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The nodes in the opportunistic network make up communities according to the relevance between them. Some of the structural
characteristics of an opportunistic network can be reflected by the structure of the communities that exist in the network.
Therefore, finding community from the network is of great significance for people to better study, use, and transform the
network. The overlap of communities is considered to be an important feature of communities. Almost all community
discovery algorithms were based on nonoverlapping communities in the past. A node in a nonoverlapping community belongs
to only one community. However, there are overlapping and interrelated characteristics between communities, so it is not in
line with the actual environment of the network. As a result, the previous algorithms have many shortcomings in the face of
practical application scenarios, coupled with the limitation of the computing capacity of mobile devices; data transmission for
low delay and the low energy consumption is difficult to meet the requirements. In the study, we formulate the problem of
dividing nodes into several communities in the opportunistic social network as how to build communities dynamically
according to weight distribution. Then, we propose a modified data delivery strategy based on stochastic block model and
community detection (DDBSC). The simulation results show that, compared with other algorithms in the experiments, the
strategy proposed in this paper exhibits good performance in terms of overhead, energy consumption, and delivery rate.

1. Introduction

With the rapid development of 5G wireless communication
technologies and the rapid popularization of various mobile
terminals, many huge networks formed by tens of thousands
of mobile devices have risen. Those mobile devices in the
Internet of things (IoT) such as mobile phones, tablets,
smartwatches, POS terminals, and onboard computers, nat-
urally have the characteristic of random movement due to
they are carried by users [1–3]. When communication
occurs, they consist of a system that can abstract out some
of the characteristics of human networks [4]. In recent years,
a thorough study of mobile networks has emerged, revealing
the existence of a store-carry-send mechanism in opportu-
nistic social networks. Under this mechanism, message
transmission does not have to occur in a fixed communica-
tion path. The mobile communication devices can be
regarded as the nodes in the opportunistic social networks,

and the nodes can choose the adjacent node as the next sta-
tion of message transmission [5–7]. Opportunistic social
networks have been widely used in interplanetary networks
[8], field tracking [9], disaster rescue [10], and networks in
underdeveloped areas [11].

Nodes in the opportunistic social networks will carry out
a large amount of data transmission with their strongly
related nodes [12–14]. Nodes form communities according
to their associations, and some structural characteristics of
the network can be reflected by the structure of the commu-
nities existing in the network [15, 16]. Therefore, finding
communities from the network is of great significance for
people to better study, use, and transform the network.

However, almost all community discovery algorithms
were based on nonoverlapping communities in the past
[17, 18]. Nodes in nonoverlapping communities can only
belong to a certain community, but there are overlapping
and interrelated characteristics between communities. It is
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very inappropriate to think that a node belongs to only one
community. As a result, the previous algorithms have many
shortcomings in the face of practical application scenarios,
coupled with the limitation of the computing capacity of
mobile devices; data transmission for low delay and the
low energy consumption is difficult to meet the requirement
[19]. To realize the fast and large-capacity data transmission
requirements under 5G standards, a routing algorithm based
on a clearly defined community and discovery community is
urgently needed.

To solve the problems mentioned above, we put forward
a data delivery strategy based on stochastic block model and
community detection (DDBSC). This paper changes the cur-
rent situation where the community is not clearly defined,
according to the correlation degree of source nodes and des-
tination nodes, dynamically component community, and on
this basis to carry out efficient and relatively reliable data
transmission. The main contributions of this paper can be
summarized below.

(1) We first formulate the problem of dividing nodes
into several communities in the opportunistic social
network as how to build communities dynamically
according to weight distribution

(2) In order to solve time complexity and decrease over-
head costs for communication in the opportunistic
social network, we propose the data delivery strategy
based on the stochastic block model and community
detection (DDBSC) on the basis of considering the
nonuniformity of community

(3) We compare the proposed algorithm with four
advanced routing algorithms. The simulation results
show that the proposed DDBSC outperforms the
other four algorithms in terms of overhead, energy
consumption, and delivery ratio

The rest of this paper is organized as follows: the second
section introduces some breakthrough routing algorithms
on opportunistic networks. On this basis, we describe how
community reconstruction happens according to weight dis-
tribution changes and proposes the data transmission strat-
egy in the third section. Then, in the fourth section, the
performance of the routing strategy is verified through sim-
ulation experiments. In the end, the paper is summarized.

2. Related Work

Due to the instability and randomness of node connection in
an opportunistic network, the end-to-end universal link
transmission mode is not feasible. In recent years, the
research focus in the opportunistic network is on the data
transmission between nodes. The following are some
groundbreaking studies.

