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To solve the problem that the emerging sparrow search algorithm (SSA) lacks systematic comparison and analysis with other
classical algorithms, this paper first introduces the principle of the sparrow search algorithm and then describes the
mathematical model and algorithm description of the sparrow search algorithm. By comparing several classical intelligent
algorithms with particle swarm optimization (PSO), differential evolution (DE), and gray wolf optimizer (GWO), the sparrow
search algorithm’s theory and model are systematically compared and analyzed, and the advantages and disadvantages of SSA
are summarized. Finally, based on the above research and previous research, the limitations of SSA and current improved SSA
are analyzed, which provides ideas for further improvement of the algorithm.

1. Introduction

The concept of swarm intelligence (SI) was first proposed by
Gerardo Beni and Jing Wang in 1989. It points out the char-
acteristics of “a class of nonintelligent agents exhibiting
intelligent behavior through self-organizing behaviors such
as cooperation” [1]. Swarm intelligence optimization algo-
rithm (swarm intelligence optimization algorithm) is a ran-
dom optimization algorithm (also called probability search
algorithm) that simulates the construction of the group
behavior of natural organisms. Compared with most
gradient-based optimization algorithms and traditional algo-
rithms, the intelligence of the swarm intelligence optimiza-
tion algorithm is mainly because the algorithm is
independent of the optimization problem itself, insensitive
to the initial conditions, self-organizing and self-adapting.
The algorithm is simple in overall design, requires fewer
parameters, is easy to implement, and can be processed in
parallel, so it has the advantages of good fault tolerance,
strong robustness, and stability [2].

Marco Dorigo’s ant colony optimization (ACO) [3] and
Kennedy and Eberhart’s particle swarm optimization (PSO)
[4] are the two most classical algorithms in swarm intelli-

gence. With the introduction and improvement of the two
classical algorithms, their theoretical system has gradually
improved and matured and has now developed into a more
complete algorithm in swarm intelligence algorithm.

The two classical swarm intelligence algorithms men-
tioned above, genetic algorithm [5], differential evolution algo-
rithm [6], simulated annealing algorithm [7], and artificial
neural network [8] also play an important role, which lays a
foundation for the establishment and improvement of the
entire intelligent algorithm system in recent decades and also
provides a direction for the subsequent algorithm proposals
and improvements, with far-reaching impact. So far, there
are numerous scholars participating in the research. With
the development of the whole intelligent algorithm system,
more andmore classical swarm intelligence optimization algo-
rithms appear, see Table 1 for details.

Sparrow search algorithm (SSA) is a new swarm
intelligence optimization algorithm proposed by Xue and
Shen in 2020 based on the foraging, predatory, and anti-
predatory behaviors of the sparrow population [23]. It
mainly includes the process of individual searching for
food, grabbing food, being alert to threats, and avoiding
predators to achieve the goal of optimization. Compared
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with the research history of classical algorithms such as
particle swarm optimization and genetic algorithm, the
research and application of this algorithm is still in the
initial stage and to be developed. With the advantages of
SSA, compared with other swarm intelligence algorithms,
such as faster convergence, stronger stability, and higher
accuracy of optimization, it has great research potential
and development prospects [28].

At the same time, since the sparrow search algorithm
was proposed, it has been approved by a large number
of scholars. However, it still has some drawbacks in com-
mon with other swarm intelligence optimization algo-
rithms, such as uneven initial population distribution,
inadequate convergence ability after iteration, easy to fall
into local optimum, and prone to premature stagnation.
At the same time, according to the no free lunch theorem
(NFL theorem), it can be concluded that no algorithm
performs well on any optimization problem; they only
work well on one type of problem but perform poorly
on another. Compared with the traditional intelligent opti-
mization algorithm, the new intelligent optimization algo-
rithm has different emphases on convergence speed,
solution time, calculation accuracy, etc. Therefore, syste-
matically comparing SSA with other classical group intelli-
gence algorithms will help to improve SSA and apply it in
engineering.

Therefore, this paper systematically studies and analyzes
the principle of sparrow search algorithm and compares
with other representative swarm intelligence optimization
algorithms, analyzes the advantages and disadvantages of
SSA, then summarizes the research status of SSA in recent
years, and finally points out the future research and develop-
ment on improving SSA.

The main contributions of this paper are as follows:

(1) The principle, mathematical model, and basic pro-
cess of SSA are introduced systematically

(2) The representative swarm intelligence optimization
algorithms (PSO, DE, and GWO) are selected to
compare with SSA, and their optimization effects
are compared and tested from the aspects of algo-
rithm performance, population diversity loss, search
mode, population exchange, etc.

