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Since the antennas on UAVs may have slight vibrations or the interference source is in the state of rapid movement in practice, the
interference suppression performance and robustness of the traditional methods may suffer a decline. In this paper, we propose a
flexible asymmetric null widening technique, which allows flexible adjustment of the null width to accommodate the variation of
the interference source. This method has a good effect of spreading zero trap on the two-dimensional array and can effectively
reduce the waste of degrees of freedom. Firstly, the flexible asymmetric null widening method is extended to two-dimensional
arrays to accommodate 2D array antennas of UAVs. Secondly, when the SMI algorithm is applied in adaptive beamforming,
the desired signal appears in sampling snapshots or using data samples, resulting in a model mismatch. To solve the model
mismatch problem of UAV antenna arrays, this paper applies a sparsity-based interference plus noise covariance matrix
reconstruction technique. Finally, for the application scenario that the UAV may receive signals from multiple directions, we
apply the linear constrained minimum variance criterion (LCMV) to achieve the main beam gain formation in multiple
directions. The simulation results show that we can generate a wide null and adjust the null width asymmetrically. The results
also show that the model mismatch problem is avoided, and the performance of the adaptive beamforming is almost optimal.
For the UAV antenna, we also implemented multiple beams to receive multiple signals .

1. Introduction

In recent years, drones have been widely used in various
fields, including aerial photography, target detection, crop
condition monitoring, and marine remote sensing [1–4],
while in the communication between UAVs or UAVs in
receiving the desired target signal, the UAV’s receiving
antenna needs to process the received signal, i.e., array signal
processing, and its core is adaptive array processing also
known as airspace adaptive filtering. It is now widely used
in military and civilian applications in radar, sonar, seismol-
ogy, radio astronomy, wireless communications, acoustics,
medical imaging, and other fields [5–9]. It is well known that
adaptive beamforming techniques are sensitive to model
mismatch, especially when the desired signal is present in
the training data. In addition, as the absolute stability of
UAVs cannot be guaranteed during flight, the antenna
may have slight vibration or the unstable interference signal
source may have fast movement, resulting in interference

signal deviation. As a result, the adaptive beamforming can-
not suppress the deviated interference signal effectively. For
these reasons, the performance of traditional adaptive beam-
formers deteriorates severely. Therefore, robust adaptive
beamforming methods have been extensively studied in the
past decades, and many robust adaptive beamforming
methods have been proposed. In adaptive beamforming,
the classic method of minimum variance distortion response
(MVDR) [5, 10], also known as Capon beamforming [11], is
generally adopted to obtain the weight of beamforming.
However, since the ideal sampling covariance matrix cannot
be obtained, the sampling covariance matrix inverse algo-
rithm (SMI) [12] is used in practice. Because the SMI algo-
rithm uses sampling data to construct the covariance
matrix, it is possible to include information about the
desired signal in the covariance matrix. This means that
the results are influenced by the expected signal. In the case
that the signal-to-noise ratio (SNR) is high, the results can be
significantly mismatched, leading to a severe decline in
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beamformer performance. Typically, diagonal loading tech-
niques [13] are used to solve these problems, but due to
the difficulty of finding the optimum diagonal loading factor
for the corresponding beamformer. Worst-case performance
optimization [14], on the other hand, can also be considered
as a diagonal loading technique. However, the worst-case
scenario does not always occur, and the optimization results
are still suboptimal. An adaptive tridiagonal loading tech-
nique has also been proposed [15], where the unitary matrix
is replaced by a Toplitz matrix and the loading factor is
determined by a method based on the output power of a
low partials beam in the assumed direction of the desired
signal. However, since the information of the desired signal
is still retained, the performance is improved over other
beamformers at large signal-to-noise ratios but still
decreases as the signal-to-noise ratio increases. Another
solution to the mismatch problem is to deal with the
assumed signal guidance vector. Since the mismatch vector
and its parametric bound are actually unknown, the actual
guidance vector can be estimated in an iterative manner,
with each iteration being a quadratic convex optimization
problem [16]. In this paper, in order to solve the mismatch
problem in UAV antenna beamforming, a better approach
is to reconstruct the covariance matrix to remove the infor-
mation of the desired signal and then directly solve the mis-
match problem caused by the desired signal [17]. To reduce
the computational effort associated with covariance matrix
reconstruction, the sparse nature of the signal source in the
observed field in UAV antenna beamforming is used to
reconstruct the covariance matrix [18].

