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To solve the problems of poor quality of service and low energy efficiency of nodes in underwater multinode communication
networks, a distributed power allocation algorithm based on reinforcement learning is proposed. .e transmitter with rein-
forcement learning capability can select the power level autonomously to achieve the goal of getting higher user experience quality
with lower power consumption. Firstly, we propose a distributed power optimization model based on the Markov decision
process. Secondly, we further give a reward function suitable for multiobjective optimization. Finally, we present a distributed
power allocation algorithm based on Q-learning and use it as an adaptive mechanism to enable each transmitter in the network to
adjust the transmit power according to its own environment. .e simulation results show that the proposed algorithm not only
increases the total channel capacity of the system but also improves the energy efficiency of each transmitter.

1. Introduction

Marine information technology not only plays an important
role in the fields of marine environment monitoring, ex-
ploration and resource development, marine disaster
warning, and underwater target location tracking but also is
a hot direction for information science research [1, 2]. .e
primary problem to be solved in the development of marine
information technology is the construction of underwater
sensor networks and the allocation of resources for network
communication; otherwise, marine information technology
is not possible [3–5]. With the increasing exploitation of
underwater resources, the variety and number of commu-
nication nodes deployed underwater are becomingmore and
more abundant, and there will even be multiple types of
underwater communication networks deployed in the same
sea area. For example, in Ref. [6], a two-dimensional un-
derwater sensing network structure was developed in which
the sensor nodes were anchored to the seafloor. .is means
that the sensors can only detect a range of data on the
seafloor. However, many other important 3D data, such as
the flow rate and salinity of seawater, which are crucial for

one to study the characteristics of the marine environment,
are not detectable. Correspondingly, this paper proposes an
autonomous underwater vehicle (AUV) to monitor and
collect important 3D data, and uses different types of sensors
to detect a range of data on the seafloor.

Unlike wireless electromagnetic wave communication
networks, most acoustic modems in underwater acoustic
communication networks (UACNs) are battery-powered,
but in an underwater environment, battery replacement
and charging are extremely difficult [7]. Meanwhile, there
are many types of nodes deployed in UACNs, including
multiple types of nodes such as master nodes, sub-nodes,
AUVs, and so on. Normally, different types of nodes hope
to transmit data with greater power to obtain a higher
quality of service [8]. In this case, if proper interference
control is not performed, there will be increased inter-
ference between nodes and a huge waste of transmit power.
So it can be seen that, because of the complex underwater
acoustic communication environment, the proposed re-
source allocation algorithm needs to have strong adaptive
characteristics to counter the dynamic underwater acoustic
communication environment. .e low transmission rate of
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orthogonal frequency-division multiplexing (OFDM)
technology has obvious advantages in combating the
complex communication environment of underwater
acoustics. Its low transmission rate effectively reduces
multipath reflection interference [9], and it is also ex-
tremely resistant to inter-code interference [10]. Motivated
by previous analysis, based on the modeling of OFDM
underwater heterogeneous communication networks, we
consider how to find a balance between power consump-
tion and interference level to achieve optimal system
performance.

To summarize, we consider the issue of energy efficiency
optimization in cooperative UACNs. Since the resource
allocation process can be considered as a Markov decision
process (MDP), reinforcement learning (RL) is applied to
solve the above problems [11]. Specifically, RL methods are
used to find the equilibrium between power consumption
and interference level, i.e., to select the appropriate transmit
power for each node to obtain a high quality of service within
the interference allowable range. To this end, this paper seeks
the global optimal strategy by constructing a global MDP.
.e main contributions of this work are summarized as
follows:

(i) We propose a learning framework suitable for
communication nodes. .e framework realizes the
transformation of resource allocation problem like
the Markov decision model, which defines the state
space and action set in the environment according
to the actual problem that needs to be solved.

(ii) We propose a systematic reward function design
method based on the multiobjective optimization
problem and the nature of RL, which is used to
guide the training method of the transmitter. .e
designed reward function takes into account the
network environment and node energy which are
uncontrollable factors, and achieves maximization
of quality of service (QoS) of communication nodes
with relatively small energy consumption. We
further show that the proposed reward function can
achieve significant improvements in energy
efficiency.

