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For the maintenance of an urban wireless sensor network, the staff’s travel route greatly affects the whole network’s response time.
Every time the network reports an error, the staff needs to find the best route to minimize the time spent on the way to the error
point. The difficulty of the problem is that although the entire network fails, the error point remains unclear. In this paper, the
staff’s route planning is modeled as an NP-complete problem, MWLP (Minimum Weighted Latency Problem). It is a problem
of finding the best route for a moving agent to satisfy multiple customers’ different demands as much as possible. To solve the
problem, we propose a heuristic algorithm which borrows the idea from a biological computing model called P_system. In the
proposed algorithm, different classic heuristics work as separate “membranes” to accomplish their own jobs. They also
collaborate under some mechanism to search for a better result. We designed the cell’s structure to balance the different
heuristics’ time consumption and searching capacity. With this design, all the heuristics can cooperate properly in the
proposed heuristic algorithm. To enhance the algorithm’s efficiency, we also introduced a way to run it in parallel. The
numerical experiments show that the proposed algorithm is very competitive compared with classic heuristic algorithms and
helps eliminate the whole network delay as well.

1. Introduction

Koutsoupias et al. described the following situation in 1996:
a treasure is hidden in one certain cave in a mountain area.
An adventurer is trying to find it. However, the mountain
area is full of different caves, and they all look alike. The
good news is that the adventurer has a treasure map. Every
cave’s position and the probability of whether the treasure
is placed inside it are marked on the map. Now, the adven-
turer is planning his search path. His goal is to minimize
the distance he will travel before finding the treasure. The
problem the adventurer is facing is called the Graph Search-
ing Problem (GSP) in [1]. Wu renamed it MWLP in [2].
Two years later, Sitters proved it to be NP-hard in [3].

MWLP is formulated as follows: given n vertices v1,⋯, vn
of a weighted (both edge and vertex) graph G. The vertices’

weights are represented by wðvÞ. MWLP is looking for a tour
π, starting at a fixed vertex s and visiting every other vertex of
G. For this tour, the sum of all the vertices’ weighted latencies
(first arrival times of all the vertices dπðs, vÞmultiplied by their
weights wðvÞ) must be minimized. MWLP is presented as

min
π

〠
v∈G

w vð Þdπ s, vð Þ: ð1Þ

The vertices’ weights are sometimes noted as the probabil-
ity of finding a treasure and limited to the interval ð0, 1�. In
this case, MWLP is formulated as follows:

min
π

〠
v∈G

pr vð Þdπ s, vð Þ: ð2Þ

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5055019, 8 pages
https://doi.org/10.1155/2022/5055019

https://orcid.org/0000-0001-9402-8386
https://orcid.org/0000-0002-2381-1290
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5055019


By simply taking the sensor’s error probability as prðvÞ,
MWLP can help to model the mobile agent’s route planning
problem in a wireless sensor network. To minimize the expres-
sion above, we shall minimize the time maintenance staff uses
to find the failed sensor. Compared to TSP (Travelling Sales-
man Problem) andMLP (Minimum Latency Problem), MWLP
pays more attention to the nodes’ requirements in the network,
which makes it more suitable for this environment.

MWLP can be seen as the vertex-weighted generalization
of the Minimum Latency Problem (MLP), which is widely
studied and proved to be NP-hard in [4]. Koutsoupias
et al. also proposed a way to convert MWLP into MLP in
polynomial time in [1]. With that approach, any algorithm
designed for MLP can be used to solve MWLP. However,
in practical cases, because of the shortcomings of the conver-
sion process (weight expression form and graph structure
are limited, as we explained in [5]), this method is inefficient.
Wu proposed a DP (dynamic programming) algorithm to
solve some special MWLPs in [2]. To the best of our knowl-
edge, besides this, neither exact nor approximate algorithms
designed for MWLP have been proposed. Though it can find
the global optimum in a relatively short time, Wu’s method
still has the drawbacks of all DP algorithms.

