
Research Article
Statistical Feature-Based Personal Information Detection in
Mobile Network Traffic

Shuang Zhao , Shuhui Chen , and Ziling Wei

School of Computer, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Shuhui Chen; shchen@nudt.edu.cn

Received 24 December 2021; Revised 29 April 2022; Accepted 23 June 2022; Published 6 July 2022

Academic Editor: Ding Wang

Copyright © 2022 Shuang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the popularity of smartphones, mobile applications (apps) have penetrated the daily life of people. Although apps provide
rich functionalities, they also access a large amount of personal information simultaneously. As a result, privacy concerns are
raised. To understand what personal information the apps collect, many solutions are presented to detect privacy leaks in apps.
Recently, the traffic monitoring-based privacy leak detection method has shown promising performance and strong scalability.
However, it still has some shortcomings. Firstly, it suffers from detecting the leakage of personal information with obfuscation.
Secondly, it cannot discover the privacy leaks of undefined type. Aiming at solving the above problems, a new personal
information detection method based on traffic monitoring is proposed in this paper. In this paper, statistical features are
designed to depict the occurrence patterns of personal information in the traffic, including local patterns and global patterns.
Then a detector is trained based on machine-learning algorithms to discover potential personal information with similar
patterns. Since the statistical features are independent of the value and the type of personal information, the trained detector is
capable of identifying various types of privacy leaks and obfuscated privacy leaks. As far as we know, this is the first work that
detects personal information based on statistical features. Finally, the experimental results show that the proposed method
could achieve better performance than the state-of-the-art.

1. Introduction

With the popularity of mobile devices, millions of apps
have been developed to facilitate daily living activities.
According to FinancesOnline [1], there are 5.22 billion
unique mobile phone users worldwide, and a total of 218
billion mobile apps are downloaded in 2020. Apparently,
apps have been indispensable in the daily life of people.

When providing service, apps would request access to
personal information (PI), such as device identifiers and
location [2, 3]. Some requested PI is necessary to support
the functionalities of apps, while some PI is deliberately col-
lected by apps with unilateral intent. Since the majority of
users lack professional knowledge, they will unconsciously
assent to all requests of the app, even if some requests are
unreasonable. In this case, users would be victims of unnec-
essary privacy leaks. For example, PI of up to 87 million
Facebook users had been collected by a third-party Cam-
bridge Analytica without user awareness [4]. Cambridge

Analytica developed a quiz app. Once a user logs into the
quiz app with his Facebook account, his data could be col-
lected by the quiz app, such as profile details, user histories,
and friends lists. Then the data can be used to automatically
predict a range of highly sensitive personal attributes, such
as the sexual orientation and personal traits. Similarly, Rela,
a Chinese social app, was found to have leaked 5.3 million
user profiles [5]. With the disclosure of such privacy leakage
events, more and more users are aware of privacy concerns
and are likely to appreciate transparency when regarding
how the app collects personal data. Furthermore, Ren et al.
[6] point out that the data leakage of apps has gotten worse
after investigating how privacy leaks change over time for
512 apps. Therefore, there is an urgent need to detect privacy
leaks in apps.

Existing privacy leak detection methods can be divided
into three categories, including the static analysis-based
detection [7, 8], the dynamic analysis-based detection [9,
10], and the network traffic monitoring-based detection

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5085200, 17 pages
https://doi.org/10.1155/2022/5085200

https://orcid.org/0000-0002-3423-8805
https://orcid.org/0000-0001-7413-8174
https://orcid.org/0000-0002-7858-1445
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5085200

[11–13]. With the data flow analysis technology, the static
analysis-based method finds the privacy leakage path from
the source code of an app. Such a method is scalable, while
its accuracy is heavily affected by false positives and false
negatives. Besides, the effectiveness of this method will fur-
ther decline with the popularization of the source code pro-
tection technology. The dynamic analysis-based method
usually utilizes the customized OS combined with taint anal-
ysis to discover the privacy leakage. It could achieve better
accuracy than the static analysis-based method. However,
it is difficult to deploy this method on a large scale due to
the high overhead. Compared with the above two methods,
the network traffic monitoring-based method provides a
user-friendly and scalable detection scheme. This method
first monitors the traffic of apps passively, then analyzes
the content of the traffic and discovers the PI that is trans-
mitted through the traffic. For instance, Recon [12] regards
the traffic as a short text and applies the bag-of-words model
to extract features. Then a Random Forest classifier is
trained to detect the personally identifiable information
(PII) in the traffic. The network traffic monitoring-based
method can be easily deployed on personal mobile devices.
Besides, its detection performance is comparable to that of
the other two methods. Hence, this method has aroused con-
siderable interest among related parties [14].