(iii) We propose a resource allocation strategy for un-
derwater transmitters based on Q-learning, which is
distributed and scalable. .e simulation results
show that, compared with the greedy algorithm, the
resource allocation strategy based on Q-learning
achieves a higher system capacity and a longer life
cycle.

.e rest of this paper is organized as follows. Section 2
reviews the work related to resource allocation in UACNs.
Section 3 introduces the multisectional cooperative com-
munication network model and describes the problems
related to resource allocation. Section 4 proposes a resource
allocation strategy based on Q-learning and proves the ef-
fectiveness of the designed scheme theoretically, and Section
5 compares the proposed algorithm with the greedy algo-
rithm. Finally, Section 6 concludes the paper.

2. Related Work

Compared to the channel bandwidth on land, the available
bandwidth underwater is very narrow, only a few kilohertz.
When there are more underwater communication nodes,
many nodes will communicate in similar frequency bands,
which will generate large interference between nodes and
affect the communication quality of underwater nodes.
Facing the complicated underwater communication envi-
ronment, many scholars have improved the communication
quality of underwater sensor networks by rationally allo-
cating resources such as channels and power.

.e problem of resource allocation has been extensively
studied in UACNs. Aiming at the energy limitation and
throughput problems in UACNs, the linear Gaussian relay
channel (LGRC) model is used in Ref. [12] to optimize the
power spectral density of the input power, effectively
expanding the transmission capacity of UACNs. In a similar
study, For the MQAM-OFDM underwater acoustic com-
munication system, a joint power-rate allocation algorithm
is proposed in Ref. [13], which optimizes the transmission
power of the node and improves the transmission rate of the
system. In Ref. [14], the authors proposed an efficient
spectrum management system receiver-initiated spectrum
management (RISM) for underwater acoustic cognitive
networks and aimed to maximize the node channel capacity
for power allocation, which effectively avoids conflicts in
data transmission and improves the data transmission rate.
However, the centralized optimization algorithm proposed
by the abovementioned study only optimizes the trans-
mission rate of the node, and does not consider the quality of
service of the network. In order to improve its own
throughput, each transmitting node usually chooses a larger
transmitting power, which causes more serious network
interference and further reduces the life cycle of the node. In
Ref. [15], a joint frequency-power allocation-based algo-
rithm is proposed for UACNs, which effectively extends the
life cycle of nodes by setting the power level according to the
distance between nodes. .e disadvantage is that this al-
gorithm is only suitable for environments with dense net-
work nodes. Meanwhile, considering the complex
underwater communication environment, it is difficult to
deploy a centralized control center underwater, so the
abovementioned centralized power algorithm cannot meet
the strong distributed application requirements of the
UACNs.

RL has been developed to continuously optimize its own
strategies through continuous interaction with unknown
environments, and can be used in a distributed manner to
achieve better results in many scenarios [16, 17]. For ex-
ample, in order to solve the multinode interference problem
in UACNs, in Ref. [5], the authors converted the resource
allocation problem into a Markov decision model and
proposed a cooperative Q-learning optimization scheme.
However, Ref. [6] did not consider the node energy con-
sumption. Furthermore, an anti-interference relay selection
scheme for deep Q network (DQN) is proposed in Ref. [18],
which selects the node position based on the interference
level of the node on the one hand, and adjusts the node
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transmit power according to the magnitude of the BER on
the other hand. .e disadvantage is that the algorithm only
considers a network composed of a few nodes and lacks
scalability. .erefore, in order to balance node energy
consumption and network interference level, and at the
same time, considering the scalability of the algorithm, this
paper regards the communication node as an agent, and
transforms the resource allocation problem into the
Q-learning algorithmmodel to obtain the optimized strategy
result.

3. System Model and Problem Formulation

3.1. System Model. In this paper, we consider the UACNs
OFDM system composed of multiple transmitter-receiver
pairs. In UACNs, the transmitting nodes collect environ-
mental information, and the receiving nodes are relay nodes
or data fusion centers. According to application needs, there
are many types of transmitting nodes, including sensor
nodes, Autonomous Underwater Vehicle (AUV), Un-
manned Underwater Vehicle (UUV), and many others.
Different types of transmitter-receiver pairs have different
communication requirements and priority levels. .e
bandwidth of the OFDM system is equally divided into L
orthogonal sub-channels, whose set is denoted as
L � [1, 2, . . . , L]. For convenience, we assume that the
bandwidth of each sub-channel is the unit bandwidth. All
orthogonal channels are shared channels that can be freely
accessed by all transmitter-receiver pairs. Meanwhile, sup-
pose that there are N pairs of sensor nodes and 1 pair of
AUV pairs in the network, where N � [1, 2, . . . , N] repre-
sents the index of the sensor node. .e overall network
configuration is shown in Figure 1. Please note that although

we consider each transmitter to serve a single receiver, the
proposed method can be easily adapted to serve more
transmitter-receiver pairs.