Since the UAV cannot be absolutely stable in the flight
process and the location of interference sources in the envi-
ronment cannot be absolutely unchanged, the interference
signals to be suppressed by the UAV antenna will deviate
slightly. In traditional adaptive beamforming, only a single
interference signal cannot produce a zero trap, so it is neces-
sary to broaden the width of the zero trap at the interference.
To solve the above problems, the classic zero-trap broaden-
ing method is the covariance matrix conization technique
(CMT) [19]. It is mainly realized by using a null widening
technology independently proposed by Zatman [20] and
Mailloux [21], which can obtain a wider zero trap. Much
further work has been done based on covariance matrix con-
ization (CMT). A novel null widening method for sidelobe
cancellers with high computational efficiency is proposed
[22]. The CMT technique can produce a wide zero trap,
and it produces the widest zero trap to cover the worst case
of interfering signal deviation, which causes it to waste a
large number of degrees of freedom [23]. It shows that the
cost of degrees of freedom is proportional to the zero-
width and aperture of the array. Therefore, [24] proposed
a kind of zero-notch width that can be flexibly adjusted
and can produce asymmetric zero-notch width to meet dif-
ferent situations. Since the antenna used on UAV is gener-
ally a two-dimensional array, we need the zero-trap
broadening technology of a two-dimensional array. A null
widening technique for the uniform circular array is pro-
posed [25], but it is only limited to the broadening of the
uniform circular array.

In this paper, based on Mailloux’s zero-notch broadening
method, a null wideningmethod for two-dimensional arrays is
proposed. The signal received by the drone’s two-dimensional
array antenna is determined by two dimensions of informa-
tion. When adding a virtual interference source, you need to
add a virtual interference source of equal interval and equal
intensity in two dimensions. To produce asymmetrical and
flexible zero-notch width, we increase the number of virtual
interference sources near the interference signal asymmetri-
cally. The method proposed in this paper can not only obtain
a wide zero-trap width and flexibly adjust the width but also
produce asymmetric width for the deviation of UAV jamming
signal in practice, which does not need to cover the worst devi-
ation to reduce the consumption of freedom. In the realization
of zero-trap broadening, the performance of adaptive beam-
forming is seriously degraded due to the model adaptation in
high SNR due to the inclusion of desired signals. In this paper,
a sparse covariance matrix reconstruction method [18] is pro-
posed to remove the desired signal information. Finally, given
the problem that UAVmay encounter in practice in accepting
signals from multiple directions, this paper proposes to adopt
a linear constrained minimum variance criterion (LCMV)
[25] to form a multibeam direction graph. Finally, we simulate
a concentric ring array, and the results show that the mis-
match problem can be solved well in high SNR, and the asym-
metric zero-trap width can be adjusted flexibly.

Section 2 introduces the basic signal model, Section 3
presents the sparse covariance matrix reconstruction
method and the zero-trap spreading technique proposed in
this paper, Section 4 presents the model of the concentric
circular array and gives some simulation results, and finally,
Section 5 gives our conclusions.

2. The Signal Model

2.1. Array Signal Model. Assume that signals emitted from
radiation sources at far-field sources include the desired sig-
nal with direction θ0 andM narrowband interference signals
with direction θkðk = 1, 2,⋯,MÞ and the inevitable noise sig-
nal. The array signal model is at this point [26].

X tð Þ = AS tð Þ + n tð Þ, ð1Þ

where SðtÞ = ½s0ðtÞ, s1ðtÞ,⋯,sMðtÞ�T is the complex envelope
of the received signal including desired signal and interfering
signals, nðtÞ = ½n1ðtÞ, n2ðtÞ,⋯,nMðtÞ�T is the noise that exists
during transmission, A = ½aðθ0Þ, aðθ1Þ,⋯,aðθMÞ� is a matrix
of the steering vectors corresponding to the above signal,
and ð·ÞT is the transpose operation of a matrix. The steering
vector [26] is

a θð Þ = 1, ej2πd cos θ/λ,⋯,ej2π M−1ð Þd cos θ/λ
h iT

, ð2Þ

where λ is the operation wavelength and d is the distance
between elements of the array generally taken as λ/2. The
adaptive beamformer output is given by
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y tð Þ =wHX tð Þ = s tð ÞwHa θð Þ, ð3Þ

where w = ½w1,w2,⋯,wM�T is the weight of the beamform-
ing, and the weight is an important parameter in adaptive
beamforming, and XðtÞ = ½x1ðtÞ, x2ðtÞ,⋯,xMðtÞ�T is the sig-
nal accepted by each array element. ð·ÞH is the conjugate
transpose operator symbol. To btain weights, the minimum
variance distortion response (MVDR) beamforming prob-
lem is usually used [27].