However, the existing traffic monitoring-based detection
methods identify PI by the semantics and the formats of PI,
which leads to some shortcomings. Firstly, those methods
have poor performance in detecting the PI with obfuscation,
such as the PI that is hashed or encrypted. Secondly, they
cannot identify the PI of undefined types (e.g., the PI with
unknown formats). In this paper, a novel traffic
monitoring-based detection method is proposed. It could
solve the above two problems effectively. Instead of distin-
guishing PI and non-PI by their semantics and formats,
our method focuses on the differences in their occurrence
patterns. Specifically, our method is inspired by the observa-
tion that PI and non-PI transmitted in the traffic could show
different occurrence patterns. Take IMEI (a device identifier)
and the timestamp (a non-PI) as examples. An app would
obtain IMEI from multiple users multiple times, while the
IMEI obtained from the same user is unique. Meanwhile,
the IMEI of a user would be collected by multiple apps;
hence, the IMEI could occur in the traffic of multiple apps.
As for the timestamp, the timestamp collected from one user
would change frequently, and a timestamp rarely appears in
multiple apps at the same time. For PI and non-PI, their
occurrence patterns are independent of their semantics and
formats. Therefore, the undefined PI can be discovered as
long as it has similar occurrence patterns. In addition, the
obfuscated PI can also be detected by our method when
the obfuscation does not affect the patterns of how PI occurs
in the traffic.

The occurrence patterns are captured from local and
global perspectives in our method. Specifically, local and
global statistical features are designed to describe how PI
occurs in the traffic of one app and all apps. Then a group
of string-form rules and manual work are employed to build
a labeled dataset. Finally, a detector is trained to learn the

occurrence patterns of PI and non-PI based on machine-
learning algorithms. With the detector, the PI transmitted
through the traffic can be discovered automatically. The con-
tributions of this paper are summarized as follows (the pre-
print version of our paper can be found in [15]):

(1) A set of local and global statistical features is
designed to describe the occurrence patterns of PI
in the traffic. To our best knowledge, this is the first
work to detect PI in the traffic from the perspective
of statistical features

(2) A PI detector based on machine-learning is pre-
sented in this paper. The detector could identify var-
ious types of PI without knowing the formats and the
semantics of PI. Besides, the detector is effective for
detecting a portion of obfuscated PI

(3) Comprehensive experiments are conducted on a
real-world dataset to validate the effectiveness of
the proposed detector. The experimental results
show that the proposed detector could achieve better
performance than the state-of-the-art

The rest of the paper is organized as follows. Section 2
provides the necessary background. Section 3 introduces
the related work. Then, the designed statistical features are
given in Section 4. Section 5 presents the detection method,
and Section 6 shows the experimental results. Finally, Sec-
tion 7 concludes the paper.

2. Background

In this section, background information is provided to help
understand this paper.

2.1. Personal Information. PI refers to the information that
can identify a specific individual or reflect the activities of
an individual [16]. Under different standards and applica-
tion scenarios, the specific information belonging to PI is
different. PII refers to the PI that can be used to identify or
track an individual, which is the most sensitive information
about one person. So far, there are several types of well-
defined PII, including device identifiers, user identifiers, con-
tact information, credentials, and location. Current research
focuses on identifying those PII. However, in addition to
those PII, there are other undefined PII and PI that can
reveal sensitive information about users. It is far from
enough to identify only the well-defined PII.

Our work is aimed at identifying as much PI as possible.
A critical question is how to define those PI, such as what
they look like and what they mean. Fortunately, our work
could neatly bypass this question. During the detection,
our method analyzes the data in the traffic based on the sta-
tistical features. Other knowledge, such as the format of the
PI, is not required. In this way, our method could discover
the PI without a precise definition of it.

