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Direction of arrival (DOA) estimation problem has growing interest for the researcher investigating in system identification
models arising in the field of digital signal processing, mobile communication, controls, and beamforming. In the
presented work, evolutionary heuristic computing paradigm is presented for 2D-DOA estimation of plane waves impinging
on uniform circular array. Performance metric of mean squared error is utilized as construction of a fitness function for
the system, and the optimization strength of three methodologies, genetic algorithms (GAs), Pattern Search (PS), and
integration of GAs with PS (GA-PS) is exploited for 2D-DOA estimation based on elevation as well as azimuth angles.
Consistent precision, convergence, stability, and robustness of integrated heuristics of GA-PS are endorsed through
outcomes of statistical observations.

1. Introduction

The use of different antenna structural arrays has growing
interest in researchers due to remarkable performance in
the domain of direction-of-arrival (DOA) parameter esti-
mation, beamforming, radars, sonars, and seismology.
Researchers proposed different DOA estimation proce-
dures including MUSIC [1, 2], ESPRIT [3, 4] spatial
smoothing methods [5, 6], subspace smoothing procedures
[7], and temporal smoothing approach [8] for uniform lin-
ear array (ULA). The two-dimensional (2D) DOA (2D-
DOA) estimation one preferred to used two-dimensional
arrays based on L-shaped array [9, 10], nested array

[11–13], coprime array [14, 15], uniform rectangle array
(URA) [16, 17], uniform circular array (UCA) [18, 19],
virtual uniform-linear-like array (VULA) [20], and visual
array VT-MUSIC algorithm [21]. The transformation pro-
cedure also exploited for two-dimensional DOA (2D-
DOA) estimation algorithms with relatively low computa-
tional requirement including UCA-RB-MUSIC [22],
UCA-ESPRIT [23], UCA rank reduction [24], and root-
MUSIC approach [25]. Beside these deterministic tech-
niques for 1D and 2D DOA estimation, the stochastic pro-
cedures are also adopted for these global search based
optimization problems [26–29]. All the existing procedures
adopted for system identification of DOA models motivate
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authors to investigate stochastic optimization mechanism
by exploitation of evolutionary heuristics for joint estima-
tion of two-dimensional DOA parameters impinging on
circular structural array of far field sources.

The stochastic optimization mechanism by exploitation
of artificial intelligence techniques has been implemented
extensively to address constrained and unconstrained opti-
mization model associated with a variety of linear/nonlin-
ear systems [30–33]. Few prevailing recent applications
include Hammerstein nonlinear control autoregressive sys-
tems, active noise control system, transport model for soft
tissues, nonlinear optics, nonlinear Bratu systems, nonlin-
ear fractional Riccati systems, nonlinear Jeffery-Hamel
flow, nonlinear prey-predator, nonlinear thin film flow
models, nonlinear FalknarSkan system, nonlinear Troesch
problem, nonlinear singular Lane-Emden systems, nonlin-
ear Thomas-Fermi model of atom, piezoelectric model,
magneto-hydrodynamics, astrophysics, atomic physics,
plasma physics, control, signal processing, energy, bioin-
formatics, economics, and finance (see references [34–36]
and citation therein). These are source of incitements for
authors to perform exploration and exploitation in evolu-
tionary computational heuristic paradigm reliable treat-
ment of 2-D DOA estimation of plane waves impinging
of UCA.

In this paper, stochastic optimization solvers are presented
for 2D-DOA estimation impinging on UCA from far field
sources. The salient features of the scheme are highlighted as
follows:

A novel application of evolutionary computational heu-
ristic paradigm is presented for two-dimensional DOA esti-
mation of far field sources involving uniform circular array
by exploitation of global search efficacy of genetic algorithms
(GAs), pattern search (PS), and integrated strength of GA-
PS algorithms.

The performance of optimization mechanisms is sub-
stantiated by effective implementation of uniform circular
array-based DOA estimation problem having different
degrees of freedom. The results of integrated solver GA-PS
are relatively better from standalone counterparts GA and
PS for each scenario of the data model for DOA.