(3) On the basis of the above experiments, it is further
concluded that SSA has the advantages of faster con-
vergence and faster loss of population diversity com-
pared with other algorithms

(4) Finally, according to the above advantages and dis-
advantages, the research status of improving SSA in
recent years is summarized, and the future research
development of improving SSA is pointed out

2. Sparrow Search Algorithm

2.1. The Principle of Sparrow Search Algorithm. As a group
bird, sparrows are active in places where humans live. They
are very active, intelligent, and have a good memory. They
are bold and like to be close to people, but they are very alert.
During the sparrows’ feeding process, individual popula-
tions have a clear division of labor and can be divided into
discoverers and participants according to their suitability
for the environment. Discoverers have a high degree of envi-
ronmental adaptability and need to search extensively to dis-
cover food, guide individuals to obtain food, and master the

Table 1: Literature of swarm intelligence algorithm.

Algorithm full name Arbitrary name Author(s) Year

Artificial bee colony swarm algorithm [9] ABC Karaboga D, Basturk B. 2007

Firefly algorithm [10] FA Yang X S. 2010

Bat algorithm [11] BA Yang X S, Gandomi A H. 2012

Gray wolf optimization algorithm [12] GWO Mirjalili S, Mirjalili S M, Lewis A 2014

Chicken swarm optimization [13] CSO Meng X, Liu Y, Gao X, et al. 2014

Bird swarm algorithm [14] BSA Meng X B, Gao X Z, Lu L, et al. 2014

Pigeon-inspired optimization [15] PIO Duan H, Qiao P. 2014

Ant lion optimizer [16] ALO Mirjalili S 2015

Whale optimization algorithm [17] WOA Mirjalili S, Lewis A 2016

Salp swarm algorithm [18] SSA Mirjalili S, Gandomi A H, Mirjalili S Z, et al. 2017

Moth search algorithm [19] MSA Wang G G. 2018

Monarch butterfly optimization [20] MBO Wang G G, Deb S, Cui Z. 2019

Harris hawks optimization [21] HHO Heidari A A, Mirjalili S, Faris H, et al. 2019

Slime mould algorithm [22] SMA Li S, Chen H, Wang M, et al. 2020

Sparrow search algorithm [23] SSA Xue J, Shen B. 2020

Marine predator algorithm [24] MPA Faramarzi A, Heidarinejad M, Mirjalili S, et al. 2020

Hunger games search [25] HGS Yang Y, Chen H, Heidari A A, et al. 2021

Colony predation algorithm [26] CPA Tu J, Chen H, Wang M, et al. 2021

Weighted mean of vectors [27] INFO Ahmadianfar I, Heidari A A, Noshadian S, et al. 2022
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search direction of the entire population. Participants were
less adaptable to the environment than the discoverers,
and to improve their own fitness, they followed the dis-
coverers to obtain food. At the same time, the sparrow
population is bound to encounter various threats from
the external natural environment such as natural enemies
during feeding. In order to improve the survival probabil-
ity, the sparrow population will randomly allocate a part
of the individual as a warner, keep alert to the surround-
ing environment, and alert the population to flee whenever
a threat is found.

In the case of sparrow populations searching for lost
grains in harvested fields, the discoverer is responsible
for skipping across a wide range of fields to find lost
grains and stopping eating when they discover them.
When the participant notices that the discoverer has found
food, he jumps straight to the location of the grain, grabs
the food with the discoverer, and eats it in competition.
However, due to the limited number of grains, there is
no guarantee that each sparrow will be free from hunger
among the participants, so sparrows farther away from
the grain (i.e., less adaptable to the environment) will give
up competing with the population for food and choose to
fly elsewhere to feed alone. At the same time, in order to
ensure the safe feeding of the population, the sparrow
population will randomly arrange a certain number of
sparrows for sentinel investigation in the periphery and
interior of the population, so that the whole population
can escape in time in response to emergencies. This is
how the sparrow population feeds.

2.2. Mathematical Model of Sparrow Search Algorithm. In
SSA, individuals can be classified as discoverers, participants,
and alerters. The discoverer is responsible for finding food
and leading the population search. The participants follow
the discoverer to seize food. The alerter is alert to environ-
mental threats and warns the sparrow population to move
to a safe area.

To describe the sparrow feeding process through a math-
ematical model, rules need to be developed to simplify the
sparrow’s behavior as follows.

(1) The fitness of the environment in the sparrow popu-
lation depends on the fitness evaluation of the objec-
tive function, and the finder’s fitness is higher than
that of the participants

(2) There is an internal competitive relationship
between the participant and the discoverer. Some
participants monitor the behavior of the discoverer
to compete for food in order to improve their own
energy

(3) Individuals of sparrows with lower energy may fly
elsewhere to obtain higher energy

(4) Sparrows have flexible individual behavioral strate-
gies that allow them to switch between discoverers
and participants, making them discoverers with high

fitness, but the proportion between discoverers and
participants remains the same in the population

(5) Warners in a sparrow population alert when they
detect an external environmental threat, and when
the alert value is greater than the security threshold,
the finder escapes from the current location and
directs the population to a safe area

(6) When the alert is aware of external environmental
threats or natural enemies, the alert will take the lead
in escaping, the alert at the edge of the population
will move near the population center, and the alert
at the population center will move randomly from
a feeding state to an active state, reducing the risk
of their own predation

Based on the description of the above behavior rules, the
mathematical model for designing SSA is as follows.