Derakhshanfard et al. [20] proposed a sharing spray and
wait routing algorithm in opportunistic networks. The
approach adopts a store-carry-forward mechanism and con-
stantly select the next hop and consider the number of cop-
ies to be transmitted according to the delivery time of the

message and the probability of message delivery. Further-
more, the network is extended for analysis based on Markov
chain. Simulation results show that the proposed method
can improve the performance significantly in terms of delay,
transfer ratio, and replication. Considering that the multi-
copy routing algorithm is easy to cause network congestion,
Yuan et al. [21] introduced a disjoint-path (DP) routing
algorithm. In the algorithm, every node can only deliver data
packets once except the source nodes so that the number of
packet copies in the network can be effectively controlled.
Furthermore, the algorithm utilizes the discrete continuous
time Markov chain (CTMC) to state transitions between
nodes and uses the DP routing algorithm to calculate the
number of data packer copies. Simulation results show that
DP greatly improves the packet delivery ratio, average deliv-
ery delay, average network overhead, energy, and average
hop count.

Sharma et al. [22] proposed a secure and reliable routing
protocol (called RFCSec) based on random forest classifier
(RFC) in order to deal with the challenge of reliability of
message passing in opportunistic network. The protocol is
based on hashing message integrity and high grouping deliv-
ery to ensure spatial efficiency. Two phases compose the
protocol. The RFC is trained on real data-trace and records
the output in the first phase. In the second one, the encoun-
tered nodes of a given node are classified as one of the out-
put classes of nodes according to their past behavior. This
helps proactively isolate malicious nodes from the routing
process and encourages nodes with good message forward-
ing behavior, low packet drop rates, high buffer availability,
and a high likelihood of passing messages in the past to par-
ticipate. Simulation results show that the proposed RFCSec
is superior to MLPropH, RLPropH, and CAML routing pro-
tocols in terms of legitimate packet delivery, probability of
message delivery, count of dropped messages, and latency
in packet delivery.

Kandhoul et al. [23] proposed a novel routing protocol
for OppNets called Energy-Efficient Check-and-Spray Geo-
cast Routing (EECSG). The routing protocol introduces a
way of message distribution to every resident node geo-
graphic broadcast area; at the same time, it can reduce
energy consumption by disabling unnecessary packet trans-
mission. It also introduces a check-and-spray mechanism to
lower the overhead of data packets in the geographic broad-
cast area. After simulation evaluation, comparing with the
Efficient and Flexible Geocasting for Opportunistic Net-
works (GSAF) and the Centrality-Based Geocasting for
Opportunistic Networks (CGOPP), it shows excellent per-
formance in hop count, overhead ratio, number of dead
nodes, number of messages forwarded, delivery ratio, and
average latency.

Singh et al. [24] proposed a delay-aware and cost-
efficient probabilistic transmission method based on the
probabilistic transmission scheme. This method defines the
probabilities of direct and indirect encountering that is con-
nected with latency and hop. Relay nodes in the method are
set encountering delay and hop count thresholds by default,
so that the probabilities of nodes to encounter the destina-
tion node within the threshold become transmission
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performance metrics. The simulation results show that the
proposed method has significant improvement in reducing
transmission delay and cost.

Li et al. [25] proposed a causal broadcast algorithm and a
Δ-causal broadcast algorithm based on causal barriers. They
consider both cases where the messages diffuse in the net-
work without or with a limited life cycle so ensure the causal
sequence of broadcast messages in the opportunistic net-
work. The simulation results show that they perform well
in OppNets and the networks with high churn rates.

Guidec et al. [26] proposed an advanced adaptive buffer
management policy to address the pain point of buffer con-
gestion. Limited network resources (such as energy and
bandwidth) are taken into account by this strategy. The
new solution depends on three strategies. They are blacklist-
ing, scheduling, and dropping. It is designed to adapt with
the modification of several network parameters such as data
size, cache capacity, and network density. The simulation
results show that can increase the delivery rate and decrease
the network resource consumption to improve the perfor-
mance of network.

This paper proposes a more efficient routing strategy
after learning the above algorithms’ experience.

3. Model Design

3.1. Community Model Design. In this part, we will give three
theorems considering data transmission’s characteristic of
random and nodes’ characteristic of movement in the
opportunistic social network. These three theorems describe
how the weight distribution affects the reconstruction of the
community. Then, we give them their proofs.

According to the definition of graph theory, we can
define the topology of any opportunistic social network as
G = ðV , E,wÞ, where V represents the collection of nodes
in the network and E represents the collection of edges in
the network. We can use Figure 1 to describe this topology.
The nodes in the figure correspond to various network ter-
minal devices in our daily life, including cell phones, smart
watches, computers, and car navigation. Devices can be con-
nected to each other through the network and transmit
information to each other, forming edges [27]. For example,
in Figure 1, e ∈ E can also be expressed as ðu, vÞ, where u ∈ V
, v ∈ V . w represents the connection weight between node u
and node v based on the dynamically constructed commu-
nity. According to the communication relationships, these
devices form a number of node clusters, which we call com-
munities, and are represented by dashed circles in the figure.

