

Table 7: Ranking of the main obstacles to the airport intelligence level.

Airport Item
Indicators and ranking

1 2 3 4 5

A
Obstacles Free Wi-Fi coverage

Comprehensive
environmental
protection level

Average travel time
of passengers

Regional fiscal
revenue growth rate

Proportion of tertiary
industry

Degree% 30 30 29.41 28.37 25.85

B
Obstacles

Hours of work per
person in ground

service

Proportion of
nonaviation revenue

GDP per capita
Air-rail intermodal
transport level

Fixed asset investment

Degree % 37.5 36.99 35.02 25 23.67

C
Obstacles

Proportion of
nonaviation revenue

Degree of policy
support

Fixed assets
Number of self-

service consignment
devices

Intangible assets and
R&D investment

Degree % 38.16 38.10 34.72 33.96 31.78

D
Obstacles

Average travel time of
passengers

Intangible assets
Regional fiscal
revenue growth

rate
Passenger satisfaction

Hours of work per
person in ground

service

Degree % 47.06 37.86 31.91 30 25

E
Obstacles

Number of passenger
service applets

Number of permanent
residents

Intangible assets
and R&D
investment

Annual air passenger
volume

Degree of policy
support

Degree % 100 54.45 52.94 48.79 47.62

Driving force
State
Response

Pressure

A

4

3

2

1D
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re
e o

f o
bs
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cle
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0
B C D E
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Figure 3: Obstacles of each subsystem of airport intelligence level.
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nonaviation revenue, the average travel time of pas-
sengers, and the regional fiscal revenue growth rate

4.2. Discussion. Based on the above, in order to build an
airport with a high level of intelligence in the future, the
operational structure optimization, infrastructure construc-
tion, and policy response should be improved.

(1) Strengthen the economic policy response of airport
construction and improve the performance of airport
construction. Investment and construction of smart
airports are subject to high socioeconomic constraints.
Therefore, the government should give full play to its
functions, which can realize the coordinated develop-
ment of smart airport and economic development by
increasing investment funds for smart airport con-
struction as well as optimizing the management system

(2) Promote the optimization of airport operation
structure and highlight the all-round development of
intelligent airport services. Balanced development of
multiple industries within the airport enhances the
level of passenger service experience, fully utilizes the
airport’s important role in the transportation system,
drives airport revenue growth, and forms an all-round,
high intelligence level service industry chain

(3) Promote the construction of hard and software facil-
ities of smart airport to realize the improvement of
airport intelligence level. The quantity and quality
of the construction of intelligent facilities are impor-
tant obstacle factors for the airport intelligence level.
To enhance the level of airport intelligence, airports
and government must ensure a high level of con-
struction of hard and software facilities and improve
the popularity of various self-service device, intelli-
gent security checks, and various cell phone software
for passenger services

In this paper, the TOPSIS method combining AHP
method and entropy weight method is used to evaluate the
of airport intelligence level, which improves the credibility
of the evaluation results, but due to the extremely low avail-
ability of some airport data, there is still room for improve-
ment in terms of the index system reflecting smart airport
facilities and smart services. Meanwhile, in terms of research
content, exploring the evolution of the intelligence level of
more airports in the time dimension is also one of the feasi-
ble research directions for the future.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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