From the above text, the received signal of node
nR

i ,∀i ∈ N includes interference from node nR
i (j≠ i, j ∈ N)

and thermal noise; then the signal-to-interference-to-noise
ratio (SINR) at node nR

i ,∀i ∈ N can be expressed as Ref. [19]

ηi �
pihii

􏽐
N
k�1,k≠i pkhki + pjhji + σ2

, (1)

where pj is the transmit power of AUV j; hji denotes the
channel gain from the AUV j to node nR

i ; pi indicates the
transmit power of node nT

i ; hii is the channel gain from node
nT

i to node nR
i ; pk is the transmit power of node nT

k ; and hki

denotes the channel gain from node nT
k to node nR

i . σ
2

denotes the noise power of the underwater acoustic channel.
Underwater acoustic channel noise is an important topic in
the application practice of UACNs, as hydrostatic pressure
effects (tides, waves, etc., caused by wind, rain, and seismic
disturbances) and industrial behavior (e.g., surface sailing)
remain one of the main reasons hindering the development
of underwater acoustic communication [20–22]. Calculating
the noise power σ2 is a very complex challenge, because of
the significant time-space-frequency variability of under-
water acoustic channel noise [23, 24]. Fortunately, σ2 can be
calculated from the corresponding power spectral density
[15, 25], which can be described as follows:

φ(f) � Nτ(f) + Nw(f) + Nth(f) + Nt(f), (2)

where

10 log Nτ(f) � 40 + 20(τ − 0.5) + 26log10(f) − 60log10(f + 3),

10 log Nw(f) � 50 + 7.5
��
w

√
+ 20log10(f) − 40log10(f + 0.4),

10 log Nth(f) � −15 + 20log10(f),

10 log Nt(f) � 17 − 30log10(f),

(3)

where Nτ(f), Nw(f), Nth(f), and Nt(f) denote ocean
turbulence, ship activity, wind and waves, and thermal
movement of molecules in the water, respectively. In ad-
dition, w and τ represent the influencing factor of sea surface
wind speed and ship activity, respectively.

In the underwater acoustic communication system, the
channel gain h can be expressed as Ref. [25]

h � A
−1
0 d

− sp
(α(f))

− d
, (4)

where A0 is the normalization coefficient, d denotes the
transmission distance (km), f indicates the communication
frequency (Hz), d− sp is the expansion loss, which describes
the channel characteristics of underwater acoustic propa-
gation, sp denotes the expansion coefficient, with a value of
1.5, and α(f) is the absorption coefficient, which can be
expressed by .orp empirical formula as [26]

10α(f) �
0.11f

2

1 + f
2 +

44f
2

4100 + f
2 + 2.75 × 10− 4

f
2

+ 0.003. (5)

Assume that all channel parameters are known by the
transmitting node, which is consistent with previous work
such as Refs. [3, 5]. In fact, this is reasonable, because the
channel information can be fed back to each transmitting
node through the backhaul network. .us, the normalized
capacity of any receiver can be expressed as follows:

Ci � log2 1 + ηi( 􏼁, ∀i ∈ N. (6)

3.2. Problem Formulation. During the operation of UACNs,
when the noise conditions of the underwater acoustic
channel are given, each transmitter hopes to transmit data
with a larger power in order to obtain a higher quality of
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service. However, excessive transmission of power will in-
crease the level of network interference, which will greatly
reduce the communication quality. Besides this, transmitter
usually uses battery power when working underwater, and
excessive transmitting power will accelerate the energy
consumption of the transmitter. .erefore, the main goal of
our work is to solve the energy optimization problem, i.e., to
maximize the service quality of the receiver with a smaller
energy consumption.

