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Although data-driven models, especially deep learning, have achieved astonishing results on many prediction tasks for nonlinear
sequences, challenges still remain in finding an appropriate way to embed prior knowledge of physical dynamics in these models.
In this work, we introduce a convex relaxation approach for learning robust Koopman operators of nonlinear dynamical systems,
which are intended to construct approximate space spanned by eigenfunctions of the Koopman operator. Different from the
classical dynamic mode decomposition, we use the layer weights of neural networks as eigenfunctions of the Koopman
operator, providing intrinsic coordinates that globally linearize the dynamics. We find that the approximation of space can be
regarded as an orthogonal Procrustes problem on the Stiefel manifold, which is highly sensitive to noise. The key contribution
of this paper is to demonstrate that strict orthogonal constraint can be replaced by its convex relaxation, and the performance
of the model can be improved without increasing the complexity when dealing with both clean and noisy data. After that, the
overall model can be optimized via backpropagation in an end-to-end manner. The comparisons of the proposed method
against several state-of-the-art competitors are shown on nonlinear oscillators and the lid-driven cavity flow.

1. Introduction

The linear dynamical system, which can be described as a
function that captures the implicit evolution rule of states in a
geometrical space, has achievedhuge success inawide spectrum
of applications from machine learning to automatic control.
However, effectivelymodeling states present inhighlynonlinear
dynamical systems while also accurately quantifying uncer-
tainty is still a challenging task [1]. Research on nonlinear
dynamic systems has a long history, while the parameters of
the complex system may not be known precisely; thus, we can
only obtain approximate results and require stability analysis
(such as the Lyapunov stability or structural stability) [2]. In
recent years, fully data-driven machine learning methods, in
particular deep neural networks, appear to be a viable alterna-

tive, which have a remarkable ability to learn complex patterns
from training samples. Specifically, recurrent neural networks
(RNNs) [3] are a form of neural network architecture which is
mainly used to detect patterns in sequential data. RNNs pass
information through the network that transmits information
back into themselves, which enable them to take into account
both previous states and the current state. However, as in most
neural networks, vanishing or exploding gradients is a funda-
mental problem of RNNs. Although long short-term memory
units (LSTMs) [4] can alleviate the vanishing gradient problem,
it is still limited in maintaining long-term memory.

Another limitation of the deep learning method, which is
also the main concern of this article, is the lack of intuitive
causal interpretability. In some cases involving specific phys-
ical phenomena that need the interpretability of the model,
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good performance alone is not enough to satisfy the need for
practical application.

The complexity of deep neural networks makes it hard to
understand and reason the predictions, which hinders its
further application and improvement [5]. Instead, most
engineers prefer classical off-the-shelf models as it ensures
physical plausibility while the learned models only achieve
good performance in the vicinity of the training data. Fortu-
nately, motivated by this issue, researchers are becoming
more and more interested in how to bridge this gap. The
combination of deep learning and physics seems natural, as
the compositional structure of deep networks enables the
efficient computation of the derivatives, thus, can encode a
differential equation describing physical processes [6–8].
The physics-based deep model not only helps to improve
the generalization and interpretability of the deep model
but also eliminates counterfactual components in represen-
tation learning.

Nonlinear dynamical systems are very common in engi-
neering, but most of them are task-specific, and there exists
no general framework for solving them. Therefore, repre-
senting nonlinear dynamics in a linear framework is partic-
ularly attractive, because techniques from linear dynamical
systems, linear algebra, geometric, and spectral theory can
be directly applied. The Koopman operator theory [9] devel-
oped in 1931 has recently become the main research focus of
linear representations of nonlinear systems. Based on the
Koopman operator, the analysis of nonlinear dynamical sys-
tems can be lifted to an infinite-dimensional linear space.
Most algorithms handle the Koopman operator by convert-
ing an infinite-dimensional space into a finite-dimensional
space. In this way, it naturally combines the neural network
with flexible expression ability for subspace and the physical
regularization based on the Koopman operator to achieve
the global linear expression of the nonlinear system. Typi-
cally, by embedding the sequence onto a low-dimensional
latent space in an unsupervised manner, the Koopman oper-
ator can be approximated by a linear layer of a neural net-
work. This deep Koopman model retains the physical
interpretability and can predict the future hidden state and
the hidden state of the current state [10–15].