In this study, we make a modular representation of the
network. And we want to predict changes in the community
based on this. Define the degree of modularity of the com-
munity at time m as

χ mð Þ = wy

N
−

R2
n

4N2 , ð1Þ

where wy is the total weight with edges in the community y,
N is the total weight with edges in the network, and Rn
expresses total degree with nodes in the network.

Theorem 1. The increase of weight is positively correlated
with the correlation degree of community.

Proof. Given that at m moment, the modularization degree
of the network is χðmÞ, then at m + 1 moment, it can be
expressed as:

χ m + 1ð Þ = wy +winc
N +winc

−
Rn + 2wincð Þ2
4 N +wincð Þ2 : ð2Þ

There are

χ m + 1ð Þ − χ mð Þ = wy +winc
N +winc

−
Rn + 2wincð Þ2
4 N +wincð Þ2 −

wy

N
−

R2
n

4N2

� �

=
4N3winc − 4N2Rnwinc − 4N2wywinc + 2N2Rnwinc

4N2 N +wincð Þ2

−
4NRnw

2
inc − Rnwincð Þ2

2N2 N +wincð Þ2

≥
4N3winc − 6N2Rnwinc + 2N2Rnwinc − 2N2Rnwinc + Rnwincð Þ2

4N2 N +wincð Þ2

=winc
4N3winc − 6N2Rn + 2N2Rn − 2NRnwinc + R2

nwinc
4N2 N +wincð Þ2

=winc
2N2 − 2NRn − Rnwinc
� �

⋅ 2N − Rnð Þ
4N2 N +wincð Þ2 :

ð3Þ

winc expresses the increment of weights in community y,
and winc > 0. Now, we will prove that χðm + 1Þ − χðmÞ > 0,
the formula can be transferred to

2N2 − 2NRn − Rnwinc
� �

⋅ 2N − Rnð Þ > 0, ð4Þ

that is to say,

 

2N2 − 2NRn − Rnwinc > 0,
2N − Rn > 0,
winc > 0,

8>><
>>:

⇒
0 <winc < 2W W

Rn
− 1

� �
,

Rn < 2W,

8><
>:
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Rn
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� �

,

2W W
Rn

− 1
� �

> 0,

Rn < 2W,

8>>>>>><
>>>>>>:

⇒
0 <winc < 2W W

Rn
− 1

� �
,

Rn <W:

8><
>:

ð5Þ

Because Rn is the total degree with nodes in the net-
works, there is no community in the networks appearing
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degree greater than Rn. It can be seen from the above proof
that the increase of weight will lead to the increase of com-
munity correlation.

Theorem 2. The community has not divided under this cir-
cumstance: when weight for an edge has decreased, two nodes
connect by this edge which is the only one edge for a node.

Proof. Given that there is an edge ⅇ = ðu, vÞ, its weight is wuv.
If the community has divided, it has three conditions:

wu +wv <w,
mu

W
−

R2
u

4W2 + mv

W
−

R2
v

4W2 < Ru + Rv +wuv

W
−

Ru + Rvð Þ2
4W2 ,

wuv >
RuRv

2W :

8>>>>><
>>>>>:

ð6Þ

After the change, the weight in the community becomes:

w∗
u +w∗

v >w∗,

wuv <wcha +
RuRv + RSwcha +w2

cha
2 W +wchað Þ :

8><
>: ð7Þ

wcha expresses the change of weight between node u and
v; it could be explained as:

RuRv

2W <wuv <
Ru Rv +wchað Þ
2 W +wchað Þ = RuRv + Ruwcha

2 W +wchað Þ : ð8Þ

Because

RuRv + Ruwcha
2 W +wchað Þ −

RuRv

W
= Ruwcha w − Rvð Þ

W W +wchað Þ < 0 wcha < 0ð Þ:

ð9Þ

So, we can know that

RuRv + Ruwcha
2 W +wchað Þ < RuRv

W
: ð10Þ

That is to say, ðRuRv/2WÞ <wuv < ðRuðRv +wchaÞ/2ðW
+wchaÞÞ is not true.

It can be seen from the above proof that weight for an
edge has decreased, and two nodes connect by this edge
which is the only one edge for a node; community has not
been divided.

Theorem 3. There are conditions for nodes to join the com-
munity. Assuming that node u is in the community C1, if
the weights of wC1

and another community wC2 both increase

and satisfy 4ðW +wchaÞ ⋅ ðekC2
− ekC1

+wchaÞ + ðRk +wchaÞ ⋅ ð
RC1

− Rk − RC2
Þ −w2

cha > 0, then the node u can join the com-
munity wC2.

Proof. When the weight of an edge connecting two commu-
nities increases, the sum of the modularization degree of the
two communities is:

χC1
+ χC2

=
wC1

W +wcha
−

RC1
+wcha

� �2
4 W +wchað Þ

 !