Assuming that the whole sparrow population size is N
and the location of the ith sparrow individual t moment is
Xt
i = ðxti,1, xti,2,⋯, xti,d ,⋯xti,DÞ in a D-dimensional search

space, then the whole sparrow population X can be
expressed as

X =

x11 x12 ⋯ x1d ⋯ x1D

x21 x22 ⋯ x2d ⋯ x2D

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

xN1 xN2 ⋯ xNd ⋯ xND

2
666664

3
777775: ð1Þ

When the discoverer did not find the threat (R2 < ST),
they were responsible for guiding the population to forage
and conduct extensive search. When individuals in the pop-
ulation have found predators (natural enemies) and issued
an alarm (R2 ≥ ST), it guides the population to the location
of the safe area. The location update is described as follows:

Xt+1
i,j =

Xt
i,j · exp

−i
α ·M

� �
, R2 < ST ,

Xt
i,j +Q · L, R2 ≥ ST ,

8><
>: ð2Þ

where α is a random number belonging to ½0, 1�. R2 ∈ ½0
, 1� represents the early warning value. ST ∈ ½0:5,1� repre-
sents the security threshold of the current environment. Q
is responsible for controlling the step size, which is a random
number subject to normal distribution. L is a Matrix of 1 × d,
and all elements are 1, and d represents dimension.

In order to obtain food, the participants follow and
supervise the discoverer to grab food (i ≤N/2) or look for
food alone (i >N/2). Therefore, the location update descrip-
tion of the participants is as follows:

Xt+1
i,j =

Q · exp
Xt
worst − Xt

i,j

i2

 !
, i >

n
2
,

Xt+1
P + Xt

i,j − Xt+1
P

��� ��� ·A+ · L, otherwise,

8>>><
>>>:

ð3Þ
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where Xworst represents the worst position of the current
population and Xp is the best position currently occupied by
the discoverer. A is a responsible for controlling the direction

1 × dmatrix, the element is only 1 or -1, andA+ = ATðAATÞ−1.
When aware of the danger, the sparrow population will

make anti predation behavior. When f i ≠ f g, it means that
the current sparrow is on the edge of the population and
aware of the danger and needs to move closer to the popula-
tion center to reduce the risk of predation. When f i = f g, it
indicates that the sparrow in the center of the population
is aware of the danger and needs to escape from its current
position. The location update description of the alerters is
as follows:

Xt+1
i,j =

Xt
best + β · Xt

i,j − Xt
best

��� ���, f i ≠ f g,

Xt
i,j + K ·

Xt
i,j − Xt

worst

��� ���
f i − f wð Þ + ε

0
@

1
A, f i = f g,

8>>>><
>>>>:

ð4Þ

where Xbest represents the optimal location of the cur-
rent population. β is responsible for controlling the step size,
which is a random number subject to standard normal dis-
tribution. K controls the direction of sparrow movement
and the moving step length. It is a random number belong-
ing to ½−1, 1�. f i, f g, and f w represent the fitness value of the
ith individual and the best and worst fitness values of the
current population, respectively. To prevent the denomina-
tor from being 0, ε takes a minimal positive real number.

2.3. Basic Process. According to the description and analysis
of the sparrow search algorithm in the previous section, the
implementation steps of SSA are shown as follows:

Step 1: set initialization parameters including population
size N ; discoverer proportion PD; alerter proportion SD;
objective function dimension D; upper and lower bounds
ub, lb; maximum number of iterations T ; and security
threshold ST.

Step 2: initialize population.
Step 3: calculate the fitness f i for each individual, rank

the fitness, marking the optimal fitness f g and its corre-
sponding position Xbest, the current worst fitness f w, and
its corresponding position Xworst.

Step 4: select the individual with pre-PN∗N of fitness
value as discoverer, update the discoverer’s position accord-
ing to formula (2), and record the optimal position XP occu-
pied by the current discoverer.

Step 5: pick the remaining individuals as accessions and
update the location of the accessions as per equation (3).

Step 6: the individual with SN∗N was randomly selected
as the alerters, and the position of the alerter was updated
according to formula (4).

Step 7: calculate fitness values updating the sparrow
location and f g, Xbest, f w, andXworst.

Step 8: judge if the output condition is met, meet then
the cycle ends, output the result; otherwise, repeat step 3~ 7.