Consistent accuracy and convergence of the hybrid opti-
mization scheme GA-PS are endorsed through outcomes of
statistical observations for DOA problems with different
numbers of decision variables and noise variations.

Organization of remaining of the paper is as follows.
The data model for two-dimensional DOA estimation
problem with uniform circular array geometry is presented
in Section 2. Optimization methodology of all three algo-
rithms is described in Section 3. The results of simulations
through enough graphical and numerical illustrations with
necessary interpretations are presented in Section 4. While
the conclusions and further work are provided in last
Section 5.

2. Data Model: 2D-DOA Estimation with UCA

When the data or system model for 2D-DOA estimation
of plane waves impinging on UCA is presented here, the

UCA with M antennas have the angle of elevation α
between 0 and π/2 and azimuth β between 0 and 2π for
P far field sources, while the angle γm = 2πm/M between
mth antenna element for m between 0 and M-1 as shown
in Figure 1.
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Figure 1: UCA geometry for plane waves.
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Figure 2: Block structure representation of workflow of the system.
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Each electric field signal of mth antenna in UCA from ith

sources is written as

E rm, tð Þ = ai tð Þejω t−di:rmð Þ, for rm = xm, ym, zmð Þ = r sin βmð Þ, r cos βmð Þ, 0ð Þ,
ð1Þ

where ω denotes the frequency, ai be the i
th amplitude and di

be ith propagation direction at instance t. The relation for di
in polar coordinates is given as

di =
1
c
sin αi cos βi, sin αi sin βi, cos αið Þ: ð2Þ

Then,

di ⋅ rm = r
c
sin αi cos βi − γmð Þ: ð3Þ

Equation (1) becomes

E rm, tð Þ = ai tð Þejω tð − r/cð Þ sin αi cos βi−γnð Þ

= ai tð Þejωte−j ωr/cð Þ sin αi cos βi−γmð Þ,
ð4Þ

for AiðtÞ = aiðtÞe jωt and k = ω/c = 2π/λ; we get

E rm, tð Þ = Ai tð Þe−jkr m−1ð Þ sin αi cos βi−γmð Þ: ð5Þ

In case of response, xmðtÞ = Eðrm, tÞ of mth antenna of
UCA with noise nmðtÞ is given as

xm tð Þ = 〠
P

i=1
ai tð Þe−jk m−1ð Þr sin αi cos βi− 2 m−1ð Þπð Þ/mð Þð Þ + nm tð Þ:

ð6Þ

The response for single snapshot is given as

xm = 〠
P

i=1
aie

−jk m−1ð Þr sin αi cos βi− 2 m−1ð Þπð Þ/mð Þð Þ + nm: ð7Þ

In a matrix form, the response of UCA can be written as
follows:

In a vector form, equation (8) is given as

x =As + n: ð9Þ

Here, s is a steering matrix for the source signals, a
matrix A for amplitude and noise signal is denoted
by n.

3. Design Methodology

The design methodology consisted of two parts: a fitness
function formulation for 2D-DOA parameter estimation
and its optimization with the help of genetic algorithms

(GA), pattern search (PS) and integrated approach GA-PS.
The generic flow diagram of the proposed methodology is
shown in Figure 2.

3.1. Fitness Function of 2D-DOA Estimation of UCA. The
fitness function is developed for 2D-DOA estimation of
plane waver form P sources impinging on circulate array
compose of M antenna elements by the proficiency of
approximation theory in mean square error sense as
follows:

ε = 1
M

〠
M

m=1
xm − x̂mð Þ2, ð10Þ

x1

x2

⋮

xM
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⋮ ⋮ ⋮ ⋮
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m

� �
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ð8Þ
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where

xm = 〠
P

i=1
aie

−jk m−1ð Þr sin αi cos βi− 2 m−1ð Þπð Þ/mð Þð Þ + nm,

x̂m = 〠
P

i=1
aie

−jk m−1ð Þr sin bα i cos bβ i− 2 m−1ð Þπð Þ/mð Þ
� �

:

ð11Þ

Here, xm is the desired response or signal in case of
single snapshot as given equation (7), while x̂m is an
approximate signal of xm. Now, one has to find the appro-
priate weights as

W = α1, α2,⋯, αP , β1, β2,⋯, βPð Þ, ð12Þ

such that ε⟶ 0; then accordingly, x̂m ⟶ xm.
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Figure 4: Process flow diagram of PS algorithm.
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3.2. Optimization of 2D-DOA Parameters. To find the
unknown adjustable weights W, 2D-DOA parameter esti-
mation, the standalone optimization strength of GAs, and
PS method, as well as hybrid computing heuristics of GA-
PS algorithm, are exploited.

