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By contraposing the signal detection for filter bank multicarrier (FBMC) communications with the underwater acoustic (UWA)
channel, this paper analyzes the traditional imaginary interference problem and proposes a deep learning-based method. The
neural network with feature extraction and automatic learning ability is employed to replace the demodulation modules to
recover transmitted signals without explicit channel estimation and equalization. Sufficient data sets are generated according
to the measured channel conditions in Qingjiang river, the optimization of network parameters is finished by constraining
cost function in offline training, and the signal detection is carried out directly with the well-trained network in online testing.
The system performance of various supervised learning models such as multilayer perceptron (MLP), convolutional neural
network (CNN), and bidirectional long short-term memory (BLSTM) network is compared under different data sizes, network
parameters, and prototype filters. The simulation results show that the bit error rate (BER) performance of the proposed
signal detection is better than that of the classic one, which indicates that deep learning is a promising tool in UWA
communication systems.

1. Introduction

Compared with other transmission media, UWA channel is
much more complicated due to strict bandwidth limitation,
Doppler frequency shift, and background noise. Orthogonal
frequency division multiplexing (OFDM) is currently an
effective method to realize high-rate UWA communication
due to its ability to handle long multipath broadening and
frequency selectivity [1–4]. However, the orthogonality of
the subcarriers in OFDM system is easily affected by Dopp-
ler effect, which will cause difficulties in channel estimation
and signal detection [5–7].

As a new force in 5G multicarrier modulation, FBMC
introduces filter bank in OFDM to ensure the independence
between subchannels without cyclic prefix that provides
protection interval, which greatly improves the spectrum
efficiency. The prototype filter bank has excellent time-
frequency (TF) focusing characteristics to make FBMC more
robust against both ISI and ICI [8–10]. The subcarriers of

FBMC only meet the orthogonality in the real domain,
resulting in the inherent imaginary interference between
adjacent subcarriers and symbols. Furthermore, the classical
signal processing method cannot be directly used, which
makes the signal detection of FBMC system more challeng-
ing. Researchers have proposed many signal detection
approaches based on pilot to counter imaginary interference
including interference approximation method [11, 12] and
interference cancellation method [13–15], so as to maximize
the symbol amplitude at the pilot after demodulation. The
interference approximation method is designed to calculate
the value of the neighborhood symbol interference, and the
interference cancellation method makes full use of the odd
symmetry of the filter fuzzy function, but the performance
of these systems still depends on the accuracy of channel
estimation and the pilot overhead is high.

Recently, deep learning has sprung up in speech process-
ing [16], real-time vision [17], and other engineering fields.
The concept of applying deep learning to wireless communi-

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 4943442, 9 pages
https://doi.org/10.1155/2022/4943442

https://orcid.org/0000-0003-2720-5199
https://orcid.org/0000-0001-9249-3049
https://orcid.org/0000-0002-9534-5305
https://orcid.org/0000-0002-8733-8252
https://orcid.org/0000-0001-6561-823X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4943442


cation systems, especially UWA communication systems,
has just begun to emerge in public. According to [18], a sym-
bol demodulation and detection model based on twice train-
ing network is proposed whose performance is far better
than that of the maximum likelihood algorithm. According
to [19], a linear channel coding and decoding algorithm
based on deep neural network has been proved to be supe-
rior to the classical belief propagation algorithm. MLP is
the most basic deep learning model, which consists of mul-
tiple fully connected neural layers [20]. Ye et al. introduce
MLP into the receiver of OFDM system for channel estima-
tion and signal detection and reveal that deep learning
method can obtain the analogous BER performance com-
pared with the traditional OFDM system [21]. Inspired by
the above, Zhang et al. propose a deep learning-based
OFDM communication system and analyze the robustness
under the UWA channel [22]. Qasem et al. propose a new
scheme called deep learning-coded index modulation-
spread spectrum to deal with the increasing data rate restric-
tion of limited user number [23].

Stimulated by the potential of neural network in the
UWA communication field, this paper proposes a deep
learning-based receiver for FBMC system. By regarding
FBMC signal detection as label prediction of neural net-
works, several supervised learning models such as feedfor-
ward MLP, CNN [24], and BLSTM [25, 26] have been
adopted to realize implicit channel estimation and equaliza-
tion. The performance of the proposed method is quantita-
tively analyzed with sufficient amount of transmitted data
which is simulated by the channel impulse response (CIR)
measured in Qingjiang river. Simulation results demonstrate
that compared to classical channel estimation methods such
as least square (LS), the signal detection method based on
deep learning is more effective in improving the BER perfor-
mance of UWA FBMC communication.