+
wC2

W +wcha
−

RC2
+wcha

� �2
4 W +wchað Þ

 !
C1C2:

ð11Þ
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Figure 1: Nodes and edges in networks.
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If a node k in the community leaves the original commu-
nity C1 to join the community C2, the sum of the modular-
ization degree of the two communities is:

χC1
′ + χC2

′ =
wC1

− ekC1

W +wcha
−

RC1
+wcha

4 W +wchað Þ

 !

+
wC2

+ ekC2
+wcha

W +wcha
−

RC2
+ RK + 2wcha

� �2
4 W +wchað Þ

 !
:

ð12Þ

It is easy to see that χC1
′ + χC2

′ > χC1
+ χC2

, that is to say

4 W +wchað Þ ⋅ ekC2
− ekC1

+wcha
� �

+ Rk +wchað Þ
⋅ RC1

− Rk − RC2

� �
−w2

cha > 0:
ð13Þ

The above formula proves that when node C2 joins the
modularity of community, C2 is increasing. Through the
above analysis, we can see the relationship between nodes,
weights, and communities. Section 3.2 mainly describes
reconstruction-based communities for efficient data transfer.

3.2. Data Delivery Model Design. As shown in Figure 2, this
is a typical composition of social networks of opportunity,
where mobile devices could act as mobile nodes. We divide
the mobile nodes in the network into three communities,
and the community composition is in dynamic change.
The green nodes represent the source nodes, and the nodes
with other colors represent their adjacent node. The source
nodes undertake the tasks of transferring a large amount of
data and calculation, so they consume more energy and
resources. There are typically only one or two source nodes
per community. The basis of community reconstruction is
the correlation degree between source nodes and neighbor-
ing nodes [28, 29]. That is because the inner edge density
of each community structure is significantly higher than
the edge density between communities [30–32]. It can also
be said that the community structure is a dense subgraph
separated from each other. The traditional definition of
community relies on the calculation of sides in different
ways. But what really needs to be cared about is the probabil-
ity that a node shares an edge with a subgraph. Community
existence implies that there are strong relations of connec-
tions between some nodes than others [33, 34]. Therefore,
within the same population, there should be special connec-
tion ways between nodes.

The difference between the definitions of strong and
weak communities lies in that in the definition of strong
communities, the comparison of edge probability takes place
on each pair of nodes, while in the definition of weak com-
munities, the average value of the node group is taken.
Therefore, a strong community also meets the definition of
a weak community. Each of these hypotheses can form an
edge generation model [35–37]. A reasonable model needs
to take into account the possibility of the existence that
groups of nodes behave similarly. The most famous network

group structure model is the stochastic block model (SBM),
and the application of this model to network community
detectability will be introduced in the following section.
Community detectability work is the premise of community
discovery, and then, we will propose an advanced routing
algorithm based on community discovery.

Most of the networks of interest are sparse, and their
average degree is much smaller than the number of vertices.
This means that the number of edges in an actual network of
n nodes is usually much less than the maximum number of
edges nðn − 1Þ/2. On the other hand, the sparse nature of the
network also brings some problems. Since the density of the
edges is very low, a small amount of noise can seriously
interfere with the structure of the system. For example, ran-
dom fluctuations in a sparse network may make the algo-
rithm constantly detect some nonexistent cluster
structures, which causes the algorithm to time out. Mean-
while, these fluctuations may make the actual community
structure undetectable.

With a view to the above problems, our solution is:
firstly, the network data is modeled by a stochastic block
model, and the Bayesian inference is applied to the parame-
ter deduction of the model. Then, the critical value of detect-
ability is determined by the fixed point of the free energy
theory in statistical physics. Finally, the back propagation
algorithm is used for iterative calculation, and on this basis,
data transmission is carried out. Each step is described in
detail in the following paragraphs.

3.2.1. Use Stochastic Block Model to Model the Network. The
stochastic block model (SBM) is a stochastic graph model
with a cluster structure. It is mainly used for research clus-
tering and community detection and provides a broad
research basis for the study of statistics and calculations
occurring in networks and data. The stochastic block model
is the most famous network group structure model, which is
defined as follows: we suppose a network with n nodes is
divided into q groups, i.e., g1,g2,…gq (gi represents group
identifier, i = 1, 2,⋯, q). SBM assumes that the probability
Pði↔ jÞ of the connection between node i and node j is only
determined by their group membership: Pði↔ jÞ = Pgigj

.

Therefore, for two nodes in the same group, the probability
of being associated with another group node is the same.
The q ∗ q symmetric matrix formed by the probability Pgigj

is called the stochastic block matrix. The diagonal element
Pkkðk = 1, 2, 3,⋯, qÞ denotes the probability of internal
edges of nodes in the block k, while nondiagonal elements
give the probability of edges between different blocks.