GA is developed on mathematical modeling of natural
genetic mechanism in human genetic system and the first
renewed application introduced by Onnen [37] in early
seventies of the last century. GAs work through its funda-
mental operators of selection, crossover, and mutation for
reproduction of the new population of candidate solution
at each step increment in generations. The generic work-
flow of GAs operations is illustrated in Figure 3, while fur-
ther necessary details of processing blocks can be seen in
[38, 39]. Many constrained and unconstrained nonlinear
optimization problems are effectively addressed with com-
petency of GAs such as optimization in filter designing
[40], life prediction of supercapacitors [41], salesman
problem [42], multiaccess edge computing [43], and multi-
objective optimization [44].

A pattern search algorithm belongs to the class of deriv-
ative free algorithm used broadly by the researchers for via-
ble solution of constrained and unconstrained optimization
tasks [45, 46]. The generic workflow diagram of PS by means
of process block structures is shown in Figure 4, while broad
recent applications of PS in different fields of science and
engineering include the design of PID controller [47], auto-
motive safety [48], and health monitoring [49].

In the presented study, standalone and combine strength
of both optimization algorithms based on GAs, PS, and GA-
PS are used for 2D-DOA estimation of plane waves. The
built-in routines are invoked for both GAs and PS methods
using the optimization toolbox of MATLAB software with
setting of GAs and PS tools as provided in Tables 1 and 2,
respectively.

4. Simulations and Results

In this section, results with interpretations are presented
for abundant experimentation to test, analyze, and

compare the outcomes of GAs PS and GA-PS based on
the proposed methodologies. Results are presented
throughout in this study based on average of 100
independent trials.

To evaluate the performance of GAs, PS, and their
integrated scheme GA-PS, three case studies are taken
based on 2, 3, and 4 plane wave sources impinging of
UCA as follows:

Case 1. In the said scenario, 2D-DOA estimation problem
with P = 2 sources and M = 6 antenna elements on UCL
is taken with settings of elevation α1 and azimuth β1
angles as follows:

W = α1, α2,β1, β2ð Þ

=
20∘, 70∘, 110∘, 150∘ð Þ degrees,
0:3491, 1:2217, 1:9199, 2:6180ð Þ radians,

( ð13Þ

while the values of amplitude are a = ½a1, a2� = ½1, 3�. The
fitness function for case 1 with P = 2 andM = 6 is formu-
lated as follows:

ε = 1
6 〠

6

m=1
xm − x̂mð Þ2,

xm = 〠
2

i=1
aie

−jk m−1ð Þr sin αi cos βi− 2 m−1ð Þπð Þ/mð Þð Þ + nm,

x̂m = 〠
2

i=1
aie

−jk m−1ð Þr sin bα i cos bβ i− 2 m−1ð Þπð Þ/m
� �

: ð14Þ

Table 2: Settings for PS optimization tools.

Index Set

Iterations 2000

Penalty 100

Polling scheme GPS basis on 2N

Poll ordering Consecutive

Mesh size 02

Evaluation of fitness 200000

Expansion parameter 2

Contraction parameter 0.5

TolX 0

TolBind 0

TolMesh 10-09

Table 1: Settings for gas optimization tools.

Index Set

Individuals in population 360

Total number of generations 1000

Crossover scheme Heuristic routine

Fraction of crossover 0.2

Function tolerance 10-09

Range initialization [0-2π]

Selection scheme Routine of stochastic uniform

Scaling procedure Ranking

Elitism 2 counts

Mutation scheme Routine of adaptive feasible

Other Defaults
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Table 3: Comparison of results for 2D-DOA model for 2 far field sources.