Heuristic algorithms are a fast developing research field
during the past several years. Different heuristic algorithms
are designed for MLP, such as [6–9]. In recent years, using
composite heuristic algorithms to solve NP-hard problems is
becoming a trend. For example, Ha et al. proposed a meta-
heuristic combining tabu search (TS) and Variable Neigh-
bourhood Search (VNS) to solve MLP in [10]. They used
VNS to find the next feasible solution and TS to avoid search-
ing one solution multiple times. Lenin et al. proposed a meta-
heuristic for a problem very similar to MLP which combined
TS and simulated annealing (SA) in [11]. Their algorithm
added the tabu list into an SA algorithm. The experimental
results showed that the composite algorithm produced better
results compared to either SA or TS alone. In [6], Ahmed pro-
posed a hybrid genetic algorithm which combines the genetic
algorithm (GA) and local search to solve MLP and got good
results. Koutsoupias’ conversion method can be used to apply
these algorithms to MWLP. However, the problem scale will
expand dramatically. It will cause both time and space con-
sumption to increase exponentially, which makes a heuristic
algorithm designed for MWLP necessary. In [5], we studied
the heuristics used to solve MWLP. Five classic heuristic algo-
rithms including TS, SA, GA, Particle Swarm Optimization
(PSO), and ant colony optimization (ACO) were all rede-
signed to solve MWLP and tested effectively.

In this paper, we propose a heuristic algorithm based on our
previous research. We borrowed the idea from P_system and
optimized the five classic heuristics to embed them into the P_
system structure.We also applied two ACOmethods with differ-
ent pheromone updatemechanisms.We evaluated our approach
with the widely used dataset for graph theory problems, TSPLib.
The experiments show that this metaheuristic yields greatly
improved results compared to the classic heuristics.

The rest of this paper is organized as follows. Section 2 intro-
duces the heuristic based on P_system. Experimental results are
shown in Section 3, and Section 4 gives the conclusion.

2. The Algorithm Based on P_system

P_system (also known as membrane computing) is a compu-
tational model proposed by Păun in [12]. Păun is a computer
scientist whose research field is biological computing. Inspired
by the biological cell’s structure, he proposed the P_system
model to simulate the process that a cell uses to handle com-
pounds in a circulation system consisting of multilayer mem-
branes. Thanks to the advantage of its inherent structure,
many other algorithms can easily be embedded into a P_sys-
tem, so that many metaheuristic algorithms based on P_sys-
tem have been proposed recently.

For instance, Niu et al. proposed a metaheuristic algorithm
based on the structure of P_system and used ant colony optimi-
zation to solve the Capacitated Vehicle Routing Problem
(cVRP) in [13]. Another heuristic algorithm, which is also
based on the structure of P_system, was given by Yan et al. in
[14]. They used SA to communicate between different mem-
branes to solve the weight optimization problem for case-
based reasoning. In the following, we will introduce P_system
and then go to the details of the proposed composite algorithm.

2.1. Introduction of P_system. Similar to other natural compu-
tation models, P_system is inspired by an existing process in
the natural environment. It simulates the chemical processes
that occur between different layers of the membranes within
a cell. During processing, the cell is considered a frame. The
chemical compounds within it are the subjects that are
involved in the process. When passing through a membrane,
the compounds are involved in some chemical reactions with
other compounds or some prestored catalysts inside the mem-
brane. Through iterations of this process, new compounds are
produced and then involved in subsequent processing. The
final output is produced after some stopping criterion is met.

In general, a P_system consists of three parts: the hierar-
chical structure of membranes, a multiset to represent the
objects, and the evolutionary rules. The hierarchical structure
of membranes defines the computing architecture. It limits the
sequence and affiliation of different membranes. The object
multiset represents the developing state during the computing
process. The evolutionary rules define the method P_system
uses to develop the results. The hierarchical membrane struc-
ture guarantees that the architecture can handle multiple heu-
ristics in one algorithm.