However, most of the current methods impose strict
orthogonal constraints to the Koopman eigenvectors
spanned by the linear layer, which makes them sensitive to
noise [16]. Drawing inspiration from the Koopman theory
and convex optimization, in this paper, we propose a convex
relaxation approach for learning the robust Koopman opera-
tor. Specifically, we find that solving the approximation of the
Koopman operator can be regarded as an orthogonal Pro-
crustes problem on the Stiefel manifold. In order to improve
model robustness against input noise, we prove that the
geometric constraint of the Koopman operator can be
replaced with its convex counterpart. Without requiring
extra computation cost, the proposed model, which can be
trained in an end-to-end manner, shows considerable accu-
racy and robustness gains by incorporating this convex coun-
terpart regular term into the deep unsupervised model. The
proposed method overcomes the overconstraint problem of
the Koopman operator in the previous methods [10, 11].

The numerical experiment results on two complex nonlinear
dynamic systems also prove the effectiveness of the proposed
algorithm.

2. Review of Related Work

Most real-world phenomena can be described by dynamic
systems; hence, we can implement state prediction, estima-
tion, and control by constructing and analyzing dynamic
systems. Linear dynamical systems can be solved exactly,
which can be traced back to Kalman [17]. In reality, more
systems are usually complex nonlinear systems [18]. Occa-
sionally, the solutions of some nonlinear systems can be well
approximated by an equivalent linear system near its fixed
points, such as EKF [19]. While nonlinearity remains a
grand challenge in analyzing dynamical systems. Different
from linear systems which can be completely characterized
in terms of spectral decomposition, there is no similar gen-
eral mathematical framework to analyze nonlinear systems.

Over the years, researchers considered analyzing the
geometry of subspaces of local linearization around fixed
points and global heteroclinic being effective ways to solve
nonlinear dynamic systems [20]. The geometric theory
provides us with a new perspective for modeling complex
systems, such as the Hartman-Grobman theorem [21],
which determines the conditional constraints of linear
dynamics approaching nonlinear systems. Although the
geometric perspective provides a quantitative local linear
model, the global analysis still requires qualitative calcula-
tion, which limits the nonlinear prediction, estimation, and
control theory far away from the fixed point [22]. In many
fields, the lack of known physical laws makes it impossible
to construct control and motion equations. For these
complex nonlinear systems, which is also the main concern
of modern researchers, the linearization method is more
challenging, and the linear approximations often become
suspect.

With increasingly powerful data-driven techniques,
learning the approximate nonlinear dynamic that emerged
in the data is the main focus of renewed interest. Operator
theory [23] and deep learning models [24] seem to be two
effective ways to automate the discovery of the underlying
physical mechanisms of nonlinear dynamic systems. Deep
learning methods, especially RNN and its derivative models
(LSTM [4] and GRU [25]), can use nonlinear activation
functions and recursive units to express nonlinear systems
implicitly. However, the black-box nature of DNNs has
become one of the primary obstacles to their wide accep-
tance in mission-critical fields, and ignoring necessary phys-
ical bias may lead to counterfactual results.

Discovering underlying dynamics from data that enable
the linear representation of nonlinear systems is the main
goal of operator-theoretic-based approaches. The operator
theory has proved that infinite-dimensional linear operators
can be used to represent nonlinear dynamic systems, such as
Koopman operators [9, 26]. Although the Koopman opera-
tor is appealing, it requires infinite degrees of freedom to
describe the space of measurement functions, which poses
issues for representation and computation. The Koopman
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operator can be approximated via the dynamic mode
decomposition (DMD) algorithm [27–30].

Recently, many physics-based deep models have been
proposed [10–13, 31, 32], which could encode the physical
equations into their network to obtain physical plausibility
and improve the generalization of deep models. Bethany
et al. [12] first proposed to identify nonlinear coordinates
on which the dynamics are globally linear using a modified
autoencoder. Yeung et al. [11] introduced a method that
automatically selects efficient deep dictionaries to approxi-
mate the Koopman operator. Samuel [31] leveraged neural
networks to learn sets of adaptive, low-dimensional dictio-
nary observables to avoid the over-fitting problem while
retaining enough capacity to represent Koopman eigenfunc-
tions. Takeishi et al. [13] combined the Koopman spectral
analysis and autoencoder to learn Koopman invariant sub-
spaces from observed data. Azencot et al. [10] considered
the forward and backward dynamics of Koopman operators
by adding consistency constraints to the loss function. Most
recently, Li et al. [32] proposed to use graph neural networks
to learn compositional Koopman operators and use a block-
wise linear transition matrix to regularize the shared struc-
ture across objects. Although the motivations of these
methods are different, most of them are based on the deep
generative model and approximate the Koopman eigenvec-
tors by the linear layer of the encoder. However, analysis
of the Koopman operator in the above methods is based
on the DMD method, and the linear operator constructed
in this way may be very sensitive to noise.