3. Sparrow Search Algorithm Compared with
Other Algorithms

3.1. Particle Swarm Algorithm. Particle swarm optimization
(PSO) is a classical swarm intelligence algorithm, which imi-
tates the biological characteristics of bird groups and uses
the cooperation and competition between particles to seek
the best solution [29]. Its main idea is to use the memory
of particles to continuously search for the best solution, by
learning from the best self-individuals in history and the best
learning from the population. Similar to the human social
behavior, when a person wants to make a decision, one is
to analyze according to his own experience and experience,
and the other is to learn from the population through social
behavior such as network and communication [30].

Set in the D-dimensional search space, the position
vector of the ith particle is Xi = ðXi,1, Xi,1,⋯,Xi,DÞ and the
velocity vector of the ith particle is vi = ðvi,1, vi,2,⋯vi,DÞ,
after t iterations, the historical best position of particle
Xi is pbestti , and the population global best position is g
bestt . The velocity and position of the particle are updated
with the formula:

vt+1i,j =w · vti,j + c1 · r1 · pbestti − xti,j
� �

+ c2 · r2 · gbestt − xti,j
� �

,

Xt+1
i,j = Xt

i,j + vti,j,

8<
:

ð5Þ

where w is the inertia weight coefficient, which has a
strong global search ability when w is large and a strong
local search ability when w is small. c1 and c2 are individ-
ual learning factors and group learning factors, respec-
tively, and r1 and r2 are random numbers that lie
between ð0, 1Þ [31].

3.2. Differential Evolution Algorithm. The differential evolu-
tion (DE) algorithm is an evolutionary algorithm that simu-
lates biological evolution and is essentially a greedy genetic
algorithm with preserved dominant individuals based on
real number coding [32], one of the original genetic algo-
rithms (GA), but with much stronger homing performance
than GA [33], which comes from the latter group. The main
idea is to perform variation and crossover operations on the
current population to produce a new population, while the
latter, using the selection operations of greedy thinking to
retain the dominant individuals, results in a more optimal
population [34].

The simplest original variant manipulation (DE/rand/1)
is used as an example [35]:

Vt
i,j = Xt

r1,j + F · Xt
r2,j − Xt

r3,j

� �
, ð6Þ

where Vt
i,j is an intermediate individual after mutation

operation, let population size be N ; r1, r2, and r3 are mutu-
ally unequal and belong to ½1,N�; F is the scaling factors and
takes values ranging in ½0, 1�.
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Crossover maneuvers [36]:

Ut
i,j =

Vt
i,j, if rand 0, 1ð Þ ≤ CR or i = irand,

Xt
i,j, otherwise,

(
ð7Þ

where Ut
i,j is the intermediate individual after the

hybridization operation, CR is the crossover probability,
and irand is a random integer belonging to ½1,N�.

The selection actions are [37]

Xt+1
i,j =

Ut
i,j, if f Ut

i,j

� �
≤ f Xt

i,j

� �
,

Xt
i,j, otherwise,

8<
: ð8Þ

where f is the fitness function.

3.3. Gray Wolf Optimization Algorithm. The gray wolf opti-
mizer (GWO) [38] is a typical emerging group intelligence
algorithm that has emerged since the self-particle and ant
colony algorithms, simulating the leadership hierarchy and
hunting mechanisms of gray wolf populations in nature
[39] and, in turn, achieves the goal of seeking optimal solu-
tions. There was a strict hierarchy within the gray wolf pop-
ulation, with the top three best fit wolf in the mapping
population designated α, β, and δ, and the remaining indi-
viduals collectively designated ω. α is the leader of the wolf
pack, leading and directing the whole population to hunt;
β is the “ army surgeon “ in the tarantula to assist α and
manage δ and ω; δ is the “ collar “ in the tarantula and
can only manage ω; ω is the “ soldier “ in the tarantula, hear-
ing the first three, and is responsible for the equilibrium
within the population [40]. It mainly consisted of two pro-
cesses, bracketing of prey and hunting [41].

Surround prey:

D = C · Xt
p − Xt

i,j

��� ���,
Xt+1
i,j = Xt

p − A ·D,
ð9Þ

where D represents the distance between the individual
and the prey, Xt

p is the location of the prey, X represents
the location of the gray wolf, and A and C are the synergy
vector coefficients, which were calculated as follows:

A = 2 · a · r1 − a,

C = 2 · r2,
ð10Þ

where a is the convergence factor and decreases linearly
from 2 to 0 with the number of iterations, r1 and r2 are ran-
dom numbers of ½0, 1�. When jAj > 1, the gray wolf was dis-
persed in position, and a global search was performed.
When jAj ≤ 1, the gray wolf was positionally concentrated,
and a local search was performed.