Index
Desire and Approximated parameters

α1 α2 β1 β2
True (deg) 20.0000 70.0000 110.0000 150.0000

True (rad) 0.3491 1.2217 1.9199 2.6180

GAs (deg) 19.9962 69.9925 109.9964 149.9946

GAs(rad) 0.3490 1.2216 1.9198 2.6179

PS (deg) 19.9905 69.9868 109.9850 149.9889

PS (rad) 0.3489 1.2215 1.9196 2.6178

GA-PS (deg) 20.0020 69.9983 110.0022 150.0004

GA-PS (rad) 0.3491 1.2217 1.9199 2.6180

Table 4: Comparison of results for 2D-DOA model for 3 far field sources.

Index
Parameters

α1 α2 α3 β1 β2 β3
True (deg) 20.0000 40.0000 50.0000 110.000 120.000 125.000

True (rad) 0.3491 0.6980 0.8727 1.9190 2.0944 2.1817

GAs (deg) 19.9962 39.9925 49.9791 109.6469 119.9946 124.9850

GAs (rad) 0.3490 0.6980 0.8723 1.9137 2.0943 2.1814

PS (deg) 19.9767 39.9649 49.9475 109.4138 119.9348 124.9290

PS (rad) 0.3488 0.6978 0.8721 1.9104 2.0941 2.1813

GA-PS (deg) 20.0020 39.9925 50.0020 109.9506 120.0003 125.0022

GA-PS (rad) 0.3491 0.6980 0.8727 1.9190 2.0944 2.1817

Table 5: Comparison of results for 2D-DOA model for 4 far field sources.

Index
Desire and Approximated parameters

Elevation angle Azimuth angle
α1 α2 α1 α2 β1 β1 β1 β1

True (deg) 20.000 54.000 62.000 35.000 105.000 133.000 125.000 166.000

True (rad) 0.3491 0.9424 1.0821 0.6108 1.8325 2.3212 2.1816 2.8972

Gas (deg) 19.939 53.967 61.960 34.996 104.966 132.978 124.979 165.974

Gas (rad) 0.3480 0.9419 1.0814 0.6108 1.8320 2.3209 2.1813 2.8968

PS (deg) 19.933 53.950 61.977 34.996 104.960 132.972 124.968 165.951

PS (rad) 0.3479 0.9416 1.0817 0.6108 1.8319 2.3208 2.1811 2.8964

GA-PS (deg) 19.990 53.978 61.994 34.996 104.983 132.984 124.991 165.986

GA-PS (rad) 0.3489 0.9421 1.0820 0.6108 1.8323 2.3210 2.1815 2.8970
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Case 2. In this case, 2D-DOA estimation problem with P
= 3 sources and M = 9 antenna elements on UCL is taken
with settings of elevation α1 and azimuth β1 angles in
degree or radian as follows:

W = α1, α2,α3,β1, β2, β3ð Þ

=

20∘, 40∘, 50∘,

110∘, 120∘, 125∘

 !
degrees,

0:3491, 0:6980, 0:8727,

1:9190, 2:0944, 2:1817

 !
radians,

8>>>>>><>>>>>>:
ð15Þ

while the values of amplitude are a = ½a1, a2, a3� = ½1, 4, 7�.
Using equation (14) for P = 3 andM = 9, the fitness func-
tion for case 2 is constructed.

Case 3. In this scenario, 2D-DOA estimation problem with
P = 4 sources and M = 8 antenna elements on UCL is
taken with settings of elevation α and azimuth β angles
as follows:

W =
α1, α2,α3,
β1, β2, β3

 !

=

20∘, 40∘, 50∘,

110∘, 120∘, 125∘

 !
degrees,

0:3491, 0:6980, 0:8727,

1:9190, 2:0944, 2:1817

 !
radians,

8>>>>>><>>>>>>:
ð16Þ

while the values of amplitude are a = ½a1, a2, a3, a3� = ½1�.
Using equation (7) for P = 4 andM = 8, the fitness function
for case 3 is constructed.

Results are determined for 100 independent trials of
the algorithms to pinpoint their performance for two,
three, and four far field sources. The optimization charac-
teristics of GAs for 2 and 3 source models in terms of
learning curves, best individual, fitness of each individual
in the population, and stoppage criteria are shown in
Figures 5 and 6 in case of 2 and 3 far-field sources
impinging on UCL.