We use the stochastic block model to model the network.
Assume that the number of network nodes is S, and each
node iði ∈ ½1, S�Þ has an implied label ai ∈ ½1, q�, which means
that the nodes are divided into q groups with the number of
nodes δ1, δ2,⋯, δq. Each node selects label independently.
Suppose Px is the probability that a given node chooses the
label x as shown in

Px = lim
S⟶∞

δx
S
: ð14Þ
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In our configuration, only the adjacency matrix informa-
tion of the graph is available. The adjacency matrix of the
graph gives the information of all nodes in the graph and
the information about whether there is a connection
between them. Once the grouping is complete, a new matrix
similar to the original adjacency matrix is obtained. For each
pair of nodes i and jði < jÞ, let their grouping be δi and δj,
respectively. The probability of connection between the
two nodes is Pij. The matrix formed is the correlation matrix
of the initial adjacency matrix.

3.2.2. Infer the Parameters of SBM Model by Bayesian
Formula. Let us start with some basic knowledge of statistics
and probability theory.

Conditional probability: let A, B be two events, and Pð
AÞ > 0, then PðBjAÞ = PðABÞ/PðAÞ is the conditional proba-
bility of event B under the condition that event A occurs.
Generally, PðBjAÞ ≠ PðBÞ, unless the two events are indepen-
dent of each other.

Total probability formula: if events A1,A2,…,An is a com-
plete group of events, and all have positive probability, then

P Bð Þ = P A1ð ÞP B A1jð Þ + P A2ð ÞP B A2jð Þ+⋯+P Anð ÞP B Anjð Þ

= 〠
n

i=1
P Aið ÞP B Aijð Þ:

ð15Þ

Bayes formula: let the events A1,A2,…,An is a complete
event group, then for any event B, if PðBÞ > 0, then

P Ai Bjð Þ = P AiBð Þ
P Bð Þ = P Aið ÞP B Aijð Þ

∑n
i=1P Aið ÞP B Aijð Þ : ð16Þ

Bayes formula can be proved by the conditional probabil-
ity definition and the total probability formula. Knowing that
an event has occurred (prior probability) and asking for the
probability of the various causes or circumstances that caused
the event to occur (posterior probability), we can use the Bayes
formula to get the answer.

Apply Bayesian inference to stochastic block model. The
conditional probability of the parameters fθg = fαa, βabgof
the stochastic block model τ is

P θif g μif gjð Þ = P θif g μif gð Þ
P μif gð Þ = P θif gð ÞP μif g θif gjð Þ

∑gi
P θif gð ÞP μif g θif gjð Þ :

ð17Þ

The summation part is to traverse the grouping of each
node. Prior probability PðfθgÞ contains the information
for the model parameters that is independent of the figure.
In this case, PðfθigjfμigÞ maximizes when PðfμigjfθigÞ
maximizes. We call the function PðfμigjfθigÞ as the likeli-
hood function, it is the probability of grouping when model
takes fθg as the parameter. When the parameters αa and βab
are given, the best group assignment can be obtained by
using the maximum likelihood method. But this is only
appropriate for networks generated through this model. In
a sparse network, if we only care about the maximum likeli-
hood function, the phenomenon of data overfitting may
occur.

3.2.3. Use the Back Propagation (BP) Algorithm for Iterative
Calculation. BP algorithm is a fast method for network com-
munity detection; at the same time, it is also an excellent
algorithm performance analysis tool [38]. By analyzing the
fixed points in BP algorithm, we can judge whether one

Community 1

Community 3

Community 2

Figure 2: Typical community structure. Green nodes express source nodes, and nodes in other colors express neighboring nodes. Data
transmissions are initiated by the source nodes.
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method can be used to get the network community. Since
this algorithm is optimal in one sense, if this algorithm fails,
then all other algorithms will fail as well [39, 40]. This con-
clusion of BP algorithm not only refers to the specific algo-
rithm but also includes other algorithms.

It is shown that there are some special cases in the
parameter space of stochastic block model. Under these spe-
cial cases, the community structure cannot be algorithmi-
cally recovered. In particular, if the average degree is the
same for all grouping formulas, there is a useless fixed point:
φi⟶j
a = φi

a = δa. If q groups have the same size, that is, δa
= 1/q, BP algorithm will get the conclusion that all nodes
are equally likely to belong to any group.

In other cases, there may be more than one useless fixing
point, and when these useless fixing points become unstable,
they are called transition points. On the transition state
point, by changing the initialization conditions of BP algo-
rithm and using random information, the algorithm will
soon leave the vicinity of the transition state point and reach
other fixed points [41–43]. Therefore, it is computationally
feasible to detect the community structure and accurately
group the nodes, and the BP algorithm can complete this
task quickly and stably.