2.2. Privacy Leak. The term privacy leak has been widely
used to represent the behaviors of apps collecting and trans-
mitting any PI [8, 12]. Recently, a few studies further assess

2 Wireless Communications and Mobile Computing

the rationality of such behaviors. Those studies try to figure
out whether the behavior is necessary for the app to provide
its service [17, 18]. In those studies, privacy leak indicates
the functionality-irrelevant private data transmission.

Since the rationality of transmitting PI is beyond the
scope of this paper, privacy leak represents any PI transmis-
sion behavior in this paper.

2.3. HTTP Request. For an app, to obtain data from the
server based on HTTP, an HTTP request would be sent from
the app to the server. An HTTP request contains an HTTP
request line, as shown in Figure 1. The HTTP request line
describes the request type (the Request Method in
Figure 1), the resource to be accessed (the Request URI in
Figure 1), and the HTTP version (the Request Version in
Figure 1). For the Request URI, it consists of two parts:
URI path and URI Query. Moreover, the URI Query could
include multiple parameters, and the user data will be trans-
ferred to the server through them. Each parameter contains
a key and its corresponding value, which are connected with
“=.” For the unencrypted mobile traffic, most PI is transmit-
ted through these parameters in the HTTP request [10, 19].
In this paper, we are concerned about whether PI is trans-
mitted through the URI Query Parameter under the request
type of “Get” and “Post.” As long as PI is found in the
parameters, it is considered that a privacy leak occurs in this
HTTP request.

2.4. Motivation. This section explains the idea behind our
method in detail with an example. Figure 2 provides exam-
ples of eight HTTP requests from three users in two apps
(Wechat and Tencent News). There are five keys in those
requests, including imei, startDate, endDate, devid, and app-
ver. The first three keys are from Wechat, and the other two
belong to Tencent News. Pair <app, key > is used to repre-
sent the dependency relationship between a key and an
app. Therefore, several <app, key > pairs can be obtained
from these requests, such as <Wechat, imei > . Besides, IMEI
is transferred through <Wechat, imei > and <TencentNews
, devid > . The remaining three pairs are used to transfer
non-PI, i.e., the date (<Wechat, startDate > and <Wechat,
endDate >) and the app version (<TencentNews, appver >
). Since IMEI is personal information, a privacy leak occurs
once an HTTP request from Wechat contains key imei or
an HTTP request from Tencent News contains key devid.

As shown in Figure 2, the values of <app, key > pairs
that transfer PI and non-PI exhibit different occurrence
patterns.

1. PI-related <app, key > pairs
Pattern 1: values are unique for different users in the

same app
Pattern 2: the value of one user is unique in one app.

Meanwhile, the value may also appear in other apps
2. Non-PI-related <app, key > pairs
Pattern 1: different users may have the same values in an

app, and one user could take multiple values in an app
Pattern 2: the values may not appear in other apps
It should be noted that the above example only shows

several typical patterns that can exist for certain PI and

non-PI. Not all PI and non-PI would present such value
patterns, while they may show other patterns. It is such
differences that motivate us to detect whether an <app, k
ey > pair is transmitting PI based on the occurrence pat-
terns of its values. In the following sections, a set of fea-
tures is proposed to describe the value characteristics of
<app, key > pairs, and the potential occurrence patterns
are automatically learned based on machine-learning
algorithms.

3. Related Work

3.1. Static Analysis-Based Detection. The static analysis-
based detection method discovers the possible privacy leak
in an app by analyzing its source code. The first step of this
method is to find sources and sinks in the source code. For
example, the APIs provided by the device OS for accessing
user data can be regarded as sources. The interfaces that
transmit information are defined as sinks, such as the net-
work interface and file writing functions. Then the control
flow graph of the source code is generated. Finally, data flow
analysis technology is utilized to find paths between sources
and sinks. Each path indicates a potential privacy leak.

Since the static analysis is carried out without running
apps, this method has good scalability. Thus, it can be
applied to implement the preliminary test of massive apps
in the application market. However, this method is prone
to generate false negatives. On the one hand, it is difficult
to analyze the native code and dynamically loaded code.
On the other hand, the privacy leaks generated from non-
standard sources (e.g., the PI input by users) would be omit-
ted. Besides, since this method finds the leakage paths
statically, false positives would be introduced if the paths
are never visited.