min
w

wHRi+nw,

s:twHa θ0ð Þ = 1,

0@ ð4Þ

and the solution is the MVDR beamformer, also referred to
as the Capon beamformer. Then, the weights are given by

wopt =
R−1
i+na θ0ð Þ

aH θ0ð ÞR−1
i+na θ0ð Þ , ð5Þ

where Ri+n is the interference plus noise covariance matrix.
In the real system, we cannot obtain the ideal covariance
matrix, so the Sampled Covariance Matrix Inverse (SMI)
algorithm is used, and the maximum likelihood estimation
method is used to estimate the covariance matrix as R̂xðMÞ
= 1/M∑M

i=1XðtiÞXHðtiÞ. Then, the weights of the SMI algo-

rithm are expressed as wsmi = R̂
−1
x aðθ0Þ/aHðθ0ÞR̂−1

x aðθ0Þ.
Since the SMI algorithm estimates the interference plus
noise covariance matrix from the sampled signal, there must
be information about the desired signal in it.

For a smooth random signal, the interference plus noise
covariance matrix can be obtained based on its output signal
power as

Ri+n = 〠
L

l=1
σ2l a θlð ÞaH θlð Þ + σ2nI: ð6Þ

2.2. Interference-Plus-Noise Covariance Matrix
Reconstruction. Generally, the number of interference
sources and their actual steering vectors and power are usu-
ally unknown. In addition, the noise power is also unknown.
Therefore, to reconstruct the interference plus noise covari-
ance matrix, we need to know the spatial-spectral distribu-
tion in all possible directions. In this correspondence, we
use the Capon spatial spectrum estimator

P̂ θð Þ = 1
aH θð ÞR̂−1

a θð Þ
: ð7Þ

By substituting back the optimal weights of the MVDR
beamformer, the objective function in its problem yields R̂.
The covariance matrix of the disturbance plus noise can be
reconstructed using the method of Capon’s spectral estima-
tion as

~Ri+n =
ð
Θ

P̂ θð Þa θð ÞaH θð Þdθ =
ð
Θ

a θð ÞaH θð Þ
aH θð ÞR̂−1

a θð Þ
dθ, ð8Þ

where Θ is the range ~Θ that contains the interfering and
noisy signals obtained by removing the desired signal that
we can estimate. And their concatenation is the whole spatial
domain, and their intersection is the empty set.

2.3. Regular Covariance Matrix Tapers. The method of
covariance matrix taper, also known as the Mailloux–Zat-
man (MZ) null widening method, is achieved by modifying
the original covariance matrix as follows:

R̂MZ = R̂ ∘ TMZ, ð9Þ

where TMZ is a positive definite matrix of real numbers,
where ∘ is the Hadamard product operation, which is the
multiplication of the corresponding elements of two matri-
ces.The cone operation on the covariance matrix is also
called a cone matrix, and the corresponding elements of its
mnth term are

TMZ½ �mn = sin c
m − nð ÞΔ

π

� �
, ð10Þ

where Δ is the normalized virtual bandwidth by whose size
and the width of the zero trap can be varied.

2.4. Multibeam Formation Algorithm. The LCMV criterion
is a generalization of the MVDR criterion with the addition
of multiple constraints. Assuming that the desired signal
arrives in multiple directions at this time, we can obtain
the basic mathematical model of the LCMV criterion as

min
w

wHRxw,

s:twHC = FH :

0@ ð11Þ

According to equation (11), we can then obtain the opti-
mal weights under the LCMV criterion as

wopt = Rx
−1C CHRx

−1C
� �−1

F, ð12Þ

where FT = ½c1, c2,⋯,cL� is a vector of constants in dimension
L × 1ðL ≥ 1Þ. The constant value c is generally taken as 1, and
C = ½aðθ0Þ, aðθ1Þ,⋯,aðθL−1Þ� is the popularity matrix of the
A-dimensional oriented vector.

3. The Proposed Algorithm

3.1. Interference-Plus-Noise Covariance Matrix Sparse
Reconstruction. In array signal processing, generally, the
number of signals sent by the array accepting radiation
sources is much smaller than the number of array ele-
ments. That is, the sources are sparse in the observation
field. In this case, the reconstruction of the (6) covariance
matrix does not need to be integrated over the entire air-
space coverage. Thus, sparsity can be exploited to
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reconstruct the covariance matrix. The sparse constrained
optimization problem used to determine the source loca-
tion and its power is obtained by combining the l0-norm
(denoted by k:k0) and can be expressed as

min
P,σ2n

R̂x − APAH − σ2nI
�� ��2

F
+ γ pk k0,

subject to p ≥ 0, σ2n > 0,
ð13Þ

where p is the spatial spectrum of the signal we wish to
obtain over the entire range of signal space, P is the diag-
onal matrix of p, A = ½aðθ1Þ, aðθ2Þ,⋯,aðθNÞ� is an array of
streamlined matrices, σ2