As mentioned previously, if we assume that the trans-
mitting power of the transmitting node nT is
P � [p1, p2, . . . , pN], then the optimization goal can be
expressed as follows:

max 􏽘
N

i�1
Ci, − 􏽘

N

i�1
pi

⎧⎨

⎩

⎫⎬

⎭, (7)

s.t. pmin ≤pi ≤pmax, i � 1, 2, . . . , N, (8)

ηi ≥ ηth, i � 1, 2, . . . , N, (9)

ηAUV ≥ ηth′ , (10)

where the objective (7) indicates the maximization of the
network capacity with relatively small energy consumption.
Ci denotes the information transmission capacity between
the j-th transmitter-receiver pair, and pj is the transmit
power of the j-th transmitter node. .e first constraint (8)
denotes the power limit of the transmitting node nT

i ,∀i ∈ N.
.e ηth in (9) and ηth′ in (10), respectively, denote the
minimum SINR of node nR

i ,∀i ∈ N and the AUV when
meeting application requirements. In other words, con-
straints (9) and (10) ensure that all receivers have sufficient
quality of service. Considering (8)–(10), it can be concluded
that the optimization in (7) is not only a multiobjective
optimization problem but also a nonconvex problem of
UACNs..is is mainly because of the SINR expression in (1)

and the optimization goal of (7). In the next section, a
method based on reinforcement learning is proposed to
solve the above problems.

4. Resource Allocation Based on
Reinforcement Learning

4.1. Markov Decision Process. .e environment that inter-
acts with the agent is usually called a Markov Decision
Process (MDP) with a finite state. We assume that S rep-
resents the discrete set of environmental states, A is the
discrete set of actions that the agent can perform, r repre-
sents the reward value of the agent performing action
a, a ∈ A in state s, s ∈ S, and g be the state transition
function. At each time t, the agent interacts with the en-
vironment to obtain the current state st � s, and selects an
action at � a from the action set A to execute. According to
the probability distribution relation g(s′|s, a), the envi-
ronment is thus changed, shifting from state st � s to s(t+1) �

s′ and generating feedback on the choice of action of the
intelligence, that is, the reward value r(s, a). .e whole
process is iterated and optimized until convergence.

.e goal of the RL method is to continuously optimize
the agent’s decision strategy π in the iterative process.
Formally, strategy π describes the mapping relationship
from environmental state to action selection. .e task of the
intelligence is to obtain the optimal policy during the
learning process so that the total expected discounted return
reaches the maximum in a finite number of steps, that is

V
π
(s) � E 􏽘

+∞
t�0 c

t
r s

t
, π s

t
􏼐 􏼑􏼐 􏼑|s

0
� s0􏽨 􏽩, (11)

where ct is the reward discount factor at the moment; s0 is
the initial state of the system; and r is the immediate reward
obtained by executing the action strategy. Vπ(s) is often
referred to as the value function of the intelligence at state s.

.e process of RL can be described as an MDP, which
has Markov properties. In other words, the state of the

Sea level

Transmitting node nT

Receiving node nR

Transmitter-receiver pair

Transmission signal

Interference signal

AUV

Figure 1: Underwater acoustic communication network model.
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environment is only related to the state of the previous
moment, and not related to the state of the earlier time.
.erefore, the value function can be simplified to

V
π
(s) � E[r(s, π(s))] + c 􏽘

s′∈S

g s′ | s, π(s)( 􏼁V
π

s′( 􏼁. (12)

.erefore, the optimal strategy satisfies the Bellman
equation as [9]

V
∗
(s) � max

a∈A
E[r(s, a)] + c 􏽘

s′∈S

g s′ | s, a( 􏼁V
∗

s′( 􏼁
⎧⎨

⎩

⎫⎬

⎭. (13)

However, in the actual systems, the state transition
function is generally unknown. .e agent cannot model the
quadruple 〈S, A, r, g〉 of reinforcement learning. .erefore,
it is necessary to use model-free RL algorithms. Q-learning is
the most representative of these algorithms. .e Q-function
is defined as

Q
∗
(s, a) � E[r(s, a)] + c 􏽘

s′∈S

g s′ | s, a( 􏼁V
∗

s′( 􏼁, (14)

where Q∗(s, a) denotes the cumulative discount reward
obtained by selecting action a at state s and choosing the
optimal policy all the way through the subsequent policy
selection process. Combining equations (12) and (13), the
relationship between the value function and the state-action
value function can be obtained as follows:

V
∗
(s) � max

a∈A
Q
∗
(s, a). (15)

.erefore, the optimal value function V∗(s) can be
obtained from Q∗(s, a). .en, (14) can be expressed as
follows:

Q
∗
(s, a) � E[r(s, a)] + c 􏽘

s′∈S

g s′ | s, a( 􏼁max
b∈A

Q
∗

s′, b( 􏼁􏼚 􏼛.