When the gray wolf has identified the location of the
prey, β and δ guided the wolfring group to surround the
prey, under the lead of α, and to hunt; the mathematical

description follows:

Dα = C1 · Xt
α − Xt

i,j

��� ���, X1 = Xt
α − A1 ·Dα, ð11Þ

Dβ = C2 · Xt
β − Xt

i,j

��� ���, X2 = Xt
β − A2 ·Dβ, ð12Þ

Dδ = C3 · Xt
δ − Xt

i,j

��� ���, X3 = Xt
δ − A3 ·Dδ, ð13Þ

Xt+1
i,j =

X1 + X2 + X3
3

, ð14Þ

where Xα, Xβ, and Xδ represent the position of optimal
solution α, suboptimal solution β, third best solution δ,
respectively. C1, C2, andC3 represent a random variable.

3.4. Comparative Experiments. Particle swarm algorithm,
differential evolution algorithm, and gray wolf algorithm
are typical representatives of classical group intelligence
algorithm, evolutionary algorithm, and emerging group
intelligence algorithm, respectively, and comparative analy-
sis of the above three algorithms with the sparrow algorithm
is helpful for the systematic understanding of sparrow
algorithms.

This paper studies the above algorithm with the help of
six test functions, whose algorithm parameter settings are
shown in Table 2, the test function is shown in Table 3,
and the image of the function is shown in Figure 1. F1 and
F2 are unimodal high-dimensional functions, F3 and F4
are multimodal high-dimensional functions, and F5 and F
6 are fixed dimensional functions. From the images of the
functions, we can see that both F3 and F4 are high-
dimensional multimodal test functions with more local opti-
mal pitfalls, which can better examine the performance of
each algorithm. Subsequent experiments mainly rely on F3
and F4. The number of populations was set to be 30, the
number of iterations to 500, the dimension to 30, and each
algorithm was run 30 times to record the optimal value,
worst value, mean value, and standard deviation in the
results, respectively, and according to the mean value, each
algorithm was shown to the optimal value of each index
was coarsened, and the results are shown in Table 4, and
the convergence of the function fitness values is shown in
Figure 2.

From Table 3, we can see that SSA is outstanding in the
six test functions, each index is almost optimal, ranking first,
indicating that SSA can get rid of some local optimal traps
and has good optimization performance and high accuracy.
From Figure 2, it can be seen that the function convergence
curve of SSA decreases rapidly, indicating that SSA has a
higher efficiency and a faster convergence rate.

Figure 3 shows the position change diagram of each of
the above algorithms after one iteration, i.e., the step update
diagram, where the population number of each algorithm is
100 and the dimension is 3 for easy observation. In the fig-
ure, “o” is the original population location, the straight line
points to the location after an iteration, and the red “+” rep-
resents the theoretical optimal location. It can be seen that
each PSO update has a smaller step size and other
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algorithms have a larger step size update, but the DE loca-
tion update is good or bad, and the search efficiency is low.
GWO is a messy search that keeps approaching the optimal
value. SSA can find the optimal value and jump directly to
the near optimal value, which is more efficient.

Figure 4 shows the population diversity change of the
above algorithm. From the diagram, it can be seen that the
population diversity of PSO, DE, and GWO is decreasing
and fluctuating in a small range. SSA is a fast convergence
followed by a wide range of fluctuations in countertrend
growth, which is due to the fast convergence of SSA, but
the alerters keep on feeding back and escaping from the cur-
rent position.

Figure 5 shows the exploitation and exploration phases
of the above algorithms. From the diagram, it can be seen
that PSO, DE, and GWO have a strong ability of global
search in the early stage, local search in the later stage, and
development capability. However, due to the fast conver-
gence rate, SSA enters the development stage early, but due
to the back-feeding behavior of the alerters, it keeps alternat-
ing the development and exploration stages and finally stabi-
lizes within a certain range to fluctuate, which is used to
jump out of local optimum.

4. Comparative Analysis

From the point of view of population communication mech-
anism, PSO communicates with individual historical and

global optimal locations to determine the next move, which
is very robust. DE randomly selects several individuals from
the population for mutation and hybridization, which has
some randomness but strong communication ability, and
then relies on greedy strategies to ensure the effectiveness
of communication. GWO relies on hierarchy to share infor-
mation with optimal, suboptimal, and third-best solutions. It
has better communication ability than particle swarm, but it
can not guarantee the quality of the population after com-
munication. SSA only relies on the participants to communi-
cate with the best discoverers. Except for the best
discoverers, the other discoverers have no communication
behavior with the participants, which can easily lead to
missed high-quality solutions. Generally speaking, the com-
munication mechanism of SSA is poor and DE is good.