n is the noise power taken as the
minimum eigenvalue of the covariance matrix, I is an
identity matrix, γ controls the tradeoff between the spar-
sity of the spectrum and the residual norm, and k:kF is
the Frobenius norm of a matrix. The optimization prob-
lem (13) is a CS problem. This is a difficult combinatorial
optimization problem, but when the problem is sparse
enough, we can turn it into a l1-norm (denoted by k:k1)
problem. Assuming that the DOA estimate of the desired
signal is already known, the problem (13) degenerates to
an inequality constrained least squares problem. Thus,
(13) can be simplified as

min
p eθp� � R̂x − bσ2

nI − A eθp� �
P eθp� �

AH eθp� ���� ���2
F
,

subject to p eθp� �
> 0,

ð14Þ

where eθp is the direction of the signal for which we want
to estimate the spatial spectrum. This is a convex optimi-
zation problem [28, 29] and can be solved using convex
optimization software [30]. There are only Q nonzero
results in the derived result, and based on the spatial spec-
trum of Q-sparse, we can reconstruct the interference plus
noise covariance matrix

~Ri+n = 〠
Q

k=1k≠q
p eθpk� �

a eθpk� �
aH eθpk� �

+ bσ2
nI: ð15Þ

Thus, we can obtain the weights of the adaptive beam-
former based on the covariance matrix reconstruction as

w =
~R
−1
i+na θ0ð Þ

aH θ0ð Þ~R−1
i+na θ0ð Þ

: ð16Þ

3.2. Null Broadening with Covariance Matrix
Reconstruction in 2D Arrays. We know that the expansion
matrix TMZ in (9) is the well-known Mailloux or Zatman
method. We use the example based on Mailloux’s idea,
which is to assume the existence of a set of virtual distur-
bances around narrowband disturbances. Firstly, in a 1D
array, we can obtain the mnth term of the covariance
matrix using Mailloux’s method as

~Rmn = R½ �mn · sin c
m − nð ÞdW

λ

	 

= R½ �mn · TMZ½ �mn, ð17Þ

where TMZ is the tapered matrix. To be able to generate
asymmetric zero traps, replace the equally spaced virtual
interference range in the vicinity of the disturbance in
the Mailloux method with −I1 to I2. Thus, the tapered
matrix T can be obtained

~TMZ
h i

m,n
= sin c

m − nð Þ W2 +W1ð Þd
λ

� �
· ejπd m−nð Þ W2−W1ð Þ/λ,

ð18Þ

where W1 and W2 are the widening factors, and the size
of which can be adjusted to obtain asymmetric zero-trap
widths on each side of the interference. In a two-
dimensional array, the direction of origin of the signal is
determined by the azimuth θ and pitch angles φ, where
the steering vector is

a θ, φð Þ =

1
ej 2πd/λð Þ·L1·Bθ,φ

⋮

ej 2πd/λð Þ·LM−1·Bθ,φ

266664
377775, ð19Þ

where Bθ,φ = ðcos θ sin φ, sin θ sin φÞT and L is the coordi-
nate of the all array element of the two-dimensional array.
The expression for the covariance matrix of interference
plus noise is obtained by substituting the steering vector
of the 2D array

Ri+n = 〠
Q

i=1
σ2I a θi, φið ÞaH θi, φið Þ + bσ2

nI: ð20Þ

According to the idea of the Mailloux method, in a
one-dimensional array, since the signal emitted by the
source is accepted as equivalent to a plane wave, we only

Table 1: Parameters of concentric seven circles.

Circle 1 Circle 2 Circle 3 Circle 4 Circle 5 Circle 6 Circle 7

Radius (m) λ/2 λ 3λ/2 4λ 5λ/2 6λ 7λ/2
Number 7 13 19 26 32 38 44

Angle (rad) 2π/7 2π/13 2π/9 π/13 π/16 π/19 π/22
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need to add equally spaced virtual interference in one
dimension to broaden the zero trap. However, in a two-
dimensional array, the signal may be received from all
angles in space, and its direction is determined by two
angles, the azimuth θ and pitch angles φ, so it is necessary
to add virtual interference in two dimensions to form the
zero trap.