3. Method

3.1. Koopman Operator. A dynamical system _x = f ðxÞ is a
function that describes the time-dependence of a point in a
geometrical space. Given any discrete time, a nonlinear
dynamical system has a state given by a vector that can be
represented by a point x ∈M in an appropriate geometrical
manifold. The evolution rule of the nonlinear discrete-time
dynamical system describes what future states follow from
the current state t ∈ T :

xt+1 = f xtð Þ: ð1Þ

A function g : x⟶ℝ can be seen as an observable of
the system, and the set of all observables forms an infinite-
dimensional Hilbert space H . The Koopman operator K

is defined as an infinite-dimensional linear operator that acts
on observables g:

Kg xð Þ = g f xð Þð Þ: ð2Þ

Intuitively, the Koopman operator can be regarded as the
state transition matrix of the evolution trajectory in an
infinite-dimensional space. The key property of the Koopman
operator K is its linearity. For any two observables g and h
and scalar values α and β, the linearity is easy to be proved:

K αg + βhð Þ = αKg + βKh: ð3Þ

It would seem natural to characterize the state space
dynamics by the spectral properties of the Koopman operator.

The spectrum γðKÞ of the Koopman operator K on an
infinite-dimensional vector space is defined as

Kφ = γφ, ð4Þ

where K − γI is not invertible. In the infinite-dimensional
Hilbert space, the Koopman operator K can be denoted as

Kg = 〠
∞

i=1
σiφiγi, ð5Þ

where σ is called the Koopman mode associated with the
Koopman eigenvalue-eigenfunction pair, and it is given by
the projection of the observable g onto φ.

3.2. Convex Relaxation Constraint. The purpose of most
DMD and deep learning approaches is to find eigenfunc-
tions of the Koopman operator directly, satisfying

φ xk+1ð Þ =Kφ xkð Þ = λφ xkð Þ: ð6Þ

The eigenfunctions of Koopman operator can span an
invariant linear subspace. In practice, the Koopman operator
can be solved as an orthogonal Procrustes problem (OPP) in
the following form:

arg min
K

Kφ xkð Þ − φ xk+1ð Þk kF

subject toKTK = I:
ð7Þ

Although the deep learning method can learn these
eigenfunctions from data, the eigenfunctions are very sensi-
tive to the noise in the training data. Strict orthogonal
constraint would result in the noisy input to be merged into
the representation of the hidden features φðxÞ. Thus, the
continuity and smoothness of the Koopman spectrum evo-
lution may be destroyed.

Obviously, in Equation (7) the linear operator K lies on
the Stiefel manifold.

Vd ℝnð Þ≔ K ∈ℝn×d : KTK = Id
n o

: ð8Þ

KT denotes the transpose ofK , and Id denotes the d × d
identity matrix. From the above description, we can find that
if K is a linear operator, then the following propositions are
equivalent: (1) K is an isometry. (2) KTK = Id . (3) <Kx,
Ky > = < x, y > . The above propositions can be proved by
the following formula:

<ζi,T TKζj>H ζ
=
ð
H ζ

ζi xð Þ,KTKζj xð Þ� �
dx = <ζi, ζj>H ζ

:

ð9Þ

Each of the Stiefel manifolds VdðℝnÞ can be viewed as a
homogeneous space for the action of a classical group in a
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natural manner. The orthogonal group OðnÞ acts transitively
on VdðℝnÞ. When d = n, the corresponding action is free so
that the Stiefel manifold VdðℝdÞ is a principal homogeneous
space for the corresponding classical group.

In order to enhance the robustness of the model, in this
work, we try to enforce the manifold constraint on K by its
convex counterpart. Specifically, we generalize it by seeking
the closest Koopman eigenfunctions in which the columns
may be orthogonal, but not necessarily orthonormal.

Lemma 1. The convex hull of the Stiefel manifold VdðℝnÞ≔
fK ∈ℝn×d : KTK = Idg equals the unit spectral-norm ball
convðVdÞ = fK ∈ℝn×djkKk2 ≤ 1g. kKk2 denotes the spec-
tral norm of a matrix K , which is defined as the largest
singular value of K .