(16)

From the above equation, the update rule of the pre-
dicted Q function is provided as [5]

Q
t+1

(s, a) � 1 − αt( 􏼁Q
t
(s, a) + αt r

t
+ cmax

b∈A
Q
∗

s′, b( 􏼁􏼔 􏼕,

(17)

where Qt+1 and Qt denote the Q values before and after the
update, respectively; αt ∈ [0, 1] is the learning rate, and a
larger αt value indicates that the update of rewards depends
more on immediate rewards than on the accumulation of
past experience. It can be seen that the Q value is updated
using the optimal Q value of the immediate reward and the
next state to which it is transferred, and the basic idea is to
estimate the Q function by incrementally summing the Q
values of the previous state action pairs.

4.2. Reinforcement Learning-Based Power Allocation
Approach. In this paper, each emitter is considered as an
intelligent body with RL capability. Next, the most impor-
tant thing is to transform the resource optimization problem

in UACNs into a RL algorithm model and use it to obtain
optimal decision results. .e existing problem scenario is
modeled based on the four elements of reinforcement
learning.

4.2.1. Action Space A. According to the optimization goal
described in (7), the action of the agent is to select the power.
Generally speaking, the Q function is stored in a look-up
table. For this, we first discretize the power selection. As-
suming the transmit power of the i-th agent, the selection
range is [Pmin, Pmax], which can be discretized as follows:

pi ai( 􏼁 � pmin +
ai

Yi

pmax − pmin( 􏼁, yi � 0, 1, . . . , Yi, (18)

where Yi is the number of discretized powers.

4.2.2. State Space S. .e state of the environment should be
defined based on local observations. .e key to the problem
of UACNs resource allocation is to determine the level of
interference around each receiver and the energy con-
sumption of the transmitter. .erefore, at time t, we can
define the state observed by transmitter i as follows:

s
t
i � i,ψi, pi ai( 􏼁( 􏼁, (19)

where ψi ∈ 0, 1{ } indicates whether the SINR ηi received by
receiver i is greater than or lower than its threshold η∗i , that
is,

ψi �
1, if ηi ai, a−i( 􏼁≥ η∗i ,

0, otherwise,
􏼨 (20)

where a−i � (a1, a2, . . . , ai−1, ai+1, . . . , aN) ∈ A−i represents
the action vector of other receivers. In this paper, we use si to
represent the discrete set of environmental states related to
receiver i.

4.2.3. Reward Function. .e reward value of the agent’s RL
indicates the degree of satisfaction of the agent with the
strategy choice. In the current scenario, the optimization
goal is to maximize the QoS of the receiver device with less
power consumption, which is essentially a multiobjective
optimization problem. In this paper, we transform the
multiobjective problem into a single-objective problem by
the weight coefficient method, and transform the optimi-
zation goal setting into the reward value, denoted as follows:

r
t
i ai, a−i( 􏼁 �

βi

pi

C
2
i CH −

1
βi

CH − Γth( 􏼁
2

− Ci − Γth′( 􏼁
2
. (21)

.is is based on the following points. In (21), CH and Ci,
respectively, denote the capacity of AUV and node nR

i , i ∈ N
at time t. Γth and Γth′ are equal to log2(1 + Γth) and
log2(1 + Γth′ ), respectively. If there is a higher SINR at the
receiver, a lower bit error rate will usually be obtained, which
in turn will have a higher throughput. However, an exces-
sively high SINR requires the transmitter to transmit at a
high-power level, which in turn will cause more energy
consumption and increase interference to other users. To
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avoid this, we consider energy efficiency, i.e., (21) select the
correct number of received bits per unit of energy con-
sumption as part of the reward function. Simultaneously,
(21) also considers the deviation of AUV and node nR

i , i ∈ N
from their required capacity thresholds, that is, (CH − Γth′)

2

and (Ci − Γth)2 are reduced from (21) to decrease the value
of the reward. In addition, the parameter βi ensures the
fairness of the algorithm. βi represents the distance between
the node nR

i , i ∈ N and the AUV normalized to dth. dth is a
constant, indicating whether the node nR

i , i ∈ N is near an
AUV. For example, if the distance between the node
nR

i , i ∈ N and the AUV is less than dth, the node nR
i , i ∈ Nwill

be affected by the AUVmore than any other transmitter with
a distance greater than dth. .en, the node nT

i , i ∈ N should
give less reward, which means that the first and third terms
in (21) are multiplied by the inverse of βi and βi to reduce the
reward, respectively.