The composite heuristic algorithm based on P_system has
attracted much attention for two reasons. The first is that the
computing model’s structure is very suitable for combining
multiple algorithms. The second is that the no-free-lunch
(NFL) theorem guarantees its computational capacity.

The famous NFL theorem was proposed and proven by
Wolpert and Macready in [15]. It proves that if an algorithm
performs well on a certain class of problems, then it necessarily
pays for that with degraded performance on the set of all
remaining problems. That is, different algorithms have specific
advantages and disadvantages when solving one certain prob-
lem. Composite algorithms can synthesize the advantages of dif-
ferent algorithms, which in theory gives them better searching
ability than the individual components considered separately.
People designed various mechanisms such as diversification in
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TS and mutation in GA to avoid heuristic algorithms being
trapped in local optima. However, being trapped in local optima
is still inevitable because of the limitations of single heuristics.
Composite algorithms can avoid their limitations.

2.2. Heuristic Based on P_system. Based on P_system, we
designed a composite heuristic algorithm to solve MWLP.
The algorithm consists of six different heuristic algorithms.
They are PSO, TS, SA, GA, and two different ACOs. The two
ACOs update their pheromone data in different ways. Though
one of them produces better results (noted as ACO2 in this
paper) than the other (noted as ACO1) in most circumstances
when they are used alone to solve MWLP, as shown in [5],
we choose to use both of them in the composite algorithm
because of the NFL theorem. The parameters of the heuristics
are the same as in [5]. The algorithm’s main structure is shown
in Figure 1.

As shown in the illustration, the “cell” consists of five inner
membranes and an outer membrane. The five inner mem-
branes are independent of each other, whereas they are all
connected to the outer membrane. The inner membranes con-
duct PSO, TS, SA, GA, and ACO1, respectively, and the outer
membrane runs ACO2. Previous experiments showed that
ACO2 produces the best results among the six heuristic algo-
rithms when they are running alone (same iteration number)
to solve MWLP. Therefore, we consider ACO2 as the most
suitable algorithm for the outer membrane.

When using this metaheuristic to solveMWLP, the mobile
agent’s route is stored in vertex arrays. Ten arrays are included
in a group. The groups are considered the compounds to be
transmitted between membranes. At the beginning, a group
of vertex arrays is generated by using a greedy algorithm. This
group is used as the initial solutions of the inner membranes.
After the five optimization processes (inner membranes) are
performed, each of them outputs a group of vertex arrays, con-
sisting of the ten best solutions found by each heuristic. The
five groups are combined as the initial solutions of the outer
membrane. After the outer membrane finishes its optimiza-

tion process, it outputs a group of the ten best solutions. This
group of solutions is returned to the inner membranes as their
initial solutions. At this time, the algorithm comes back to the
starting state. We call this an iteration. The algorithmwill iter-
ate a predetermined number of times until the outer mem-
brane outputs the final solution. The procedure’s pseudo-
code is shown in Algorithm 1.

2.3. Parallel Technique. It is obvious that the heuristic contains
relatively many subalgorithms that make its computing scale
large. Due to this, the time consumption of the P_system is
its main drawback. However, thanks to the use of the mem-
brane computing model, the whole optimization procedure

Tabu Search
Particle Swarm
Optimization

Ant Colony 1 Genetic Algorithm

Ant Colony 2Simulated Annealing

Figure 1: Illustration of the algorithm based on P_system.

procedure P_system
ini seq =GreedyAlgðweighted map, priority seqÞ
best val = ComputeValueðini seqÞ
iteration number⟵ 0
whileiteration number < iteration timedo

ac1 best seq = ACO1 Algðini seqÞ
sa best seq = SA Algðini seqÞ
ts best seq = TS Algðini seqÞ
pso best seq = PSO Algðini seqÞ
ga best seq =GeneticAlgðini seqÞ
new seq = combination of the f ive seqs above
ac2 best seq = ACO2 Algðnew seqÞ
temp val = ComputeValueðac2 best seqÞ
iftemp val < best valthen
best val = temp val

end if
ini seq = ac2 best seq
iteration number + +

end while
returnbest val

end procedure

Algorithm 1: P_system algorithm
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Figure 2: Experimental results of the map with 51 vertices.
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Figure 3: Experimental results of the map with 100 vertices.