Based on the static analysis, FlowDroid [20] finds the
leakage paths between the predefined sources and sinks.
Apart from that, it proposes a scheme to find the privacy
leak caused by the UI widgets within apps. Nattanon et al.
[21] extend FlowDroid by adding additional PII-related
sources into its source-sink file. Besides, a PII list assem-
bled from previous studies is provided in their work.
AndroidLeaks [8] provides a static analysis framework
for discovering PII leaks in Android apps. PiOS [7] ana-
lyzes the binaries compiled from the Objective-C code
and detects privacy leaks for iOS apps. ClueFinder [22]
also performs its detection based on the source code of
apps. Instead of using the data flow analysis, it detects
the PI leakage paths by checking the semantics of program
elements.

3.2. Dynamic Analysis-Based Detection. The dynamic
analysis-based detection performs its data flow analysis with
running apps. It could achieve better performance compared
with the static analysis since the discovered privacy leaks hap-
pen in real data streams. To track how personal data flows in
the app, some detection methods apply taint analysis on cus-
tomized OSs. TaintDroid [23] modifies the Android OS to
support attaching taint tags to sources. Four granularities of
taint propagation are implemented in TaintDroid, including

3Wireless Communications and Mobile Computing

variable-level, method-level, message-level, and file-level.
Achara et al. [9] present MobileappScrutinator, a dynamic
analysis platform for Android and iOS. MobileappScrutinator
rewrites the source code of Android OS to track personal data.
Then similar functions are implemented in iOS with jailbreak-
ing. PrivacyCapsules [24] implements a customized OS. It
requires the apps running above it to comply with its PI access
rules. At the same time, the PI access rules prevent the PI from
leaving the personal device. iABC [25] evaluates the risks of
privacy leaks of iOS apps by combining dynamic analysis with
static analysis. With a customized OS, He et al. [26] hook the
privacy-related APIs to identify privacy leaks of the third-
party libraries inside apps. However, these methods usually
run the apps with automatic tools, which leads to incomplete
coverage of app execution paths [6]. Therefore, false negatives
would be introduced. Meanwhile, those methods could gener-
ate false positives because of coarse-grain taint and tainted
information explosion [23].

Another method is proposed based on differential
analysis. AGRIGENTO [10] establishes the network behav-
ior baseline of an app by running the app multiple times.
Then the input value of the PI to the app is changed.
Finally, privacy leaks are found by observing deviations
in the resulting network traffic. In this way, AGRIGENTO
also could detect obfuscated PI in the traffic. Although this
method could achieve high precision, its practicability is
relatively poor as a large number of manual operations
are involved.

3.3. Traffic Monitoring-Based Detection. The traffic
monitoring-based detection passively monitors all the traffic
generated by apps; then it detects the PI transmitted through
the traffic. The traffic is generally monitored by self-
developed tools [11–13, 27, 28]. These tools utilize the
VPNService provided in Android OS to collect the traffic
without requiring root permission. Besides, since these tools
are deployed on mobile devices, the source app of the traffic
could be obtained simultaneously. Compared with the other
two types of detection methods, the traffic monitoring-based
detection method is lighter and easier to deploy. In addition,
it could continuously monitor the traffic generated by apps;
hence, full coverage of detection can be achieved.

With the self-developed tool Antmonitor [11], Anastasia
et al. find the PI that is readily available to apps on the phone
using simple string matching, such as IMEI, the email
account, and the phone number. PrivacyGuard [27] adopts
regexes to detect the PI with specific formats in the traffic.
Similarly, Liu et al. [19] design regexes to find five kinds of
PI in the traffic. Then the values of the discovered PI are
added to the regex rules to mine more privacy leaks. Recon
[12] firstly proposes a detection scheme based on machine-
learning. It regards the traffic flows as short texts. Then the
bag-of-words model is applied to extract the features of the
traffic flows. Finally, a decision tree classifier is trained for
each domain name to identify five types of PII. Anastasia
et al. [13] present Antshield, a similar on-device privacy leak
detection method. Besides finding the known PII based on

Figure 1: An example of an HTTP request line.