Proof. Let UΣVT be the singular value decomposition of K .
U is n × n orthonormal, V is d × d orthonormal, and Σ is
n × d diagonal with values σiðKÞ on the diagonal. Then

max
K∈Vd

<K ,K > = max
K∈Vd

<UΣVT ,K >

= max
K∈Vd

TrΣ < VTKTU >

=max
P∈Vd

TrΣPT

=max
P∈Vd

〠
n

i=1
σi Kð Þpii ≤ 〠

n

i=1
σi Kð Þ:

ð10Þ

The above lemma demonstrates that the manifold
constraint fK ∈ℝn×d : KTK = Idg can be conveniently
imposed by minimizing a convex regularizer.

We can use the above lemma directly to get the convex
relaxation constraint term. In particular, the above condi-
tions take the form

LStiefel = Kk k2 − 1
�� ��2

2: ð11Þ

By combining with an autoencoder, we propose a model
capable of processing time-series data. Our model is trained
by minimizing the following loss function:

L = λreLre + λpreLpre + λStief elLStief el, ð12Þ

where λre, λpre, λStief el are user-defined hyperparameters that
balance between reconstruction, prediction, and convex
relaxation constraint. Lre, Lpre, and LStief el are defined in
Equations (11), (13), and (14)respectively.

Lre =
1
2〠

n

k=1
xk − φ−1 φ xkð Þð Þ�� ��2

2, ð13Þ

Lpre =
1
2〠

n

k=1
Kφ xkð Þ − φ xk+1ð Þk k22: ð14Þ

4. Experiments

To evaluate our proposed approach (named Stiefel Koopman),
we perform a comprehensive study using two datasets and
compare to state-of-the-art Koopman-based approaches. The
proposed Stiefel Koopman network minimizes Equation (12)
with a decaying learning rate initially set to 0.01. We fix the
loss weights to λre = λpre = 1 and λStief el = 5 × e−4, for the AE,
prediction, and convex relaxation regularizing penalty, respec-
tively. We use ls = 8 prediction steps forward in time.

4.1. Baselines. We compare our approach with two different
Koopman-based baselines detailed next. For a fair compari-
son, unless said otherwise, we always use the same parame-
ters in all methods.

4.1.1. Koopman AE [11]. The Koopman AE simulates the
evolution process of the Koopman operator by using spectral
decomposition in the AE training process. Many methods
such as those in [13, 32] are its derivatives; without loss of
generality, we will take it as a representative method for com-
parison. The Koopman AE also can be viewed as a special
case of our method without manifold regularizing penalty.

4.1.2. Consistent Koopman AE [10]. Consistent Koopman
AE leverages the forward and backward dynamics, and the
consistency penalty is constructed by the relationship
between the forward and reverse Koopman operators. The
idea of this method is similar to the smooth filtering in
Bayesian filtering and is also related to the consistent
GAN. We will show that our method can degenerate to
consistent Koopman AE and has lower computational
complexity and higher accuracy.

4.2. Nonlinear Pendulum. A simple gravity pendulum with-
out friction is an idealized mathematical model and a
dynamic system which swings back and forth only under
the influence of gravity. When a pendulum is displaced side-
ways from its equilibrium position, it is subject to a restoring
force due to gravity that will accelerate it back toward the
equilibrium position. The differential equation of an ideal-
ized pendulum can be represented as a second-order ODE
as follows:

d2θ
dt2

+ h
l
sin θ = 0, ð15Þ

where g = 9:81 is acceleration due to gravity, l = 1 is the length
of the pendulum, and θ is the angular displacement. Following
the same protocol as that in [10], the initial oscillation angles
conditions θ0 = 0:8 and θ0 = 2:4 are considered in our
experiment, and the time interval and sampling interval are
set to t = ½0, 51� and Δt = 0:03, respectively. After obtaining
the 2D sampling sequence, we use a random orthogonal
matrix to map the samples to a high-dimensional space. This
is the finite-dimensional approximation of the Koopman
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operator in the infinite-dimensional Hilbert space. The train-
ing set contains 600 snapshots and 1600 testing snapshots.

As there are many network parameters, the source
code will be available at https://github.com/usodonkey/Hci-
groupgithub. For detailed parameter settings of the model,
please refer to the above link. For the comparative evaluation,
the performance of the proposed method is tested against
other two SOTA approaches listed above for clean pendulum
sequences. Figure 1 shows the pendulum results for initial
conditions θ0 = 0:8 and bottleneck = 6, which illustrates that
our model can achieve the best results in all the cases we
explored. The relative prediction error is computed at each
time step via ðkφðxkÞ −Kφðxk−1Þk2Þ/ðkφðxkÞk2Þ. Kφðxk−1Þ
is the high-dimensional estimated prediction. We make pre-
dictions over a time frame of 1000 steps and average the error
across 30 different initial observations φðxkÞ, where the shaded
areas represent the standard deviations.