Due to the independent selection of power levels by
devices, different devices may interfere greatly with other
devices in order to maximize their own profits. In other
words, incorrect action selection may cause the SINR of
some receivers to fall below its threshold, so the reward value
is redefined as

Ri si, ai, a−i( 􏼁 �
ri ai, a−i( 􏼁, if ψi � 1,

0, if ψi � 0.
􏼨 (22)

Specifically, if the SINR in the current channel is greater
than the predefined threshold ηth (see (9)), i.e., the QoS is
greater than the minimum requirement, the reward value is
calculated from (21); otherwise, the reward value is 0.
Overall, (22) is the payoff for choosing the power pi under
state st

i to ensure the quality of service of the transmission, as
well as to achieve energy efficiency.

.e convergence of the Q-learning algorithm mainly
depends on the convergence of the Q-value function [27].
Next, we will analyze the convergence of the proposed
algorithm.

Theorem 1. <e value of the reward function r formulated
according to formula (22) is bounded in different system
states.

Proof. From (22),

Ri si, ai, a−i( 􏼁 �
ri ai, a−i( 􏼁, if ψi � 1,

0, if ψi � 0,
􏼨 (23)

we need to prove that the reward function Ri(si, ai, a−i) is
bounded in different system states when ψi � 1.

From (21), ri(ai, a−i) consists of three components,
which are the energy efficiency βiC

2
i CH/pi, the deviation of

the communication capacity of the AUV from the corre-
sponding capacity threshold (CH − Γth)2/βi, and the devi-
ation of the communication capacity of the sensor node
from the corresponding capacity threshold (Ci − Γi)

2. Here,
βi, Γth � log2(1 + ηth) and Γth′ � log2(1 + ηth′ ) are constant.

Consider that the action space A defined by power
discretization is a discrete finite value, i.e.,

A � p0, p1, . . . , pYi
􏽮 􏽯, the communication capacityCH of the

AUV and the communication capacity Ci, i ∈ N of the
sensor node are bounded in any state.

Furthermore, the product form composed of the ca-
pacity value CH, the capacity value Ci, i ∈ N, and the power
value pi must also be a discrete finite value, i.e., the energy
efficiency value βiC

2
i CH/pi is bounded. Meanwhile,

(Ci − Γth)2 and (CH − Γth′)
2 are bounded. So ri(ai, a−i) must

be bounded. □

Theorem 2. In the iteration of the Q-value of a
bounded reward function r(s,a), the learn factor 0 < λ ≤ 1 and
satisfies

􏽘

∞

t�1
λt �∞, 􏽘

∞

t�1
λ2t <∞, ∀s, a. (24)

If the optimalQ-value is denoted asQ∗ (s, a), then when
t⟶∞, we have

lim
t⟶∞

Qt st, at( 􏼁 � Q
∗

st, at( 􏼁. (25)

The conclusion exhibited in Theorem 2 has a detailed
proof process in Ref. [28], which will not be repeated here.

4.3. Algorithm Description. Based on the above preparatory
work, the Q-learning-based resource allocation algorithm
for UACNs can be described as follows. Algorithm 1 first
initializes the relevant parameters, and then uses the greedy
method [29] to guide the behavior selection of the intelligent
Q-Agent, and updates the Q-value function based on
equation (17), and iterates until the Q-value function con-
verges to make a decision on the resource allocation scheme
of UACNs.