Table 6: Comparative study 2D-DOA model for 2 far field sources.

Index Noise (dB) ε Time Gens/iter FC

GAs

Nil 4:03E − 25 43.12 1000 360360

30 3:39E − 22 43.04 1000 360360

25 5:61E − 19 43.92 1000 360360

20 3:79E − 18 44.14 1000 360360

15 6:96E − 18 44.69 1000 360360

10 4:19E − 17 45.01 1000 360360

5 9:68E − 16 48.50 1000 360360

PS

Nil 7:26E − 21 3.79 2000 23507

30 1:34E − 21 3.80 2000 23507

25 4:79E − 19 3.93 2000 23231

20 6:26E − 18 3.83 2000 23145

15 5:58E − 16 3.85 2000 23468

10 4:63E − 15 3.85 2000 23277

5 1:89E − 14 3.86 2000 23601

GA-PS

Nil 1:00E − 00 46.70 3000 383867

30 1:00E − 34 46.63 3000 380576

25 6:42E − 31 47.53 3000 383591

20 1:71E − 30 47.75 3000 381109

15 6:23E − 28 48.31 3000 381010

10 2:54E − 26 48.64 3000 381359

5 1:85E − 26 52.16 3000 381469
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The results of all three algorithms GAs, PS, and GA-PS
against the true parameters of 2, 3 and 4 far-field sources
for noiseless environment are presented in Tables 3–5,
respectively.

While in case of different noise levels, results of pro-
posed computing paradigm are presented in Tables 6–8
for sources P = 2, 3, and 4, respectively. The values of fit-
ness ε and complexity parameters are time consumed,
generations/iterations (Gens/iter) executed, and fitness
function counts (FCs) by the optimization strategy for
finding the decision variables.

One may observe that all three methods attained rea-
sonably well levels of estimation accuracy; however, the
results of integrated computing heuristics of GA-PS are
more precise than those of GAs and PS standalone
solvers. The performance of integrated algorithm GA-PS
at the expense of relatively more computations is better
than that of standalone schemes. Additionally, the
increase in the number of sources and the level of noise
variances results are deteriorated for each computing
algorithm GAs, PS, and GA-PS, but still, the hybrid
GA-PS achieved better reasonable precision than that of
standalone counterparts.

The convergence analysis is also conducted for all
three optimization solvers GAs, PS and GA-PS for solv-
ing 2D-DOA estimation problems are based on 100 trails,

and results are presented in Figure 7 and Table 9 for
each case study. One may see that percentage conver-
gence of integrated heuristic of GA-PS algorithm is
higher from standalone methodologies and performance
of each optimization solver degraded with increase in
sources from 2 to 4.

The analysis is further conducted with the increase in
the number of antenna elements in UCA, i.e., value of
M. The results of convergence analysis of 2D-DOA esti-
mation for P = 2 andM = 6, 8, and 10 in UCL are pre-
sented in Table 10 along with achieved fitness level for
all three optimization schemes. Accordingly, the results
of convergence analysis of 2D-DOA estimation for 3
and 4 far-field sources with different antenna elements
in UCA are presented in Tables 11 and 12, respectively.
It is seen that rate of convergence for each algorithm
increases with the increase in the value of M, but the
performance of hybridized approach GA-PS is better
from the rest.

Robustness analysis of all three optimization method-
ologies is conducted for different values of signal to noise
(SNR), i.e., 5 dB, 10 dB, 15 dB, 20 dB, 25 dB, and 30Db for
2D-DOA estimation of 2, 3, and 4 sources. The results of
robustness analysis each algorithm for different noise var-
iation are presented in Figures 8–10 for sources P = 2, 3,
and 4, respectively. One may see that for both low and

Table 7: Comparative study 2D-DOA model for 3 far field sources.