The rest of this paper is organized as follows. In Section
2, the model of FBMC and the problem of imaginary inter-
ference are introduced. In Section 3, several supervised
learning models are reviewed, and then, the deep learning-
based signal detection for UWA FBMC systems is presented.

4In Section 4, the system performance analysis and compar-
ison are provided. The conclusions are made in Section 5.

Notations: ð⋅Þm,n denotes the ðm, nÞth TF point. Rf⋅g
denotes the real part of complex number. ð⋅Þ∗ denotes the
conjugate. ∗ denotes the convolution. ∘ denotes the Hada-
mard product.

2. System Model and Problem Formulation

2.1. UWA FBMC System Model. Different from OFDM, the
transmitted symbol of FBMC system is offset quadrature
amplitude modulation (QAM) symbol; namely, the real
and imaginary parts of complex QAM symbols are
extracted, respectively, and then sent after misplacing half
symbol period. Figure 1 shows the block diagram of FBMC
system implemented by filter bank and IFFT. The output
of the transmitted symbol through the synthesis filter bank
(SFB) can be expressed as [27]

s lð Þ = 〠
M−1

m=0
〠
n

am,ng l − n
M
2

� �
ej2πml/Mejφm,n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gm,n lð Þ

, ð1Þ

where M is the subcarrier number, am,n is real data on the m
th subcarrier of the nth FBMC symbol, and phase factor φm,n
is set to ðπ/2Þðm + nÞ. gðlÞ denotes the prototype filter with
length Lg = KM, where K denotes the overlap factor. gm,nðl
Þ represents the synthesis basis obtained from the TF trans-
formation of gðlÞ. After channel and analysis filter bank
(AFB), the demodulation symbol at TF point ðp, qÞ is

yp,q = 〠
M−1

m=0
〠
n

am,n〠
l

gm,n lð Þg∗p,q lð Þ, ð2Þ

where the orthogonal condition of gðlÞ for perfect signal
reconstruction satisfies Rf∑lgm,nðlÞg∗p,qðlÞg = δm,pδn,q. δm,p
denotes the Kronecker delta function which equals 1 if
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Figure 1: Block diagram of an equivalent UWA FBMC system. The SFB in transmitter includes phase transformation, M/2 upsampling,
prototype filter forming, subcarrier modulation, and stack. The AFB in the receiver includes subcarrier demodulation, matched filtering,
M/2 downsampling, and phase demodulation.
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m = p and equals 0 if m ≠ p. Thus, the transmitted symbol
can be accurately recovered at FBMC receiver after taking
the real part of the demodulated symbol.

2.2. The Problem of Imaginary Interference. It is worth
noting that FBMC systems satisfy orthogonality only in the
real field, which implies that even under ideal channel
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Figure 2: (a) Block diagram of deep learning-based UWA FBMC system, in which the structure of MLP is shown in the dotted line box. (b)
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conditions, there will be inherent imaginary interference
ζp,qm,n =∑lgm,nðlÞg∗

p,qðlÞ in the AFB if any ðm, nÞ ≠ ðp, qÞ. The
distribution of ζp,qm,n varies according to the filter bank
employed.

We assume that the channel is frequency flat and
unchanged over the duration of the prototype filter, so the
output of the AFB at ðp, qÞ can be shown as [12]

yp,q =Hp,qap,q + j〠
m,nð Þ≠ p,qð ÞHm,nam,nζ

p,q
m,n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ip,q

+ ηp,q, ð3Þ

where Hp,q is the channel frequency response and Ip,q and
ηp,q denote the imaginary interference and noise component.
Considering that imaginary interference mainly comes from
adjacent TF points, the first-order neighborhood of ðp, qÞ is
defined as Ωp,q = fðp ± 1, q ± 1Þ, ðp, q ± 1Þ, ðp ± 1, qÞg, where
Hp,q ≈Hm,n. Then, Equation (3) can be further expressed as

yp,q =Hp,q ap,q + j〠
m,nð Þ∈Ωp,q

am,nζ
p,q
m,n
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where cp,q is the symbol virtually transmitted. When data at
ðp, qÞ and Ωp,q are known, cp,q can be treated as a pseudopi-
lot to estimate channel frequency response by the LS princi-
ple, as Ĥp,q = yp,q/cp,q ≈Hp,q + ηp,q/cp,q.