When the groups’ size is the same and the parameter ρab
of the random block model has only two values, as shown in

ρab =
ρin, a = b,
ρab = ρout, a ≠ b:

(
ð18Þ

So, the positions of the transition state points are rela-
tively easy to determine. If ρin is obviously greater than
ρout, then the community structure is obtained. However,
as ρin and ρout approach gradually, the community structure
becomes fragile. Although some statistical errors may occur,
as long as ρin > ρout is satisfied, some researchers have
thought that the community structure can be detected. This
paper challenges the above view. In this paper, when the
fixed point is stable, it needs to be satisfied

ρin − ρout = q
ffiffiffi
ρ

p , ð19Þ

where ρ represents the average degree of the entire network
node, and its calculation formula is

ρ = ρin + q − 1ð Þρout
q

: ð20Þ

If these useless fixed points are stable, the BP algorithm
will behave differently, depending on whether the stability
of the fixed points is local or global and depending on the
number of groups. At this point, the global stability point
is below the transition state point, so the community struc-
ture is undetectable. The BP algorithm will always converge
at useless fixed points and return information with no com-
munity structure.

3.2.4. Data Transfer. As we know, in opportunistic social
networks, data is transmitted from the source node to the

destination node in a multiroute manner. To reflect this pro-
cess more clearly, we illustrate this process in Figure 3. The
green circle represents the source node, which looks for the
node available for data transmission among neighboring
nodes, namely, the available node. When an available node
receives and stores some information, it becomes reserve
node, and a community is formed according to the method
mentioned above. The source node continues to move and
look for available nodes to communicate with them. It is
important to note that when the latter community is formed,
its information also comes from the former community. The
source node continues to move, and the process repeats
itself. Until finally the message is delivered to the destination
node.

The algorithm design in DDBSC can be described in
Algorithm 1. In this algorithm, assuming that there are n
nodes, the complexity of calculating the connectivity proba-
bility is Oðlog 2nÞ. It can be seen that the complexity of the
entire DDBSC algorithm is Oðlog 2nÞ.

4. Simulation

4.1. Baseline Algorithms. To evaluate the performance of the
proposed method, we compare it with the following three
typical algorithms. They are status estimation and cache
management algorithm (SECM), information cache man-
agement and data transmission algorithm (ICMT) [38],
and spray and wait routing algorithm (SW). Here is a brief
introduction of how they work effectively.

(1) SECM: the basic principle of status estimation and
cache management algorithm is to evaluate the prob-
ability of data transmission between nodes and
neighboring nodes. Then, adjust the data cache dis-
tribution to achieve the goal of a high transfer rate.
In this algorithm, neighboring nodes share caching
tasks with each other to achieve efficient information
distribution

(2) ICMT: the main technique of information cache
management and data transmission algorithm is
the identification and evaluation of neighbor nodes
in the same project. On this basis, the cache is
adjusted to reach the high project probability of the
node

(3) SW: the main technique of the spray and wait rout-
ing algorithm is to generate a lot of copies, spray
them across the network, and wait until one of them
reaches the destination node. An important perfor-
mance parameter of this algorithm is the number
of copies. In this study, we selected 10 and 30 copies,
respectively

4.2. Metrics.Metrics are used to measure the performance of
algorithms in opportunistic social networks. Four are
selected in this paper; they are overhead on average (call
overhead for short), energy consumption on average (call
energy consumption for short), end-to-end delay on
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average (call delay for short), and the delivery ratio [4].
Here is a brief introduction of what they mean.

(1) Overhead: the average overhead in data transmission
between two nodes

(2) Energy consumption: the average energy consump-
tion in data transmission between two nodes

(3) Delay: the average delay in data transmission
between two nodes

(4) Delivery ratio: the probability of a source node
choosing an available node to transfer data

4.3. Environment and Parameters. In this paper, we use a
ONE simulation tool for experiments. We set the parame-
ters according to the stochastic model of the social net-
work, as shown in Table 1. Among them, our simulation
time is 6 hours, and data is recorded every 0.5 hours.
We selected an area of 4500m × 3400m on the map as
the simulation area. All nodes choose the social model as

Community 1 Community 2

...

Community n

Data delivery between nodes

Data delivery between communities

Communities

Source node moves

Source node

Reserve node

Adjacent node

Figure 3: The process of data transmission after community detection.

Output: The network has community structure or not
Begin
Divide nodes into q groups, namely, g1,g2,…,gq

While (i, j ∈V){
let the probability that i and j are connected be Pgigj

}
End while
Generate the association matrix of the adjacency matrix M
If (!E≪VðV − 1Þ/2)//not a sparse network
μ0 = arg max PðfθigjfμigÞ//obtain the best group assignment μ0, θi denotes the parameter of the stochastic block model

End if
θ = θin + ðq − 1Þθout/q:
If (θin − θout = q

ffiffiffi
θ

p
)

Then there exists community structure
Else there is not
End if
End

Algorithm 1: The algorithm design in DDBSC
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the transmission mode. Furthermore, each source node
carries 10 packets.

4.4. Results. The simulation results are as follows. Figures 4–7
show the changes of the four performance measurement
parameters of the five selected algorithms with the increase
of simulation time. Among them, the simulation time is
mainly calculated from the time when the source node starts
to transmit data, and the monitoring is continued for 6 hours.
In addition, in the experiment, the cache size of the node is set
to 15MB.