To derive the tapered matrix for the zero-trap spread of a
two-dimensional array, we need to consider the coordinates of
the array elements of the two-dimensional array when calcu-
lating the covariance matrix. Then, the coordinate matrix of
the M array elements is expressed as

L =

x0 y0

x1 y1

⋮

xM−1

⋮

yM−1

2666664

3777775, ð21Þ

where ðx, yÞ is the coordinate of each array element of the
two-dimensional array. By substituting the coordinate values
into the calculation of the steering vector, we obtain the steer-
ing vector as

a θ, φð Þ =

1
ej2πd x1u+y1vð Þ/λ

⋮

ej2πd xM−1u+yM−1vð Þ/λ

2666664

3777775, ð22Þ

where u = cos θ sin φ and v = sin θ sin φ. According to
equation (24) we know that the interference-plus-noise
covariance matrix Ri+n is actually the guided vector multi-
plied by its transpose matrix, that is, each term of the
covariance matrix ½Ri+n�mn is actually the product of the
mth term of a column vector and the nth term of its con-
jugate transposed row vector, so the mnth term of the
covariance matrix can be obtained as

Ri+n½ �mn = 〠
Q

q=1
σ2qe

j2πd xmu+ymvð Þ/λ

·〠
Q

q=1
σ2qe

−j2πd xnu+ynvð Þ/λ

= 〠
Q

q=1
σ2qe

j2πd xm−xnð Þu+ ym−ynð Þv½ �/λ ,

ð23Þ

where σ2q is the power of the qth interfering signal. To
widen the zero-trap width at the suppressed disturbances,
we need to add J equally spaced virtual disturbances in
the x and y coordinate dimensions, respectively. Then, the
½~Ri+n�mn equation is expressed as

~Ri+n
� �

mn
= Ri+n½ �mn · sin c

xm − xnð ÞdWx

λ

	 

· sin c

� ym − ynð ÞdWy

λ

	 

= Ri+n½ �mn · TPA½ �mn,

ð24Þ

where TPA is a two-dimensional planar array of zero-
trapped widened tapered matrices. Thus, we can then
obtain the mnth term of the tapering matrix of the zero-
trap spread of the two-dimensional array as

TPA½ �mn = 〠
J−1ð Þ/2

px=− J−1ð Þ/2
ej2πd xm−xnð ÞpxΔuyλ½ · 〠

J−1ð Þ/2

py=− J−1ð Þ/2
ej2πd

� ym−ynð ÞpyΔu
h i

/λ = sin c
xm − xnð ÞdWx

λ

	 

· sin c

� ym − ynð ÞdWy

λ

	 

:

ð25Þ

When we use two-dimensional array elements to receive
signals may not need to spread the same width at the same
time at the interference, which requires us to have the flex-
ibility to adjust the width, we make the equally spaced
interference from −J1 to J2 in x dimension and from −J3
to J4 in y dimension, and then, the tapering matrix is mod-
ified as

~TPA

h i
mn

= 〠
J2

px=−J1
ej2πd xm−xnð ÞpxΔu½ �λ · 〠

J4

py=−J3
ej2πd ym−ynð ÞpyΔu½ �/λ=sin c xm−xnð Þ Wx2 +Wx1ð Þd/λð Þ

· ejπd xm−xnð Þ Wx2−Wx1ð Þ/λ·sinc ym−ynð Þ Wy4 +Wy3ð Þd/λð Þ·ejπd ym−ynð Þ Wy4 −Wy3ð Þ/λ ,

ð26Þ

where J1Δu =Wx1
, ðJ2 + 1ÞΔu =Wx2

, J3Δu =Wy3
, ðJ4 +

1ÞΔu =Wy4
. Equation (26) is an asymmetric two-

dimensional array of tapered matrices, and it can not only
expand the space for the zero trap but also offset the phase.

–4 –3 –2 –1 1 2 3 4

x

–3

–2

–1

1

2

3

y

Figure 1: Schematic diagram of the concentric seven-circle array
model.
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3.3. Concentric Circle Array Model. The concentric ring
array consists of a central array element and N circles of
concentric rings, with the number of circles set according
to requirements. The radius of the ith concentric ring is
taken as the half-wavelength multiplied by the number of
turns ith which is

ri =
λ

2 · i i = 1, 2,⋯,Nð Þ: ð27Þ

The spacing of the array elements on the circle should
meet the arc length between two adjacent array elements
should be less than or equal to half a wavelength as

2πri
ki

≤
λ

2 ⇒ ki ≥ 2πi: ð28Þ

Since the number of elements is an integer, we round up
to get the number of elements on the ith circle as

ki = 2πid e, ð29Þ

where d·e is an upward rounding symbol. Since the array ele-
ments on each circle are uniformly equidistant from each
other, we can obtain the corresponding angle between the
arc lengths of each array element as

αi =
2π
ki

: ð30Þ

Thus, we can get the coordinates of each array element as

xki = ri cos αi,
yki = ri sin αi:

 
ð31Þ

In this paper, the concentric seven-ring array model is
used, and the corresponding parameters of the array are calcu-
lated as shown in Table 1, and the schematic diagram of the
array model is shown in Figure 1.