5. Numerical Results

In order to verify the effectiveness of the proposed algo-
rithm, the next objective of this section is to evaluate the
performance in two different scenarios, i.e., a sparse network
consisting of four transmitter-receiver pairs and a dense
network with dynamic access consisting of multiple trans-
mitter-receiver pairs. .e network model of this paper is
shown in Figure 1, and the simulation parameters are set
according to Refs. [19, 30]. .e maximum transmit power of
the transmitter Pmax � 11W, system bandwidth
W � 1MHz, propagation coefficient ε � 1.5, carrier fre-
quency f � 20 kHz, noise power σ2 � 1.5 × 10− 7 W. In ad-
dition, we consider the random nonstationary
characteristics of the underwater signal, and use δ to reflect
the influence of the underwater uncertainty factors on the
underwater acoustic channel, where δ � h × ϑ and ϑ obeys
the Rayleigh distribution with a mean value of 0.1..erefore,
h + δ is used for the gain of the hydroacoustic channel in the
simulation.

.e minimum SINR requirement for node nR
i , i ∈ N and

AUV is defined in terms of the rate required to support its
corresponding receiver. In the simulation, we assume that
the minimum transmission rate required to satisfy QoS for
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node nT
i , i ∈ N is 0.4 b/s/Hz, i.e. log2(1 + ηth) � 0.4(b/s/Hz).

In addition, for AUV, the minimum rate required is set to
1 b/s/Hz, i.e. log2(1 + ηth′ ) � 1(b/s/Hz). It is important to
note that by knowing the media access control (MAC) layer
parameters, the value of the channel transmission rate can be
calculated using (Ref. [21], equations (20) and (21)). .e
parameters associated with performing Q-learning are set as
follows: learning rate λ � 0.5, discount factor c � 0.9.
e-greedy algorithm is used for the first 80% of iterations,
random e � 0.2, and the maximum number of iterations is
set to 50,000. Besides, in order to achieve noncooperative
power allocation in UACNs, one of the most important
issues is the definition of the receiving reward. In this paper,
the concept of energy efficiency is introduced in (11), which
will be used as one of the metrics for numerical evaluation.

We first consider a sparse network consisting of four
transmitter-receiver pairs. Assume that the four transmitters
and four receivers are randomly distributed in a region that
is 1.5 km deep, 1.5 km long, and 1 km wide, and the coor-
dinate information of the nodes is shown in Table 1. Figure 2
shows the effect of the transmit power of the AUV on the
other three node nT

i , i ∈ 1, 2, 3{ }. As a whole, the SINR of the
three nodes nR

i , i ∈ 1, 2, 3{ } gradually decreases as the
transmit power of the AUV increases and the network
environment interference enhances, which makes the
transmission capacity of the three nodes decrease contin-
uously. Further, when the AUV is a certain fixed value, node
nR
1 is closest to the AUV and suffers the strongest inter-

ference, i.e., the smallest SINR, and thus its acquired capacity
is the smallest among the three links. Conversely, node nR

3 is
farthest from the AUV and its acquired capacity is the
largest.

Figure 3 shows the results of the proposed learning
algorithm in this paper compared with the greedy algorithm.
In order to make a fair comparison between the two al-
gorithms, we choose energy efficiency as the evaluation
index..e results are shown in Figure 3, which indicates that
as the power of AUV increases, the network energy efficiency
of the proposed learning algorithm, although gradually
decreasing, is significantly better than that of the greedy

algorithm. It should be noted that, as shown in Figure 2, the
decrease in network energy efficiency is a reasonable phe-
nomenon. In fact, in the greedy algorithm, each transmitting
node always chooses the maximum power for transmission,
which keeps the energy in a high consumption state, but the
transmission capacity does not increase significantly.

Figure 4 illustrates the curve of AUV transmission
capacity variation with transmit power. From the figure, it
can be seen that the proposed algorithm can make the
transmission capacity of AUV better than the greedy
algorithm. .is is mainly because the proposed algorithm
can better balance the energy consumption and network
interference level, so that the transmit power of each node
in the network can be adjusted adaptively to achieve a
win-win situation.

Next, we further consider a dynamic access dense net-
work consisting of multiple transmitter-receiver pairs. As-
sume that the transmitting power of the AUV is 8W, while
the number of sensor nodes in the network increases
continuously from 1 to 20 with random distribution. .e
simulation starts with one transmitter-receiver pair. After
convergence, the next transmitter-receiver pair is added to
the network and so on. Figure 5 shows the state of the node
capacity distribution as the number of nodes in the network
increases. As can be seen from the figure, under the same
conditions, compared to the greedy algorithm, the learning
algorithm proposed in this paper is able to maintain a better
network quality of service by adaptively adjusting the node
transmitting power according to the changes in the network
environment. At the same time, it should be noted that as the
number of nodes increases, the level of network interference
increases, which makes the overall energy efficiency of nodes
show a decreasing trend.