Figure 4 shows the change of data transmission overhead
of the five algorithms with the increase of simulation time. It
can be seen that the overhead of DDBSC has been a stable
and good performance. It stays below 150MB. As simulation
time increases, the number of nodes involved in data trans-
mission is bound to increase. The reason the DDBSC algo-
rithm remains stable is that it can ensure the efficient
reconstruction of the community. At the same time, in order
to solve the time complexity and reduce the communication
overhead cost in opportunistic social networks, we propose a
data delivery strategy based on the random block model and
community detection (DDBSC), taking into account the
nonuniformity of the community. ICMT performs well,
which reaches its peak at time is 2 h and then begins to
decline steadily. That is because it controls the interval
between data transfers. You can also see that the spraying
and waiting algorithm with 30 copies has the worst perfor-
mance in terms of overhead.

Figure 5 shows the change of data transmission energy
consumption of the five algorithms with the increase of sim-
ulation time. It can be seen that DDBSC remained at a low
level before 3.5 h, and its energy consumption after 3.5 h
ranked the lowest among the five algorithms. When the time
reaches 6 h, the total energy consumption of DDBSC is not
more than 250, less than half of the maximum energy con-
sumption algorithm. The DDBSC algorithm takes into
account community nonuniformity and is based on a ran-
dom block model and community detection. Other algo-

rithms use copies more or less, but the DDBSC algorithm
avoids this and the power-saving benefits become more
prominent as simulation time increases. Therefore, in the
entire data transmission process, its energy consumption is
the lowest.

Figure 6 shows the change of end-to-end delay on aver-
age of the five algorithms with the increase of simulation
time. This time around, the latency of the SECM algorithm
is the highest, the average is other, and the average is twice
that of the SW algorithm with 10 copies. The DDBSC was
only a middling performer, but it is much lower than the
SECM algorithm. Because the SW algorithm generates a
large number of copies and sprays through the network, its
diffusion ability is very strong. Our experiments show that
the spraying and waiting algorithm performs best when the
number of copies is 10. The end-to-end latency of the
DDBSC algorithm, while stable, is consistently around
20 units higher.

Figure 7 shows the change of delivery ratio on average of
the five algorithms with the increase of simulation time. It
can be seen that the delivery of DDBSC has been maintained
above 55%, with the average value exceeding 60% and the
highest value reaching 68%. Such good performance is
attributed to the proper selection of the community model
and the efficient reconstruction of communities over time.
Since we use the random block model to model the network
data and apply Bayesian inference to the parameter deriva-
tion of the model, it has changed the current situation that
the community is not clearly defined and greatly increased
the average delivery. The ICMT algorithm identifies the
probabilistic selection of all neighbor nodes and thus the
best relay node; therefore, its message delivery rate is also
high. In the SW algorithm, when the number of message
copies is 30, the message delivery rate is the lowest.

To sum up, we can draw the conclusion that with the
increase of time, the performance of DDBSC in overhead,
energy consumption, and the delivery ratio is the best
among the five algorithms. However, the performance in
terms of latency is still weaker than that of the spraying

Table 1: The main system parameters.

Parameter Value

Simulation time 6 h

Number of nodes 500

Transmission pattern Broadcast

Transmission interval 20-25 s

Node movement mode Random site movement model

Area in networks 4500 ∗ 3400m2

Size of data packet 100-200KB

Data transfer range 10m2

Node movement speed 0.5-1.5m/s

Frequency of data packet 25-35 s

Cache 5-40MB

Initial value of energy 100 J

Transmission energy consumption of a single node 1 J
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and waiting algorithm with 10 copies. As the simulation
time continues to increase, the average delay performance
of DDBSC is closer and closer to it.

The cache size of a node is an important parameter that
affects the efficiency of data transmission in the network.
Figures 8–11 show how the four performance parameters
of the five algorithms change as the cache size changes. In
this set of experiments, we change the node cache size every
0.5 h.

Figure 8 shows the change of data transmission overhead
on average of the five algorithms with the increase of nodes’
cache size. It can be seen that with the steady increase of node

cache capacity, the overhead of all routing algorithms
decreases steadily. The routing overhead for DDBSC dropped
from 210 to 25, the spray and wait routing algorithm
(copy = 10) dropped from 290 to 75, and the information
cache management and data transmission algorithm dropped
from 270 to 40. In the process of change, our DDBSC algo-
rithm also has the largest drop in routing overhead. It dropped
from about 200 to 40. Also, the overhead of the DDBSC algo-
rithm is always the lowest. The drop in the above three algo-
rithms is noteworthy as it shows a larger node cache and
lower node overhead. The result shows that increasing node
cache is an effective way to reduce routing overhead.
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Figure 4: The overhead situation changes over time.