4. Simulation

4.1. Interference-Plus-Noise Covariance Matrix Sparse
Reconstruction. In the simulation, a uniform line array
model with 10 arrays is considered, the desired signal from
5° directions with a signal-to-noise ratio of 15 dB, interfer-
ence from -50° and 40° with a signal-to-noise ratio of
30 dB, and the number of sampling snapshots used in the
simulation is 300.

A comparison plot of Capon spectral estimation and
sparse spectral estimation is shown in Figure 2. From
Figure 2, we can see that the spectrum obtained from Capon
spectral estimation has valued over the whole range and high
spikes at the estimated interference and at the desired signal,
while the spectrum obtained from sparse spectral estimation
only has an impulse at the interference and at the desired
signal with zero values in the other directions. This means
that sparse spectral estimation can provide a good estimate
of the location and power of our signal of interest.

Figure 3 shows the directional diagram for different
methods at a signal-to-noise ratio of 15 dB. We can see that
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at large signal-to-noise ratios, the SMI algorithm [12]
obtains a directional map with a significant mismatch that
does not form the main beam gain. In contrast, sparse
interference-noise covariance matrix reconstruction
(INCM) [18] gives a stable directional map with good gain
in the main beam direction and a deep zero trap against
interference. In addition, we also compare an automatic tri-

diagonal loading method [15], which also produces a gain in
the main beam but has a wider dominant flap and is much
less suppressive of interference than the sparse INCM
method [18].

The effect of the input signal-to-noise ratio on the output
signal-to-noise ratio is shown in Figure 4, where the input
signal-to-noise ratio ranges from -30 dB to 50 dB. We
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Figure 9: Orientation diagram of the concentric circle.

11Wireless Communications and Mobile Computing



–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
u

–150

–100

–50

0

D
ire

ct
io

na
l m

ap
 g

ai
n 

(d
B)

2D Array Null Widening-SparseINCM[proposed]
Interference Location

(a) Spread width at θ = 60 ° , φ = 30 °

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
u

–150

–100

–50

0

D
ire

ct
io

na
l m

ap
 g

ai
n 

(d
B)

2D Array Null Widening-SparseINCM[proposed]
Interference Location

(b) Spread width at θ = 190 ° , φ = 50 °

Figure 10: Continued.

12 Wireless Communications and Mobile Computing



2D Array Null Widening-SparseINCM[proposed]
Interference Location
Flexible Null Widening-SparseINCM
CMT-SparseINCM
Sparse INCM

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
u

–150

–100

–50

0

D
ire

ct
io

na
l m

ap
 g

ai
n 

(d
B)

(c) Contrast unexpanded at θ = 60 ° , φ = 30 °

2D Array Null Widening-SparseINCM[proposed]
Interference Location
Flexible Null Widening-SparseINCM
CMT-SparseINCM
Sparse INCM

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
u

–150

–100

–50

0

D
ire

ct
io

na
l m

ap
 g

ai
n 

(d
B)

(d) Contrast unexpanded at θ = 190 ° , φ = 50 °

Figure 10: Cross-sectional view at two disturbances.

13Wireless Communications and Mobile Computing



–120

–100

1

–80

–60

D
ire

ct
io

na
l m

ap
 g

ai
n 

(d
B)

–40

–20

0.5 1

0

0.5

v

0

u

0–0.5 –0.5
–1 –1

–110

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0
dB

1
0.50

0–0.5 –0 5

(a) SNR = −10 dB

–120
1

–100

–80

1

–60

0. 5

D
ire

ct
io

na
l m

ap
 g

ai
n 

(d
B) –40

0. 5

–20

v
0

0

u

0
–0.5 –0.5

–1 –1
–110

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0
dB

1
0. 5

v
0

u

0
–0.5 –0.5

(b) SNR = 10 dB

Figure 11: Directional map of the SMI algorithm to calculate the covariance matrix.

14 Wireless Communications and Mobile Computing



compare the sparse INCM [18] with several methods includ-
ing the automatic tridiagonal loading method [15], sequen-
tial quadratic beamforming [16], worst-case beamforming
[14], the basic SMI algorithm [12], and optimal beamform-
ing without model mismatching. It shows that at low
signal-to-noise ratios, the output SINR of the other methods
is essentially the same, but as the input signal-to-noise ratio
increases, there is an inflection point in the range of 0 dB to
10 dB where the performance starts to deteriorate.

In contrast, the sparse INCM method is not affected by
the input signal-to-noise ratio. The effect of the number of
sampling snapshots on output SINR is shown in Figure 5,
with snapshots ranging from 10 to 100. We still compare
several methods and see that the output SINR of the sparse
INCM is significantly higher than that of the other methods.
And it can be seen that the worst-case beamforming [14],
automatic tridiagonal loading method [15], and the basic
SMI algorithm [12] perform poorly at large SNRs. Their
SINR is basically around 0dB. Sequential quadratic beam-
forming [16] is more than 10 dB higher than them, but still
more than 10 dB lower than the SINR under sparse INCM.
The sparse INCM is basically close to the optimal value.