It is worth noting that, as shown in Table 1, we do not
need to pay more computational costs to obtain the above

results in Figure 1. The running time of our model is equiv-
alent to that of Koopman AE, less than half of that of con-
sistent Koopman AE. As shown in Figure 2, our algorithm
can still get the best results when the initial conditions are
set to θ0 = 2:4.

In the theoretical part, we have mentioned that the con-
vex relaxation term could improve the robustness of the
model to noise. Therefore, we added two levels (0.05 and
0.1) of the Gaussian white noise to the input. The results
are shown in Figures 3 and 4. Obviously, noise has varying
degrees of influence on the prediction accuracy of all models.
However, compared with other methods, it is not difficult to
find that our method exhibits stronger robustness to noise
and has a smaller standard deviation.

In addition, we can also add the backward prediction
and consistency regular items in consistent Koopman AE
to our model. The entire training process is consistent with
the paper [10]. As shown in Figure 5, we find that additional
constraints can further improve the prediction accuracy of
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Figure 1: The comparison of our approach vs. SOTA methods by setting θ0 = 0:8.

Table 1: Average run time for 600 epochs training cases with different bottlenecks. In general, our model is almost two times faster than
consistent Koopman AE during training and similar to Koopman AE.

Scenario bn = 6 bn = 8 bn = 10
Koopman AE 61.18 s 62.38 s 63.49 s

Stiefel Koopman 61.34 s 62.41 s 63.34 s

Consistent Koopman AE 127.44 s 136.27 s 150.85 s
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Figure 2: The comparison of our approach vs. SOTA methods by setting θ0 = 2:4.
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the proposed method. But unfortunately, in this configura-
tion, we need to pay nearly twice the cost of computing time.
However, we believe that the proposed method obtains rel-

atively optimal results under the condition of limited com-
putational complexity. Moreover, we have an interesting
discovery in the experiment, and the proposed method
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Figure 3: The comparison of our approach vs. SOTA methods on the pendulum’s trajectories on noisy inputs. The noise level is set to 0.05.
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Figure 4: We compare the behavior of our approach vs. SOTA methods on the pendulum’s trajectories on noisy inputs. The noise level
is set to 0.1.
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Figure 5: Prediction error after adding consistency constraint of consistent Koopman AE [10] to Stiefel Koopman.
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can improve the robustness of Koopman AE by adding a
convex relaxation term. However, the robustness of consis-
tent Koopman AE cannot be enhanced by an additional
convex relaxation term. This result also may suggest that
the poor robustness of the algorithm is caused by the con-
sistency constraint.

4.3. Ablation Study. As we all know, if we use a lot of nodes
in the bottleneck layer when designing a neural network,
high-dimensional coding will be generated. At this time,
the network may overfit the input data by simply remember-
ing the inputs. In this case, we will not be able to get the
correct relationship in our coding. Similarly, if we use a
bottleneck layer with a very small number of nodes, it will
be difficult to capture all relationships. Therefore, we set
the number of nodes in the bottleneck layer to 6, 8, and
10. As shown in Figure 6, our method can get the best result
when the bottleneck is set to 6.

The weight hyperparameter of the convex relaxation
term will also affect the performance of the model. If the

penalty hyperparameter is too large, our model will degener-
ate to the Koopman AE. If the penalty hyperparameter is too
small, the convex relaxation term will be invalid. Therefore,
we conduct hyperparameter selection experiments under
different initial conditions. The experimental results are
shown in Figure 7. When the initial condition is set to
θ0 = 0:8, setting the penalty hyperparameter λStief el = 5 × e−4

can obtain the best result, and when the initial condition is
set to θ0 = 2:4, setting the penalty hyperparameter λStief el =
1:2 × e−3 can obtain the best solution.