Avg_val

150 Vertices

Min_val Max_val

TS
SA
PSO

GA
ACO
P_Sys

TS SA PSO GA ACO P_Sys

Running time

0

10000

20000

30000

TS SA PSO GA ACO P_Sys

Deviation

0

50

100

150

0

200000

400000

600000

800000

1000000

1200000

Figure 4: Experimental results of the map with 150 vertices.
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Figure 5: Experimental results of the map with 200 vertices.
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Figure 6: Experimental results of the map with 318 vertices.
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Figure 7: Experimental results of the map with 431 vertices.
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can be designed to run in parallel. The five inner membranes
are mutually independent. None of them needs to use the
others’ outputs.

Based on the analysis above, we designed a parallel proce-
dure. The main program creates five threads corresponding to

the five inner-membrane heuristics. They are allocated to differ-
ent CPU cores to run at the same time.When a thread completes,
it sends its result to the main program and terminates. The main
program waits until the five threads are all finished. Then, the
main program combines the 5five threads’ outputs as the outer
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Figure 8: Experimental results of the map with 532 vertices.
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Figure 9: Experimental results of the map with 100 vertices.

Table 1: Average outputs.

Map ACO P_system P_system improvement

eil51 4:16E + 03 3:83E + 03 7.93%

kroB100 4:98E + 05 4:52E + 05 9.24%

kroB150 1:06E + 06 9:19E + 05 13.3%

kroB200 1:42E + 06 1:24E + 06 12.68%

lin318 3:53E + 06 3:29E + 06 6.8%

gr431 1:29E + 05 1:31E + 05 -1.6%

att532 1:14E + 07 1:06E + 07 7.02%

dsj1000 5:45E + 09 5:11E + 09 6.24%
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Figure 10: Iteration number at which ACO found the best result.
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membrane’s input. In other words, by running the sixth to the
tenth line in the pseudo-code at the same time, some parts of
the original algorithm can run in parallel. By using this strategy,
the composite algorithm’s running time drops impressively.
The results of our experiments will be given in the fourth section.

3. Experimental Environment and Results

As in [5], the experiments were all run on a small-scale
server. It is equipped with two Intel(R) Xeon(R) E5-2670
v3 @ 2.30GHz CPUs (each has 8 cores) and 64GB memory.
The operating system is Windows® Server 2012. We used
MATLAB® R2017b.

The same as the experiments in [5], we applied ACO (the
outer membrane in the proposed algorithm), SA, TS, GA, and
PSO as the competitive comparison for this paper. The algo-
rithms’ parameters are all the same as we set in [5]. Consider-
ing that the proposed heuristic is relatively powerful, we
determined to test it in a wider range from 51 vertices to
1000 vertices. Rather than randomly generating the test map,
we choose instances from TSPLib. They are eil51, kroB100,

kroB150, kroB200, lin318, gr431, att532, and dsj1000, respec-
tively. The vertices’ weights are allocated randomly. We coded
our P_system to run in parallel to save time. As in [5], all the
problem instances are tested by the algorithms for 100 times.
The outputs and running time for every map are all stored
for later analysis.

We use ACO (which performed the best among the classic
heuristics) and P_sys algorithms as representatives to illustrate
the performance of the P_sys algorithm. The results of all the
tested algorithms are shown from Figures 2–9. Table 1 shows
the average outputs and running time for both algorithms to
search the maps 100 times. For all but one instance, the output
from the P_system was better than that from ACO by at least
6%. The performance of this proposed P_system is so good
that we do not need to divide the problems into different scale
groups. The P_system is able to find a better solution than
ACO except for map gr431. For thismap, we recorded the iter-
ation number at which ACO found its best value and stopped
improving. Then, for 100 runs on the full set of maps, we cal-
culated the average iteration number at which the best value
was found on each map. The values are shown in Figure 10.