Get /netlog_se/Select?imei = HJS5T19626000575&
startDate = 20200526&endDate = 20200527 HTTP

Get /netlog_se/Select?imei = HJS5T19626000575&
startDate = 20200528&endDate = 20200528 HTTP

Get /netlog_se/Select?imei = 074e7fa44aife97a&
startDate = 20200526&endDate = 20200528 HTTP

Get /netlog_se/Select?imei = eeea88f0f289cb97&
startDate = 20200621&endDate = 20200621 HTTP

Get /reportInterest?devid = HJS5T19626000575&
appver = 29_android_6.1.21 HTTP

Get /reportInterest?devid = HJS5T19626000575&
appver = 29_android_6.1.21 HTTP

Get /reportInterest?devid = 074e7fa44aife97a&
appver = 28_android_6.1.50 HTTP

Get /reportInterest?devid = eeea88f0f289cb97&
appver = 28_android_6.1.20 HTTP

Tencent newsWechat

User 1

User 2

User 3

Figure 2: Examples of HTTP requests from three users in Wechat and Tencent News.

4 Wireless Communications and Mobile Computing

string matching, Antshield detects the unknown PII by
machine-learning classifiers, which are similar to Recon.
Compared with Recon, Antshield trains a classifier for each
app instead of for each domain name.

A weakness of the traffic monitoring-based detection
methods is that they cannot deal with encrypted traffic
unless extra technology is adopted, such as the man-in-
the-middle (MITM) proxy. However, the MITM proxy is
not always allowed to be deployed or run successfully. In
this case, such a method will no longer be the first choice
under the analysis demand of encrypted traffic. On the
contrary, it has advantages in scenarios where the traffic
is not encrypted or the encrypted traffic can be decrypted.
Additionally, the detection methods based on simple
string/regex matching are not resilient to obfuscation tech-
nology. Lastly, the existing methods can only detect the
PII with predefined types, while our method takes a step
toward the detection of undefined PI.

4. Personal Information Features

In this section, the <app, key > pair, which is the basic detec-
tion object of our method, is defined in Section 4.1. Then
local features and global features for a <app, key > pair are
given in Section 4.2. Those features are used to depict the
value characteristics of a <app, key > pair.

4.1. <app, key > Pair. As described in Section 2.4, we find
that the value occurrence patterns of <app, key > pairs
that transmit PI and non-PI are different. Besides, it has
been observed that HTTP requests generated by the same
action in an app are likely to have a similar structure [29].
More precisely, those HTTP requests have the same keys.
Moreover, considering that the developer of one app usu-
ally adopts certain naming conventions to name keys, we
further assume that a key in an app constantly transmits
the same type of information. Therefore, the detection task
is transformed into identifying whether each <app, key >
pair is PI-related, key is a key used in the HTTP requests
of the app. Once a pair <appi, keyj > is PI-related, then a
privacy leak occurs when keyj appears in an HTTP request
of appi, and the value of keyj is not empty or a default
value.

4.2. Statistical Features of the <app, key > Pair. For clarity,
the symbols used to define the proposed features are first
given as follows. Suppose that there are n apps: app1,⋯, ap
pn. For pair <appi, keyj > , Vij = fv1ij, v2ij,⋯, vmij g is the values
of keyj, and #ðvtijÞ calculates how many times vtij appears. Hij

denotes the set of domain names that visited by the appi’s
HTTP requests containing keyj. Vij and Hij are regarded
as the attributes of keyj. In following sections, 11 local fea-
tures and 6 global features are designed to describe the value
characteristics of <app, key > pairs. For pair <appi, keyj > ,
local features are extracted from the HTTP requests of appi
, while global features are extracted from the HTTP requests
of all apps.

4.2.1. Local Features

(1) Key-Value Statistics. For some PI, such as device identi-
fiers, their values for a user would be unique or remain
unchanged for a period of time. In contrast, the values of
non-PI may change frequently, such as the visited resource
and timestamps. We take two indicators to describe this dif-
ference: the number of different values per user and the
value entropy per user. For pair <appi, keyj > , these two
indicators are first computed for each user. Since different
<app, key > pairs may have a different number of users,
eight statistical features are further extracted from the indi-
cators as key-value statistics, including the max/min/ava/
var values of the two indicators of all users. The key-value
statistics indicate how the values of one user on keyj change
in the HTTP requests of appi.

(2) Local-Value Reuse Degree (L-VRD). L-VRD is the ratio of
the values in Vij used by at least two users. This feature mea-
sures the possibility of different users taking the same value.