4.2. Flexible Null Broadening Technology in 1D Arrays. The
simulation selects a uniform line array model with 16 ele-
ments, the desired angle of the signal is 5°, the corresponding
signal-to-noise ratio is 15 dB, the interference signal is com-
ing from the -50° and 40° direction, and its signal-to-noise
ratio is 30 dB; the parameters of zero-trap width are set to
W1 = 0:05 and W2 = 0:15.

The results of the simulation are shown in Figure 6. From
the figure, we can see that the flexible zero-trap widening tech-
nique can produce asymmetric zero-trap widths to the left and
right of the interference and can result in wider zero traps
whether or not the sparse INCM [18] method is used. How-
ever, we can see that without the sparse INCM method, there
is a clear mismatch in the directional map at large signal-to-
noise ratios. With the latter method, not only a good main
beam gain but also a deeper zero trap can be obtained.

In addition, we compared the results for the output
SINR, using the same parameters for the desired signal as
well as for the interference signal as in the directional dia-
gram above and using 100 Monte Carlo experiments. The
final result number of sampling snapshots and input
signal-to-noise ratio on the output SINR is shown in
Figures 7 and 8. In Figures 7 and 8, we compare the output
SINR of the two methods using flexible nulling widening
(FNW) [24] and covariance matrix tapered technique
(CMT) [19] under sparse interference plus noise covariance
matrix reconstruction as well as the conventional one. From
Figure 7, we can see that as the input SNR increases, the out-
put SINR is more or less the same at low SNR and the CMT
and not. This is due to the Maxlloux method [21] of deriva-
tion in the FNW, which introduces noise along with virtual
interference, so the output SINR is slightly worse. However,
it is possible to produce asymmetric zero traps and to save
degrees of freedom [23]. Similarly, from Figure 8, we can
see that the output SINR of FNW and CMT with sparse
INCM [18] is significantly higher as the number of samples

varies with the number of fast samples due to the result of
not using it. Moreover, we can see that the two methods
based on the sparse INCM converge in the end with an
increasing number of beats. However, the results in both
Figures 7 and 8 are worse than the optimal case without mis-
match, because the other method introduces noise while
spreading the zero trap, making the output SINR.

4.3. Null Broadening with Covariance Matrix Reconstruction
in 2D Arrays. In this section of the simulation, the concen-
tric circular array model of the seven rings mentioned in A
is used to receive the signal with the relevant parameters as
shown in Table 1. Assuming that the desired signal has an
azimuth of 180°, a pitch angle of 0°, and a signal-to-noise
ratio of 10 dB, there are two interfering signals with azi-
muths of 60° and 190°, pitch angles of 30° and 50°, and a
signal-to-noise ratio of 30 dB. The number of sampling
snapshots is chosen as 1024. The parameters of zero-trap
width are set to W1 = 0:05, W2 = 0:10 and W3 = 0:05, W4
= 0:1. We use the u − v coordinate system when forming
the orientation diagram.

The 3D orientation of its simulation is shown in
Figure 9(a), and its top view is Figure 9(b). In contrast,
Figures 9(c) and 9(d) show the orientation diagrams of the
concentric ring array without the zero-trap widening. It
can be seen that our proposed method produces a significant
width at the interference, whereas without widening, there is
only a very narrow zero trap at the interference, which does
not suppress the deviating signal well and thus reduces the
UAV’s immunity to interference when receiving signals.

Next, we have made a cross-sectional plot of Figure 10
for each of the two interference directions, and we can see
that we have not only widened the zero trap at the
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interference but also achieved a flexible asymmetric spread-
ing for the width of the zero trap on both sides of the inter-
ference. We can clearly see from Figures 10(a) and 10(b) that
our approach yields a wider zero trap and can produce dif-
ferent widths on each side of the interference, allowing the
UAV to effectively suppress the deviating interference signal
while the asymmetric width reduces the waste of degrees of
freedom [22]. Figures 10(c) and 10(d) mainly compare sev-
eral widening methods with the proposed method including
CMT, FNW, and without valence, and we compare the zero-
trap widths of several methods at different depths under the
interference signal of θ = 60 ° , φ = 30 ° in Table 2. Here, the
width is the u-coordinate as the metric. From the compari-
son of Figures 10(c) and 10(d) and the data in the table,
we can see that although the CMT [19] and FNW [24]
methods have a good effect in spreading the zero traps in
1D arrays, they are basically unable to widen the zero traps
in 2D arrays, and even the depth of the zero traps is much
reduced.