Figure 6 shows the graph of network energy efficiency
with increasing number of nodes. It is obvious from the
graphs that the proposed algorithm can well balance the
network transmission capacity and energy consumption,
which greatly improves the network service quality. In the
greedy algorithm, all nodes choose the maximum trans-
mission power for the pursuit of higher transmission

Initialization:
(1) Set c � 0.9, λ � 0.5.
(2) Initialize Q(s, a) � 0, s ∈ S, a ∈ A.

Repeated Learning: (for each episode)
(3) Looks up the Q-table and selects the state s, i.e.,

s � argmax s∈S
a∈A

Q(s, a).

(4) Execute the ε-greedy [29] method to select the action a

π(a|s)← 1 − ε + (ε/|A(s)|), if a � argmaxaQ(s, a),

(ε/|A(s)|), if a≠ argmaxaQ(s, a)
􏼨

(5) Calculate the reward function r(s, a) based on equation (22).
(6) Calculate the current Q-value function.
(7) Update the Q-table according to equation (17).
(8) Update the state s⟵s′.
(9) Go back to 3 until the state s is the final state.

ALGORITHM 1: Q-learning-based UACNs resource allocation algorithm for node nT
i , i ∈ N.
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Figure 2: .e graph of the change of node capacity with the transmitting power of AUV.

Table 1: Location information of the four transmitting receiver pairs.

Location information (km) nT
1 nT

2 nT
3 AUV

x 0.25 0.5 0.75 0.3
y −0.2 −0.4 −0.8 −0.3
z 0 0 0 100
Location information (km) nR

1 nR
2 nR

3 AUV
x 0.25 0.5 0.75 0.3
y −0.2 −0.4 −0.8 −0.1
z 100 100 100 100
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Figure 3: .e graph of the change of network energy efficiency with the transmitting power of AUV.
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capacity, which not only causes energy waste but also en-
hances the interference between networks, and finally makes
the network energy efficiency maintain at a low level.

Finally, we perform the convergence and complexity
analysis of the algorithm. .e maximum number of itera-
tions of the proposed learning algorithm is set to 50,000, and
the average number of iterations for the convergence of the
algorithm in the two scenarios is shown in Figure 7. From
the figure, it can be found that the proposed algorithm
requires approximately equal number of iterations in the two
different scenarios. In other words, the mathematical ex-
pectation and the variance of the number of iterations re-
quired for the proposed algorithm to converge are 41,200
and 35.6, respectively, in the underwater sparse scenario
when the firing power of the heterogeneous nodes varies

between 0 and 15, and 41236 and 49.1, respectively, in the
underwater dense scenario when the number of nodes varies
between 1 and 20. .e stability of the proposed algorithm is
thus demonstrated.

To better understand the running time of the proposed
algorithm, Figure 8 shows the actual running time of the
proposed algorithm on a conventional processor. Specifi-
cally, in the underwater sparse scenario, when the transmit
power of the heterogeneous nodes varies between 0 and 15,
the mathematical expectation and variance of the running
time required for the proposed algorithm to converge are
5.65 and 0.51, respectively. In the underwater dense scenario,
when the number of nodes varies between 1 and 20, the
running time required for the proposed algorithm to con-
verge gradually increases. .is is mainly because when the
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number of nodes increases, a lot of time is needed to find the
equilibrium between communication capacity and energy
consumption.

6. Conclusion

.is paper proposes a power allocation scheme based on
Q-learning. .is scheme considers the interference problem
in UACNs composed of multiple transmitter-receiver pairs
and the energy efficiency of each transmitter, while each
transmitter (sensor node, AUV) is able to train itself to select
the appropriate transmit power to support its service nodes
while protecting other nodes in the network. In addition, the
learning algorithm proposed in this paper, as a distributed
method, can solve the power optimization problem for
networks with dynamic access of sensor nodes while having
low complexity. .e scheme is scalable and has a clear
advantage in energy efficiency compared to the greedy al-
gorithm. In future work, we design function approximators
for neural networks to solve the problem of large state space
and action space.
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