Table 2: Experimental results of ACO and the proposed P_system.

Map
ACO P_system

Worst result Best result Variance Worst result Best result Variance

eil51 4:31E + 03 3:90E + 03 4:44E + 03 3:99E + 03 3:66E + 03 4:41E + 03
kroB100 5:13E + 05 4:77E + 05 6:39E + 07 4:70E + 05 4:32E + 05 6:42E + 07
kroB150 1:06E + 06 9:70E + 05 3:90E + 08 9:52E + 05 8:82E + 05 2:72E + 08
kroB200 1:46E + 06 1:35E + 06 4:63E + 08 1:30E + 06 1:17E + 06 2:83E + 04
lin318 3:64E + 06 3:39E + 06 2:15E + 09 3:44E + 06 3:16E + 06 3:22E + 09
gr431 1:32E + 05 1:23E + 05 2:51E + 06 1:36E + 05 1:26E + 05 4:30E + 06
att532 1:17E + 07 1:11E + 07 1:52E + 10 1:10E + 07 1:01E + 07 2:49E + 10
dsj1000 5:55E + 09 5:32E + 09 2:29E + 15 5:20E + 09 4:90E + 09 2:52E + 15

1.4E+07

1.2E+07

1.0E+07

8.0E+06

6.0E+06

4.0E+06

2.0E+06

0.0E+00
50

Aco worst
Aco best

P_sys worst
P_sys best

100 150 200 250 300 350 400 450 500 550

Figure 11: Best and worst results for both algorithms.
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The horizontal axis is the number of vertices in the map, and
the vertical axis is the average iteration number at which the
best value was found.

Figure 10 shows that the iteration number at which the
best value was found decreases as the number of vertices
increases—except in the case of map gr431. That is, as the
scale of the problem increases, ACO tends to be trapped in
a local optimum earlier. That may occur because as the
problem scale increases, different local optima tend to get
further away from each other. When ACO finds a local opti-
mum, the algorithm is unable find a second local optimum
that is far away. This leads us to hypothesize that the excep-
tional behaviour for map gr431 in Table 1 is because the
map was relatively small.

To test this hypothesis, we captured the best and worst
results for both ACO and our P_system (see Table 2 and
Figure 11). These results show that the optimal value found
for map gr431 is quite low, nearly matching the value for
map eil51, which has 51 vertices. That is, map gr431 seems
exceptional compared with the other maps in TSPlib, in terms
of the results on this problem. For a map like this, we may not
need an algorithm like the proposed P_system, which is able to
search every possible direction of the search space. A simpler
algorithm like ACO works better in this case. So in the case
of map gr431, the proposed P_system did not have an advan-
tage from using more heuristics. Instead, because of the exis-
tence of those additional heuristics, ACO did not perform
the best in its task as an outer membrane.

4. Conclusion

In this paper, we propose a new way to model the urban
WSN’s maintenance job. A heuristic based on the structure
of P_system is also designed to help solve MWLP. The pro-
posed heuristic combines several well-known heuristics: TS,
SA, GA, PSO, and ACO. Our experimental results show that
this metaheuristic is more powerful than ACO in most cases,
especially those with large numbers of vertices. Considering
that our previous results given in [5] show that ACO gives
the best results of all the individual heuristics used in our P_
system, we can say that the proposed P_system has been dem-
onstrated to be the most powerful approach overall as it yields
better results. One exception has been observed in this paper
where the proposed P_system performed slightly worse than
ACO. Improving performance in this case is the priority in
our future research. One possible solution may be finding a
method to let the inner membranes cooperate with each other
to empower the P_system to select better results.

Data Availability

The experimental results and the maps we used in the exper-
iment will be found through the following link: https://drive
.google.com/drive/folders/
1XKDtCPHpJj2aAhiEYO3Wa4bhSIMFTJBU?usp=sharing.
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