Table 2 shows that the depth and width of the zero traps
in the two-dimensional arrays of methods [18, 23] are worse
than the method proposed in this paper, while the zero traps
that can be obtained by the method in this paper have a dee-
per depth and wider width. The proposed approach can not
only cope with the spreading of zero traps in 2D arrays but
can also take into account the depth of zero traps and still
have a good spreading effect in deeper zero traps. The
covariance matrices we use in the above process are all
sparse INCM methods. However, if we use the ordinary
SMI algorithm to obtain the covariance matrix, we can only
form a good directional map at a low SNR such as
Figure 11(a), where the expected signal direction is -10 dB,
and when we increase the SNR to 10 dB, the directional
map becomes Figure 11(b), which cannot form the main
beam.

4.4. Analysis of DOF. Figure 12 shows a simulation
comparing the degrees of freedom between the CMT and
the widened zero-trap approach proposed in this paper

and incorporating a comparison of the reconstructed inter-
ference plus noise covariance matrix and the degrees of
freedom without reconfiguration. Here, we have used an
array of 20 array elements. The flexible null widening
method of the widening factor is W1 = 0:05, W2 = 0:10.
The CMT has to cover the worst case, so the widening factor
used is 0.2. It can be seen that in Figure 12, the asymmetric
widening reduces about 4 DOF. And with the interference
plus noise covariance matrix reconstruction, it can be
reduced by about 4 DOF.

4.5. Multibeam Formation in 2D Arrays. This section simu-
lates the LCMV-based multibeam directional map forma-
tion. Firstly, a 1D uniform line array is simulated, using a
32 array ULA array, with the desired signals from -30°, 0°,
and 50°, whose signal-to-noise ratios are 8 dB, 10 dB, and
5dB, respectively. Two interfering signals are from -50°

and 30°, whose signal-to-noise ratios are both 30 dB. The
number of sampling snapshots is 1024. The parameters of
zero-trap width are set to W1 = 0:15 and W1 = 0:05.

The result is shown in Figure 13. As seen in the figure,
the beam is formed in several directions and both the
sparse interference plus noise covariance matrix recon-
struction we mentioned earlier and the asymmetric zero-
trap broadening method are applied. Then, we simulated
the concentric seven-circle array model. The expected sig-
nals come from azimuth 0°, 40°, 40° and pitch 180°, 80°,
300°, and their respective signal-to-noise ratios are 8 dB,
10 dB, and 5dB. The interference signals come from two
directions: azimuth 60°, 240° and pitch 30°, 30°, and their
respective signal-to-noise ratios are 30 dB. The number of
sampling snapshots is 1024. The final directional diagram
is shown in Figure 14. From Figures 14(a) and 14(b), we
can see that for the UAV, the concentric circular array
model can form the main beam in multiple directions
and also uses a sparse INCM to prevent a model mis-
match. The zero-trap spreading can also be achieved for
interference signals by applying our proposed widening
approach for 2D arrays.
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Figure 13: Directional map of multiple beamforming for a uniform line array of 32 array elements.
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Table 2: Comparison of zero-trap widths at different depths for different methods.

-50 dB -60 dB -70 dB -80 dB -90 dB -100 dB

No null widening 0.0455 0.0364 0.0271 0.0187 0:0104 0.0056

CMT [18] 0.0213 0.0115 \ \ \ \

FNW [23] 0.0202 0.0103 \ \ \ \

Proposed methods 0.3273 0.2796 0.2212 0.1905 0.1756 0.1591
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Figure 14: Directional map of concentric seven-circle array for multibeam.
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5. Conclusion

In this paper, we propose a flexible asymmetric zero trap
spreading technique for two-dimensional planar arrays in
UAVs to prevent the model mismatch caused by high
SNR. We use a sparse covariance matrix reconstruction
method in constructing to prevent the model mismatch
due to the large SNR of the UAV received signals. And a
sparse covariance matrix reconstruction method is used to
effectively avoid the model mismatch and to improve the
performance of the adaptive beamformer. LCMV is applied
to form multiple beams for the case that the UAV may
receive multiple signals. Simulation results show that for
the UAV planar antenna array, we can reduce the waste of
DOF and get a good adjustable zero-notch width. At the
same time, the performance of the adaptive beam shaper is
still good when the SNR is large. And the main beam can
be formed in multiple directions. The results also prove that
the proposed method works better in a two-dimensional
array and avoids the model mismatch problem compared
to some zero-trap spreading approaches. The robustness of
UAV antenna adaptive beamforming is enhanced, and the
antijamming ability of UAV is improved. In future research,
we hope to apply the zero-trap broadening technique to
more antenna arrays in different dimensions.
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