3. Supervised Learning Models and Deep
Learning-Based Signal Detection

3.1. Multilayer Perceptron. As shown in the dashed box in
Figure 2(a), a MLP can be summarized as an artificial neural
network with multiple hidden layers between input and out-
put layers [28]. The output of the jth neuron in the ith layer
can be expressed as

zij = f 〠
k

ωi
jkz

i−1
k + bij

 !
, ð5Þ

where ωi
jk is the weight between the jth neuron in the ith

layer and the kth neuron in the ði‐1Þth layer, bij is the bias
of the jth neuron in the ith layer, and f ð⋅Þ is the selected acti-
vation function of this layer. f leakyReLUðxÞ =max ðαx, xÞ, α
= 0:05, an improved ReLU function, is employed for the
hidden layers, and the output layer applies the function
f sigmoidðxÞ = 1/ð1 + e−xÞ to make the network output in the
interval ð0, 1Þ. In addition, each hidden layer adopts dropout
regularization to prevent the network from favoring certain
features with iterative training, so as to guarantee the gener-
alization ability of the system.

3.2. Convolutional Neural Network. The CNN in
Figure 2(b) uses shared convolution kernels to automati-
cally extract local spatial correlation features of input data

[29]. The weight sharing method greatly reduces the num-
ber of parameters and makes the whole training process
easier. The output of the ith convolutional layer can be
expressed as [30]

Zi = f Wi ∗ Zi−1 p, qð Þ + bi
� �

= f 〠
m

〠
n

Zi−1 p −m, q − nð ÞWi m, nð Þ + bi
 !

,

ð6Þ

where Wi is the convolution kernel with adjustable weights
of the ith layer, bi is the bias, and Wi ∗ Zi−1ðp, qÞ represents
the result of two-dimensional convolution. Batch normali-
zation, an efficient regularization method with faster con-
vergence speed, is adopted in the convolutional layer to
prevent gradient disappearance and overfitting. Pooling
layer is not taken in this article because the input tensor
is not large. The whole convolution process can be regarded
as a special feature extraction, in which the feature data is
output through a few fully connected layers after flattening.

3.3. Bidirectional Long Short-Term Memory. Recurrent neu-
ral network is a kind of recursive neural network which
characterizes the time correlation of input sequence. As
shown in Figure 3, LSTM introduces gate mechanism
and storage units to neurons to address the long-term
dependence challenge of sequences. At time t, the input
gate, forget gate, output gate, LSTM input, LSTM output,
cell state, and the candidate are, respectively, represented
as it , f t , ot , xt , ht , Ct , and ~Ct ; the operational processes
are as follows [31]:

it = f sigmoid Wixxt +Wihht−1 + bið Þ,
f t = f sigmoid Wfxxt +Wfhht−1 + bf

� �
,

~Ct = f tanh Wcxxt +Wchht−1 + bcð Þ,
Ct = it ∘ ~Ct + f t ∘ Ct−1,

ot = f sigmoid Woxxt +Wohht−1 + boð Þ,
ht = ot ∘ f tanh Ctð Þ,

ð7Þ
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Figure 3: The inner structure of LSTM neurons.
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where W and b represent weights and biases, Ct−1 is the state
of the cell at the previous moment, and f tanhðxÞ = ðex − e−xÞ/
ðex + e−xÞ is also an activation function. Figure 2(c) shows that
a BLSTM layer consists of two LSTM layers stacked in oppo-
site directions, whose output is calculated jointly through
two layers of hidden state by

Zt = f W
Zh
!h
!

t +W
Zh
 h
 

t + bZ

� �
, ð8Þ

where h
!

t is the forward sequence and h
 
t is the backward

sequence. So the final prediction depends not only on the past
input but also on the future input.

3.4. Neural Network-Driven UWA FBMC Systems. Figure 2
shows the structure of the deep learning-based UWA FBMC
system, in which the neural network models replace the
channel estimation, equalization, and demapping modules
at the receiver of the traditional system, while the transmit-
ter remains unchanged. In each simulation, the frequency
domain data received after FFT and the random binary
sequence transmitted are recorded as a set of input and cor-
responding label d. The models are trained by viewing
FBMC demodulation and UWA channels as black boxes
[21]. With the network iteration, the weights W (or ω) and
biases b of the neural network are adjusted, and the differ-
ence between output d̂ and label d is continuously reduced.

In this paper, we take signal detection as binary label
classification and adopt crossentropy (CE) cost function to
measure the difference

CE = −
1
N
〠
N

k=1
d kð Þ ln d̂ kð Þ + 1 − d kð Þð Þ ln 1 − d̂ kð Þ

� �h i
, ð9Þ

where N represents the number of neurons in the output
layer. When the cost function meets the preset threshold
condition or the network iteration reaches the maximum

epoch limit, the neural network finishes the training process,
and W (or ω) and b stop updating and are saved accord-
ingly. The online neural network directly outputs the pre-
dicted binary sequence after loading the new received
frequency domain signal.