Index Noise (dB) ε Time Gens/iter FC

GAs

Nil 1E − 21 55.1 1000 360360

30 2E − 20 56.4 1000 360360

25 3E − 19 56.7 1000 360360

20 5E − 18 58.3 1000 360360

15 8E − 17 59.4 1000 360360

10 9E − 16 60.1 1000 360360

5 9E − 14 62.3 1000 360360

PS

Nil 7:E − 15 5.4 2000 35660

30 1E − 15 5.7 2000 35876

25 4:E − 14 6.4 2000 35897

20 7E − 12 6.7 2000 35876

15 4E − 10 6.7 2000 35879

10 2E − 8 6.8 2000 35956

5 2E − 6 6.9 2000 35989

GA-PS

Nil 2E − 28 60.20 3000 386246

30 2E − 28 61.80 3000 386281

25 5E − 26 62.30 3000 386732

20 2E − 24 64.10 3000 387149

15 6E − 24 65.30 3000 387257

10 2E − 22 66.00 3000 387485

5 2E − 20 68.40 3000 387681
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Table 8: Comparative study 2D-DOA model for 4 far field sources.

Index Noise (dB) ε Time Gens/iter FC

GAs

Nil 6:3e − 12 66.5 1000 360360

30 1:2e − 09 66.8 1000 360360

25 6:7e − 09 69.8 1000 360360

20 8:3e − 08 69.3 1000 360360

15 8:9e − 08 71.1 1000 360360

10 1:8e − 07 72.3 1000 360360

5 1:9e − 06 72.5 1000 360360

PS

Nil 3:2e − 09 7.2 2000 35660

30 2:7e − 08 7.7 2000 35876

25 7:3e − 08 7.8 2000 35897

20 2:9e − 06 7.9 2000 35876

15 1:8e − 06 8.6 2000 35879

10 1:9e − 04 8.7 2000 35956

5 8:2e − 04 8.9 2000 35989

GA-PS

Nil 8:3e − 16 73.20 3000 386246

30 1:2e − 14 73.60 3000 386281

25 8:7e − 14 76.60 3000 386732

20 4:3e − 12 76.20 3000 387149

15 6:9e − 12 78.20 3000 387257

10 1:8e − 10 79.50 3000 387485

5 8:9e − 09 80.00 3000 388681
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Figure 7: Bar chart illustration of convergence analysis for sources P = 2, 3, and 4.
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Table 10: Convergence analysis of 2D-DOA estimation for 2 far
field sources with different antenna elements in UCL.

Antenna UCA Method ε Convergence

6

GAs 1:0E − 25 95%

PS 1:0E − 21 45%

GA-PS 1:0E − 31 99%

8

GAs 1:0E − 27 96%

PS 1:0E − 22 52%

GA-PS 1:0E − 32 99%

10

GAs 1:0E − 28 98%

PS 1:0E − 25 60%

GA-PS 1:0E − 00 100%

Table 11: Convergence analysis of 2D-DOA estimation for 3 far
field sources with different antenna elements in UCL.

Antenna UCA Method ε Convergence

9

GAs 1:0E − 21 69%

PS 1:0E − 15 29%

GA-PS 1:0E − 28 74%

11

GAs 1:0E − 22 74%

PS 1:0E − 16 39%

GA-PS 1:0E − 29 82%

13

GAs 1:0E − 22 77%

PS 1:0E − 17 43%

GA-PS 1:0E − 30 85%

Table 12: Convergence analysis of 2D-DOA estimation for 4 far
field sources with different antenna elements in UCL.

Antenna UCA Scheme ε Convergence (%)

8

GA 1:0E − 06 20

PS 1:0E − 03 10

GA-PS 1:0E − 08 35

10

GA 1:0E − 07 26

PS 1:0E − 04 18

GA-PS 1:0E − 09 45

12

GA 1:0E − 07 30

PS 1:0E − 05 25

GA-PS 1:0E − 10 55
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Figure 8: Comparison of fitness for different SNR levels for sources
P = 2.
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Figure 9: Comparison of fitness for different SNR levels for sources
P = 3.

Table 9: Convergence analysis of 2D-DOA estimation for 2, 3, and
4 far field sources with fixed antenna elements in UCL.