(3) Key Frequency. Key frequency refers to the proportion of
HTTP requests that contain keyj to all HTTP requests from
the appi, i.e., the frequency of appi uses keyj to transfer the
information. This feature describes the difference in the fre-
quency at which PI and non-PI are collected by appi.

(4) Number of Users. Lastly, to reduce the impact of the
number of users on the above features, the number of users
that contribute to the HTTP requests of appi is added as one
of the local features.

On the whole, local features focus on how the value of
one key of an app changes among different users. It implies
that these features would be affected by the number of users.
In addition, the occurrence frequency of the key in the app is
also taken into consideration.

4.2.2. Global Features. It is prone to introduce false predic-
tions when the occurrence patterns are inferred only by local
features. Take <TencentNews, appver > as an example. The
appver is the version of the app Tencent News installed on
the device, which is not PI. However, <TencentNews, appv
er > could show similar local features as the PI-related pairs
when the HTTP requests of Tencent News are collected
from one user. Therefore, global features are further
designed to characterize how keyj and its attributes distrib-
ute in the HTTP requests of all apps.

(1) Key Reuse Degree (KRD). KRD refers to the number of
other apps that take keyj as one of their keys. Its calculation
is defined in Equations (1) and (2). KRD indicates whether
keyj is app-specific or is commonly employed among apps.

KRD = 〠
n

k=1,k≠i
f keyj, appk
� �

, ð1Þ

5Wireless Communications and Mobile Computing

f keyj, appk
� �

=
1, if keyj is one of the keys of appk:
0, else:

(

ð2Þ
(2) Domain Reuse Degree (DRD). DRD refers to the number
of other apps that visit at least one domain name in Hij, as
shown in Equations (3) and (4). If Hij is visited by multiple
apps, it is possible that keyj is generated by a third-party
library rather than by the function of appi itself. DRD is
designed to distinguish the patterns of how the third-party
library collects information from those of the app itself.

DRD = 〠
n

k=1,k≠i
g Hij, appk
� �

, ð3Þ

g Hij, appk
� �

=
1, ∃h ∈Hij, appk visits h:
0, else:

(
ð4Þ

(3) Weighted Value Distribution Features. The weighted
value distribution features capture the distribution of Vij in
the HTTP requests of other apps. To provide formal descrip-
tions of these features, Value Distribution Matrix (VDM) is
defined in our work. Figure 3 illustrates the VDM of pair <a
ppi, keyj > , a matrix with a size of m × ðn − 1Þ. Element Ctk

(1 ≤ t ≤m, 1 ≤ k ≤ n, k ≠ i) is one kind of statistical data that
relates to the occurrence of vtij in the HTTP requests of appk.
Besides, Wij = fw1

ij,w2
ij,⋯,wm

ij g is the weight vector of Vij,
and wt

ij is the weight of v
t
ij, as computed in Equation (5).

wt
ij =

vtij
� �

∑m
t=1# vtij

� � : ð5Þ

Based on four different Ctk, i.e., four different statistical
values, four global features are designed as follows:

(i) Weighted Global-Value Reuse Degree (Weighted
GVRD). The weighted G-VRD is the weighted sum
of the number of times each value in Vij appears in
other apps’ HTTP requests. Its calculation is given
in Equation (6), where Ctk is the number of times
vtij appears as a value in the HTTP requests of appk.

weighted G −VRD = 〠
m

t=1
wt

ij × 〠
n

k=1,k≠i
Ctk

 !
ð6Þ

(ii) Weighted App Reuse Degree (Weighted ARD). The
weighted ARD is similar to the weighted G-VRD,
except for Ctk which indicates whether vtij appears
in the HTTP requests of appk. Specifically, Ctk is 1

when vtij appears in the HTTP requests of appk.
Otherwise, Ctk is 0

(iii) Weighted User Reuse Degree (Weighted URD). The
weighted URD is the weighted sum of the number
of users using vtij in the HTTP requests of other
apps. As Equation (7) shows, Ctk is the user set
using value vtij in the HTTP requests of appk. More
specific, Ctk = ½user1, user2,⋯� and each user in Ctk
have used vtij in him HTTP requests of appk. When
calculating the weighted URD, the union of each
row of VDM is computed first. Then the length of
a union can be obtained, which is computed as jSn