640

480

400

320

En
er

gy
 co

ns
um

pt
io

n

240

160

80

0

560

DDBSC
ICMT
SECM

SW (copy = 30)
SW (copy = 10)

1 1.5 2 2.5 3 3.5 4 4.5 5 65.5
Time (h)

Figure 5: The energy consumption situation changes over time.

10 Wireless Communications and Mobile Computing



Figure 9 shows the change of data transmission energy
consumption of the five algorithms with the increase of nodes’
cache size. It can be seen that with the increase of node cache
capacity, the energy consumption of other algorithms
increases significantly except that the energy consumption of
DDBSC remains at a relatively stable low level. The DDBSC
algorithm has the lowest energy consumption when the node
cache is 15. As the node cache increases, although its energy
consumption increases, the increase is smaller and is always
the lowest among all algorithms. The significant reduction in
energy consumption of DDBSC stems from its adoption of

community-provided messaging methods. We dynamically
form communities according to the degree of association
between source nodes and destination nodes, and on this
basis, perform efficient and relatively reliable data transmis-
sion. The SW routing algorithm consumes the most energy
due to a large amount of replication and spraying. This is espe-
cially obvious when the number of replicas increases. The
ICMT algorithm uses encounter transmission mode to copy
information through a single replication. Compared with the
spray and wait routing algorithms, the efficiency of energy
optimization is better.
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Figure 6: The delay situation changes over time.
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Figure 10 shows the change of end-to-end delay on aver-
age of the five algorithms with the increase of nodes’ cache
size. It can be seen that, with a few exceptions, the end-to-
end delay of all the five algorithms decreases with the
increase of node capacity. Among them, the spray and wait
routing algorithm (copy = 10), the SECM algorithm, and
the ICMT algorithm are the three algorithms with the most
obvious time delay reduction. The DDBSC algorithm and
the SW routing algorithm (copy = 30) have very low delivery
delays, so the decrease is not obvious. When the node cache
capacity increases from 5MB to 40MB, the DDBSC drops

from 78 to 25. It further reflects the low latency of our algo-
rithm. This is mainly because DDBSC dynamically builds a
community according to the weight distribution, applies
Bayesian inference to the parameters during model building,
and uses the back-propagation algorithm for iterative calcu-
lation, which greatly reduces the message delivery delay.

Figure 11 shows the change of delivery ratio on average
of the five algorithms with the increase of nodes’ cache size.
The delivery ratio of the five algorithms increases with the
increase of node cache capacity. It can be seen that the
DDBSC with the highest delivery ratio has the lowest value
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of 0.55 and the highest value of 0.85. The reason for its high
delivery rate is that it realizes the nonuniformity of the com-
munity structure, dynamically forms the community accord-
ing to the degree of association between the source node and
the destination node, and successfully modeled it with SBM.
While the SW algorithm uses the flood information trans-
mission mode, the large amount of information loss results
in the low delivery ratio. This defect becomes more apparent
when the number of replicas is large. Its delivery rate is con-
sistently below 0.6.

Finally, in order to verify the impact on message trans-
mission after the transmission size is changed in the above
experiments. We performed the following experiments, as
shown in Figure 12. We set the node cache size to
15MB and measured it from the initial experiment time.
It can be seen from the figure that initially, with the
increase of data packets, the transmission success rate of
various algorithms is increasing. When the data packet
reaches about 150KB, the transmission success rate of
the algorithm gradually decreases. This is mainly because
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with the increase of data packets, the packet loss rate
begins to increase, so the transmission performance of
the algorithm is affected. In the SW algorithm, the greater
the number of message copies, the lower the delivery rate
of the algorithm, which is always below 0.4. The delivery
rate of the SECM algorithm reaches the maximum when
the data packet is 150KB. But the average delivery rate
is not high. Compared with the SW and SECM algo-
rithms, although the delivery rate of the ICMT algorithm
is greatly affected by the packet size, the delivery rate is
always higher than those of these two types of algorithms.
The delivery rate of the DDBSC algorithm is always the
highest, which is roughly consistent with that in
Figure 7, indicating that the packet size has little effect
on the algorithm.

It can be seen from the above research that the excellent
performance of the DDBSC algorithm is also reflected in the
stability of energy consumption when the node cache capac-
ity increases.

5. Conclusion

This paper dynamically builds communities in the opportu-
nistic network according to the weight distribution and takes
into account the nonuniformity of communities. To solve
the hot transmission problems of time complexity and
decrease overhead costs, this paper proposes an effective
data transmission strategy based on SBM and community
detection. The experiment results show that compared with
the other four effective data transmission algorithms of the
opportunistic network, the algorithm proposed in this paper
has an excellent performance in overhead, energy consump-
tion, and delivery ratio.

In the future, with the increase of the huge network
composed of mobile devices, data transmission will have
more and more prominent requirements for low delay
and low energy consumption. A further study of reducing

time complexity for the routing algorithm in the opportu-
nistic network is of great significance. Our next focus will
be on this.
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