Source/antenna Method ε Convergence

2/4

Gas 1:0E − 25 94%

PS 1:0E − 21 44%

GA-PS 1:0E − 31 98%

3/6

GAs 1:0E − 21 69%

PS 1:0E − 15 31%

GA-PS 1:0E − 288 76%

4/8

GAs 1:0E − 06 19%

PS 1:0E − 05 09%

GA-PS 1:0E − 17 36%
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high values of SNR, the performance of hybridized com-
puting solver GA-PS remains better than that of GAs
and PS standalone schemes.

The complexity analysis in terms of minimum-time,
maximum-time, mean-time, minimum-FCs, maximum-
FCs, and mean-FCs along with the values of best-fitness,
worst-fitness and mean-fitness is conducted for 100

executions of each optimization scheme GAs, PS, and GA-
PS for all three 2D-DOA scenarios. Results of complexity
operators are listed in Tables 13–15 for sources P = 2, 3,
and 4, respectively. It is seen that computation complexity
of PS is superior from GA and GA-PS technique but the per-
formance in terms of accuracy and convergence is better for
both GAs and GA-PS methodologies for each case.

5. Conclusion

Novel applications of evolutionary heuristics are effectively
presented for 2D-DOA estimation of plane waves impinging
on UCL by exploitation of global search efficacy of GAs, effi-
ciency of PS, and integrated optimization strength of GA-PS.
The performance of optimization mechanisms is verified by
implementation of UCA-based 2D-DOA estimation having
different degrees of freedom, i.e., far field sources P = 2, 3,
and 4. The results of integrated solver GA-PS are relatively
better from standalone counterparts GA and PS for each sce-
nario of the data model for DOA. Consistent accuracy, sta-
bility, and robustness of the hybrid optimization procedure
of GA-PS are established through outcomes of statistical
observations for DOA problems with different numbers of
decision variables and noise variations but at the cost of rel-
ative more computations that that of GAs and PS standalone
schemes.

In the future, one may investigate the application of pre-
sented computing platform on other circular array struc-
tures based on concentric circular array, conic circular
array, and coprime circular array for better estimation accu-
racy of DOA parameters. Moreover, the use of fractional
evolutionary/swarming techniques looks promising for the
estimation of 2D-DOA parameters more viably.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Table 13: Performance comparison on statistics for 2 sources based
on 2D-DOA estimation.

Index GAs PS GA-PS

Best-fitness 1:0E − 25 1:0E − 23 1:0E − 00
Worst-fitness 1:0E − 21 1:0E − 17 1:0E − 28
Mean-fitness 1:0E − 23 1:0E − 21 1:0E − 30
Minimum-FCs 360360 20545 23147

Maximum-FCs 360360 21324 23986

Mean-FCs 360360 20777 23327

Minimum-time 42.52 3.69 46.10

Maximum-time 44.27 5.01 48.02

Mean-time 43.28 3.91 47.00

Table 14: Performance comparison on statistics for 3 sources based
on 2D-DOA estimation.

Index GAs PS GA-PS

Best-fitness 1:0E − 17 1:0E − 12 − 12 1:0E − 31
Worst-fitness 1:0E − 13 1:0E − 02 1:0E − 18
Mean-fitness 1:0E − 15 1:0E − 06 1:0E − 28
Minimum-FCs 360360 25467 25538

Maximum-FCs 360360 28580 29614

Mean-FCs 360360 26339 26598

Minimum-time 53.09 4.71 58.20

Maximum-time 61.55 6.25 67.62

Mean-time 56.80 5.09 61.88

Table 15: Performance comparison on statistics for 4 sources based
on 2D-DOA estimation.

Index GAs PS GA-PS

Best-fitness 1:0E − 12 1:0E − 09 1:0E − 16
Worst-fitness 1:0E − 04 1:0E − 01 1:0E − 05
Mean-fitness 1:0E − 11 1:0E − 04 1:0E − 15
Minimum-FCs 360360 25347 25538

Maximum-FCs 360360 28720 29614

Mean-FCs 360360 26759 26598

Minimum-time 73.01 9.12 79.11

Maximum-time 69.55 7.51 76.45

Mean-time 72.01 7.83 78.71
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Figure 10: Comparison of fitness for different SNR levels for
sources P = 4.
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