4. System Performance

4.1. Simulation Configuration. In order to carry out offline
training more realistically and effectively, we use the mea-
sured underwater acoustic channel of Qingjiang river (as
shown in Figure 4) to generate enough communication data.
Figure 5 depicts the layout of this experiment. The river
depth at the experimental site is about 100m, the hanging
depth of the transmitting transducer is about 30m, and the
hanging depth of the receiving hydrophone is about 10m.
During the experiment, both the sending ship and the
receiving ship are in a free-drifting state, with a distance of
about 1.5 km.
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Figure 4: Channel impulse response of Qingjiang river measured by LFM signal at a certain moment.

Figure 5: Layout of Qingjiang river experiment.
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The input number depends on the number of real and
imaginary parts of 2 FBMC blocks with 512 subcarriers.
The networks involved in this paper extract features from
the amplitude, space, and time dimensions, respectively,
whose input tensor, selection of the network layer, and set-
tings of hyperparameter are shown in Table 1. A rate Rc =
1/2 convolutional coder with generator polynomial [5, 7]
in octal format and 4-QAM is considered. The PHYDYAS
filter [32] is adopted as prototype filter, and a total of
50000 sets of obtained communication data are divided into
training set and test set by 9 : 1.

4.2. BER versus the Data Size. Several supervised learning
models are first compared with LS method for signal detec-
tion in Figure 6, where the LS method performs the worst
because the accuracy of channel estimation is easily affected
by imaginary interference. The MLP method (the number of
neurons in each layer is 2048, 512, 128, 32, and 16) signifi-
cantly improves BER performance through data-driven
implicit channel estimation. In addition, CNN (the number

of channels in each kernel is 4 and 8) and BLSTM methods
further explore the spatial correlation and temporal correla-
tion among the input data, respectively, which perform
state-of-the-art signal detection.

We also double the communication data and maintain
the original proportion to explore the impact of data size
on the proposed system. The MLP method seems to achieve
greater gain than CNN and BLSTM do due to the more
space for learning caused by the amplitude feature extraction
only, but the latter two still have better BER performance
when more data is provided. The results indicate that the
characteristics of UWA channel are efficiently learned by
deep learning-based methods and the BER performance is
sensitive to the data size.

4.3. BER versus the Network Parameters. The accuracy of
deep learning-based signal detection mainly depends on
the complexity of its model. According to the structural
characteristics of different networks, the network parameters
such as hidden layer neurons of MLP, channels in the

Table 1: Parameter setting of deep learning models.

MLP CNN BLSTM

Hyperparameter

Learning rate 10-4

Optimizer Adam

Dropout rate 0.5

Minibatch size 1000

Network structure

Input tensor (None, 2048) (None, 32, 32, 2) (None, 2, 1024)

Fully connected layers 5 2 1

Convolutional layers — 2 —

LSTM layers — — 2

5 10 15 20 25 30
SNR (dB)

10–3

10–2

10–1

100

BE
R

LS
MLP
MLP with more data
CNN

CNN with more data
BLSTM
BLSTM with more data

Figure 6: BER performance comparison among various signal detection methods.
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convolution kernel of CNN, and direction of propagation of
LSTM are regulated to make them deeper. The number of
neurons in MLP is reset to 2048, 1024, 512, 64, and 16; the
number of kernel channels in CNN is reset to 8 and 16;
and BLSTM is compared with unidirectional LSTM. From
Figure 7, the BER performance of the deeper model is gener-

ally improved. It is noted that the gain of BLSTM indicates
that the transmitted symbols in the future also have an
impact on the current signal detection.

4.4. BER versus the Prototype Filter.Wondering how the BER
performance of the deep learning-based signal detection and
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Figure 7: BER performance comparison with various network parameters.
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Figure 8: BER performance comparison with various prototype filters.
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LS-based signal detection is affected by the selection of proto-
type filter, we add EGF ðα = 2Þ and IOAT filters in simulation.
For fair comparison, the settings of UWA communication sys-
tem and network parameters remain fixed. As depicted in
Figure 8, MLP and CNN methods own more stable perfor-
mance and better robustness than LS algorithm under
different communication scenarios, but the BLSTM method
presents an obvious performance difference. That is, BLSTM
is sensitive to the degree of matching between filter banks
and underwater acoustic channels.

5. Conclusion

This paper presents a deep learning-based FBMC signal
detection for UWA communications, which only need to
collect received symbols for implicit channel estimation
and equalization in a data-driven way. Furthermore, CNN
with spatial correlation and BLSTM with temporal correla-
tion are analyzed for deeper feature extraction. The pro-
posed receiver has been tested with CIR measured in
Qingjiang river at a range of 1.5 km. Results of comparison
show that the proposed methods outperform classical algo-
rithms in detection accuracy, which leads a flexible design
for future UWA communications.
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