4.4. Cavity Flow. The lid-driven cavity flow is most prob-
ably one of the most studied fluid problems in the com-
putational fluid dynamics field. Due to the simplicity of
the cavity geometry, applying a numerical method to this
flow problem in terms of coding is quite easy and
straightforward. Despite its simple geometry, the driven
cavity flow retains a rich fluid flow physics. The flow
inside a driven cavity is governed by the 2D steady
incompressible Navier–Stokes equations. These equations
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Figure 6: Prediction errors with different bottlenecks, over a time horizon of 1000 steps.
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Figure 7: Effect of our manifold loss terms with different weights. Experiment results with oscillation angles θ0 = 0:8 (top row) and θ0 = 2:4
(bottom row).
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in stream function and vorticity formulation are given as
follows [33]:

∇·v! = 0,

∂v!

∂t
+ v! · ∇
� �

v! = −
1
ρ
∇p + ν∇2 v!,

ð16Þ

where v! represents the velocity field. The first equation repre-
sents mass conservation at a constant density. The second
equation is the conservation of momentum. In incompressible
flow, the continuity equation ∇·v! = 0 provides a kinematic
constraint that requires the pressure field to evolve so that
the rate of expansion ∇·v! should vanish everywhere. We use

the Poisson equation ðð∂2pÞ/ð∂x2ÞÞ + ðð∂2pÞ/ð∂y2ÞÞ = b to
construct a pressure field that guarantees the continuity is sat-
isfied; such a relation can be obtained by taking the divergence
of the momentum equation. Finally, cavity flow with Navier–
Stokes can be denoted by the following formulations:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂p
∂x

+ ν
∂2u
∂x2

+ ∂2u
∂y2

 !
,

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −
1
ρ

∂p
∂y

+ ν
∂2v
∂x2

+ ∂2v
∂y2

 !
,

∂2p
∂x2

+ ∂2p
∂y2

= −ρ
∂u
∂x

∂u
∂x

+ 2 ∂u
∂y

∂v
∂x

+ ∂v
∂y

∂v
∂y

� �
,

ð17Þ
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Figure 8: The predictions for the lid-driven cavity flow. We show the results of the predictions (top row) and its details (bottom row), where
the blue arrow is ground truth.

0

Consistent koopman AE
Koopman AE
Stiefel koopman

0.00

0.05

0.10

0.15

Pr
ed

ic
tio

n 
er

ro
r

0.20

0.25

0.30

0.35

20 40 60 80

Time, (t)

100 120 140

Figure 9: We compare the behavior of our approach vs. SOTA methods on the lid-driven cavity flow.
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where the terms x,t, uðx, tÞ, and ν denote spatial coordinate,
temporal coordinate, speed of fluid at the indicated spatial and
temporal coordinates, and viscosity of fluid, respectively. The
viscosity is a constant physical property of the fluid, and the
other terms represent the dynamics contingent on that viscosity.

By setting initial condition u, v, p = 0 everywhere and
following the boundary conditions, we can get 2000
samples which are uniformly sampled from 10,000 data
by setting the model parameters (nx = 100, ny = 100, nt =
500, and nit = 50); half of the samples are used for training
and half for testing.

Compared with the pendulum data, the cavity flow data
has a higher dimensionality. Therefore, we set the bottleneck
to 24 (the optimal empirical value). The qualitative predic-
tion experiment results are shown in Figure 8. The blue
arrow represents the ground truth, and the red is the predic-
tions of different algorithms. We can find that our method is
significantly better than Koopman AE. Compared with con-
sistent Koopman AE, our results are also improved (we have
marked the significant differences in red circles).

The corresponding prediction error curve on the lid-
driven cavity flow is shown in Figure 9. It can be found that
the prediction error of Koopman AE will increase greatly
with the increase of time step.

As shown in Figures 10 and 11, when the input data con-
tains noise, we analyze the prediction performance of our
model and the competitive methods from the quantitative
and qualitative perspectives, respectively. It is not difficult

to find that for complex nonlinear dynamic model models,
noise has a very serious impact on the prediction results.

5. Conclusion

In this paper, we present a data-driven global linearization
method for nonlinear dynamic systems. We found that the
Koopman operator lies on the Stiefel manifold. The eigen-
vector of the Koopman operator directly calculated will
cause the noise to be merged into the feature representation
of the data. Therefore, we propose using the convex relaxa-
tion operator of the Stiefel manifold to constrain the
eigenvectors of the Koopman operator. Compared to the
recently proposed consistent Koopman AE, our algorithm
performs better both on clean and noisy data, and the model
complexity is much lower than consistent Koopman AE. In
future work, we will study more complex nonlinear systems
in the real world, such as human action sequences.

Data Availability

The source code will be available at https://github.com/
usodonkey/Hci-group.
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