From the point of view of search mode, PSO keeps
approaching the optimal solution purposefully by self-
learning and social learning and updates the global and his-
torical optimal solutions continuously along the way. PSO
has strong global exploration ability but slow convergence
rate. DE relies on mutation and hybridization for global
search, which is extremely random but has no purpose.
The whole search process relies on probability search to eas-
ily produce duplicate solutions. GWO uses the mechanism
of enclosing prey to search and relies on the first three opti-
mal solutions to search, which has strong global search abil-
ity but poor search accuracy. SSA uses the “discover-joiner”
model to search. The discover is responsible for global

Table 2: Parameter.

Algorithm PSO DE GWO SSA

Parameter

c1 = 2
c2 = 2

Wmix = 0:2
Wmax = 0:9

CR = 0:2
Fmin = 0:2
Fmax = 0:8

a = 2⟶ 0ð Þ
ST = 0:8
PD = 0:2
SD = 0:2

Table 3: Test function.

Function Dimensions Interval Min

F1 xð Þ =〠n

i=1x
2
i 30 −100,100½ � 0

F2 xð Þ =〠n

i=1 xij j +
Yn

i=1
xij j 30 −100,100½ � 0

F3 xð Þ =〠n

i=1 − xi sin
ffiffiffiffiffiffiffi
xij j

p� �
30 −500,500½ � -418.98∗dim

F4 xð Þ = π
n 10 sin πy1ð Þ + ∑

n−1

i=1
yi − 1ð Þ2 1 + 10 sin2 πyi+1ð ÞÂ Ã

+ yn − 1ð Þ2
� �

+ ∑
n

i=1
u xi, 10,100,4ð Þ

yi = 1 + xi + 1
4

u xi, a, k,mð Þ =
k xi − að Þm xi > a

0 −a < xi < a

k −xi − að Þm xi<−a

8>><
>>:

30 −50, 50½ � 0

F15 xð Þ = 〠
11

i=1
ai −

x1 b2i + b1x2
À Á

b2i + b1x3 + x4

 !2

4 −5, 5½ � 0.0003

F22 xð Þ = 〠
7

i=1
X − aið Þ X − aið ÞT + ci

h i−1
4 0, 10½ � -10.4029
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search. The joiner jumps directly to near the optimal solu-
tion for local search. A larger step leads to fast convergence,
but the discover has a smaller proportion of the population
and is easy to fall into the local optimal. Relatively, the par-
ticipants account for a large proportion and carry out
detailed local search with high search accuracy. In general,

PSO has strong global search ability, SSA has strong local
search ability and fast convergence speed.

From the loss of population diversity, PSO step size is
small, convergence rate is very slow, and loss of population
diversity is slow during the search process. DE relies on
probability to optimize, sometimes with sudden changes,
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the convergence speed is fast or slow, but the convergence
speed is accelerated due to the influence of greedy strategy.
GWO has a faster convergence rate when the global search
capability is strong in the early stage, but a slower conver-
gence rate in the later stage as the iteration number step
decreases. The convergence rate of SSA is very fast due to
the joiner mechanism, but the existence of the alerters’
mechanism, the constant escape of some individuals from
the current location will prevent some loss of population,
resulting in adverse growth of later population diversity.
Overall, the population loss rate of SSA is faster, but due to
the warner mechanism, a portion of the population diversity
is increased.

In terms of the ability to escape from local optimum, PSO
can search in a wide range and detail due to its small step size.
It is not easy to fall into local optimum, but it requires a large
number of iterations and is not efficient. DE has a strong abil-

ity to jump out of the local optimum according to mutation
operation, but it has some randomness. GWO has a good bal-
ance ability of exploration and development because it keeps
approaching the optimal solution and the step size decreases
continuously during the search process, but it is also prone
to fall into local optimum because of its low search accuracy.
Participants in SSA jump directly to the current optimal solu-
tion, with a large step size, which is easy to miss the good solu-
tion and fall into the local optimal. However, the warner
mechanism can help to improve this problem by escaping
from the current location. As the number of iterations
increases, the warner’s escape range becomes smaller and its
ability to jump out of the local optimal becomes weaker. Gen-
erally speaking, DE has a strong ability to get rid of the attrac-
tion of local optimal values, while SSA has some ability to
jump out of local optimal values but still can not meet the
needs of optimization.

Table 4: Comparison table of optimization effect.

F Index/algorithm PSO DE GWO SSA

F1

Best 8:93E − 06 5:55E − 14 6:31E − 28 0

Worst 0.000836 44621.28 4:66E − 25 1:37E − 67

Ave 0.000163 3314.816 5:25E − 26 4:58E − 69

Std 0.000213 10734.63 1:13E − 25 2:51E − 68
Rank 3 4 2 1

F2

Best 0.004097 5.607874 1:47E − 16 0

Worst 0.271186 3:71E + 13 1:61E − 15 3:45E − 40

Ave 0.040348 1:28E + 12 6:19E − 16 1:15E − 41

Std 0.05509 6:77E + 12 3:56E − 16 6:30E − 41
Rank 3 4 2 1

F3

Best -7203.72 -12566.8 -10562.5 -12569.5

Worst -2664.29 -6671.64 -8506.23 -9495.96

Ave -5937.33 -10130.9 -9321.52 -10584.62

Std 1187.275 1920.468 1570.104 2060.998

Rank 4 2 3 1

F4

Best 5.13E-07 0.003551 0.006064 1:57E − 32

Worst 0.113749 0.092477 0.065291 4:18E − 08

Ave 0.039048 0.023993 0.022545 2:15E − 09

Std 0.021686 0.018595 0.014487 8:19E − 09
Rank 4 3 2 1

F5

Best 0.004097 5.607874 1:47E − 16 0

Worst 0.271186 3:71E + 13 1:61E − 15 3:45E − 40

Ave 0.040348 1:28E + 12 6:19E − 16 1:15E − 41

Std 0.05509 6:77E + 12 3:56E − 16 6:30E − 41
Rank 3 4 2 1

F6

Best -10.4029 -6.43112 -10.4029 -10.4029

Worst -2.75193 -0.52836 -5.08767 -5.08767

Ave -8.58689 -1.75891 -9.33986 -9.87138

Std 3.105192 1.362386 2.162441 1.621828

Rank 3 4 2 1
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Figure 2: Fitness convergence curve.
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In summary, the sparrow algorithm has the advantages
of fast convergence and high accuracy, but less communica-
tion within the population, poor global search ability, fast
loss of population diversity, and weak ability to jump out
of local optimum.

5. Limitations and Improvement Analysis of
Sparrow Algorithm

In the last section, the advantages and disadvantages of spar-
row algorithm are analyzed and compared. Although SSA
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Figure 3: Step change chart.
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can get better results in optimization problems, due to the
general defects of swarm intelligence algorithm and its own
behavior mechanism, there are still limitations, and many
scholars have made improvements accordingly. The detailed
analysis is as follows.

5.1. Initial Population Quality. The results show that the
diversity of initial population can help to improve the accu-
racy and convergence speed of the algorithm [42]. Random
initialization population is a common method of initializa-
tion population for the population intelligence algorithm
[43]. The random and uneven initial population distribution
under this method results in unstable initial population
quality and poor population diversity [44], especially in
high-dimensional space [45].

The same is true for SSA, where the sparrow algorithm
is introduced for initializing population based on pseudo-
random sequence such as chaotic mapping, such as the
tent map [46], logistic map [42, 47], cube map [48], sin
map [49], Bernoulli map [50], and circle map [51]. This
method guarantees the quality of initial solution, improves
the diversity of initial population, and facilitates later iter-
ation optimization. At the same time, another method to
initialize population based on learning mechanism has
been proposed, such as center-of-gravity reverse learning
[52], elite reverse learning [52, 53], and refractive reverse
learning [54]. By using reverse solution to expand the ini-
tial range, and comparing with the original solution to
select a better initial solution, the individual of the popu-
lation is more flexible and diverse, and the search ability
of SSA is improved.

However, there is still some randomness in the above
improved population initialization methods, which can not
guarantee absolute uniformity of each initialization. Choos-
ing a better population initialization method can help to
improve this problem. For example, good point set [55], a
strategy with better initial population effect, can be added.

5.2. Interpopulation Communication. The communication
between individuals in the sparrow algorithm population is
limited to those who join the population and the finder with
the best location. The communication between individuals is
less and the communication of information is difficult. As a
result, the effective information is “hidden” and the search
efficiency is low.

Based on this, self-learning and social learning factors of
particle swarm [56], equivalence mechanism [57] in gray
wolf algorithm, mutation operation [58] in differential evo-
lution algorithm, and cross-vertical and horizontal strategy
[59] are introduced into the sparrow algorithm, which
increases the number of communication objects within the
population, makes communication more frequent, and
makes information sharing enter the “highway.”

However, the abovementioned improvement strategies
do not make full use of the dominant group of discoverers,
and sparrows cannot only grab food from those who get
the most food. The next step is to try to make full use of
the dominant group of discoverers to improve.

5.3. Biological Characteristics. Each species has its own
unique population behavior and biological characteristics.
Because the sparrow algorithm was proposed for a short
time, many mechanisms based on sparrow-specific behavior
have not been fully developed and improved. There is still
room for improvement of the original algorithm.

The biological characteristics of SSA can be improved if
the unique suicidal behavior [60] of sparrows, a bird, is
incorporated into the original mechanism, i.e., the behavior
of “being imprisoned and dying from fasting.”

5.4. Global Search Capability. In SSA iterative optimization,
the participants follow the discoverer to forage, which is a
directed random search algorithm. The global search of the
sparrow algorithm relies only on a small group of discov-
erers, which generally accounts for only 20%. Although half
of the hungry individuals who join the algorithm search

50 100 150 200 250 300 350 400 450 500
Iteration

50

100

150

200

D
iv

er
sit

y

Diversity measurement

50 100 150 200 250 300 350 400 450 500
Iteration

0

5

10

15

20

25

D
iv

er
sit

y

Diversity measurement

PSO
DE

GWO
SSA

PSO
DE

GWO
SSA

Figure 4: Population diversity.

11Wireless Communications and Mobile Computing



randomly because they cannot get food, the search range of
the participants is smaller than that of the discoverers, and
their global search depends mainly on the discoverers. At
the same time, although discoverers and participants update
each other constantly and search is more flexible, the ratio
between them is unchanged, and the ability of discoverers
responsible for global search is not substantially improved,
resulting in poor global search ability [61].

Based on this, a method combining the global search
ability algorithms such as sine-cosine algorithm [62], bird
swarm algorithm [63], firefly algorithm [53], and differential
evolution algorithm [64] with the discoverers in SSA is pro-
posed, which improves the global search ability of SSA with
the excellent global search ability of other algorithms, “using
other spears, strengthening our spears.” At the same time,
another adaptive improvement strategy based on balanced
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exploratory development capability is introduced into SSA,
such as nonlinear inertial weight [53, 65], adaptive distri-
bution [66], and adaptive control step [67], to increase
the global search capability by enhancing the previous
exploratory capability.

The above improvements are mainly aimed at the dis-
coverers who occupy a minority of the population and are
responsible for guiding the direction of the population. They
do not make full use of the hungry individuals who account
for 40% of the population for random search. By expanding
the search range of hungry individuals among the partici-
pants, the global search ability of the whole algorithm can
be increased.

5.5. Loss of Population Diversity. In the “participant-
discover” model of the sparrow algorithm, the joiner jumps
directly to the location of the discoverer, and the conver-
gence rate is faster, which leads to a rapid loss of population
diversity. Although there is some development capability
near the current location of the discoverer, there are prob-
lems that make insufficient use of the current individual,
are easy to miss the good solution, and are not stable enough
to guarantee the quality of the solution. Once trapped and
unable to jump out of the local extreme state, the overall per-
formance of the algorithm is limited.

Improvement strategies based on disturbance mecha-
nism were introduced to SSA participants, such as Levy
flight [68], chaotic disturbance [46], and Cauchy variation
[69], to increase population diversity and alleviate rapid loss
by updating the participant location.

However, the above improvement strategies still do not
make full use of the high-quality solution to the current loca-
tion, only to improve the updated location. If you can take
full advantage of your current location [70], you can make
your search more flexible and varied.

5.6. Jump Out of Local Optimum. Intelligent algorithms have
the disadvantage of easily falling into local optimum. Warn-
ings in SSA have antipredatory behavior, which can be
improved by constantly escaping from the current location.
However, as the number of iterations increases, the escape
range of late population convergence of alerters decreases
and their ability to escape from local optimum decreases.
As a result, SSA’s ability to jump out of local optimum is
unstable, leading to sometimes being unable to get rid of
the attraction of local optimum.

For the method of jumping out of local optimum, many
researchers have done a lot of research, including mutation,
reverse learning, and simulated annealing. Among them,
Brownian motion [57], lens learning [71], and other strate-
gies are introduced into SSA. The method of full-dimension
probability updating has some randomness, but it can effec-
tively improve the problem that it is easy to fall into the
local optimal trap.

However, the abovementioned improvement strategy
uses the way of full-dimension update and does not take into
account the interference between dimension and dimension,
which may lead to redundant jump out of local optimum
operation in a certain dimension. At the same time, like

the reverse learning strategy, once the chosen space is not
better, it is still unable to jump out of the local optimum.
Some dimension-by-dimension updates [60] will help
improve its algorithm.

6. Conclusion

This paper first introduces the principle of SSA and then
elaborates the optimization process of SSA with the help of
sparrow feeding behavior. Then, based on the behavior char-
acteristics of sparrows, the mathematical model of SSA and
the basic flow of the algorithm are constructed. Then, the
representative PSO, DE, and GWO algorithms are briefly
introduced, and the advantages and disadvantages of SSA
are obtained by comparing SSA with the above algorithms
in many aspects such as the population communication
mechanism. Finally, based on the general defects of the
swarm intelligence algorithm and the defects of the behavior
mechanism of SSA, the limitations of the algorithm are sum-
marized, and the improvement of SSA by relevant scholars
according to its limitations is listed, which provides ideas
and directions for further improvement of the algorithm.

Mainly, the sparrow algorithm has the advantages of fast
convergence and high accuracy, but less communication
within the population, poor global search ability, fast loss
of population diversity, and weak ability to jump out of local
optimum.
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