k=1,k≠iCtkj in Equation (7). Finally, the weighted
URD is the weighted sum of the lengths of the
unions

weighted URD = 〠
m

t=1
wt

ij ×
[n

k=1,k≠i
Ctk

�����
�����

 !
ð7Þ

(iv) Weighted New User Reuse Degree (Weighted
NURD). Compared with the weighted URD, the
weighted NURD concerns new users. Suppose the
users involved in pair <appi, keyj > is denoted as
U , the weighted NURD of pair <appi, keyj > is cal-
culated as Equation (8). The calculation of this fea-
ture is similar to the weighted URD. The
difference is that after obtaining the union of each
row of VDM, the users who have used keyj in appi
would be removed from the union. The weighted
NURD indicates how many new users use the values
in Vij in the HTTP requests of other apps

weighted NURD = 〠
m

t=1
wt

ij ×
[n

k=1,k≠i
Ctk −U

�����
�����

 !
ð8Þ

It is worth mentioning that only KRD is related to the
name string of the key itself among the six global features.
Taking <Wechat, imei > in Figure 2 as an example, KRD
calculates whether “imei” is also a key for other apps. The

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......
......

......
......

......

app1 app2 appk appi –1 appnappi +1

C11 C12 C1k C1i –1 C1i +1 C1n

C21

Ct1 Ct2 Ctk Cti –1 Cti +1

C22 C2k C2i –1 C2i +1 C2n

Ctn

Cm1 Cm2 Cmk Cmi –1 Cmi +1 Cmn

Vij1

Vij2

Vijt

Vijm

Figure 3: The Value Distribution Matrix of <appi, keyj > .

6 Wireless Communications and Mobile Computing

rest five features describe the statistics of the values and the
visited domain names of the key. For instance, for <Wecha
t, imei > , weighted value distribution features capture the
value characteristics of “HJS5T19626000575” (the value of
“imei”) in other apps. Therefore, even if an app has unique
naming rules or the application scenario changes (e.g., under
different cultures), only KRD would be affected.

5. Detector Construction

With the designed statistical features, the PI detector is
implemented as Figure 4 illustrates. Suppose that a group
of traffic that is labeled with source apps has been collected.
At the preprocessing stage, <app, key > pairs and their fea-
tures are extracted from the traffic. To construct a labeled
dataset, a set of string-form rules is applied to discover pos-
itive samples, i.e., the <app, key > pairs that transmit PI.
Meanwhile, negative samples are labeled manually. Finally,
a binary-classification detector is trained based on the
machine-learning algorithm. The detector can be applied
to identify whether the unlabeled samples are PI-related.

5.1. Preprocessing. In this stage, <app, key > pairs are
extracted from the HTTP requests. Then the <app, key >
pair is removed if all values of the key are default or empty.
The default values are collected by examining a part of sam-
pled traffic, including “none,” “unknown,” “-,” “[IMEI],” and
“[MAC].”, etc. Besides, the <app, key > pair whose key
appears only once in the HTTP requests is also removed
since its data volume is too small to extract meaningful
occurrence patterns. At last, the default values are deleted
from the value set of <app, key > pairs; then 11 statistical
features are computed for each valid <app, key > pair.

5.2. Dataset Preparation. For supervised machine-learning
algorithms, a labeled dataset is required to train the detector.
Since we have no prior knowledge of PI, the samples cannot
be labeled based on the values of PI. In our work, string-
form rules and manual labeling are employed to find a hand-
ful of positive samples and negative samples, respectively.

The string-form rules include a group of keywords and
regexes for identifying six kinds of PI, as listed in Table 1.
The keywords come from our previous work [30], which
summarizes the commonly used keywords that transmit
PI. In addition, regex rules are applied to find MAC
addresses, email accounts, and phone numbers since they
have special formats. For pair <appi, keyj > , if keyj is one
of the keywords or at least one value of keyj satisfies the
regexes, it is labeled as positive. Then, the values of the found
positive samples can be exploited to discover more positive
samples. Finally, the found positive samples are manually
checked, and the unqualified samples are deleted. For differ-
ent scenarios, the rules used for finding positive samples can
be flexibly modified and expanded.

As for the negative samples, they are labeled manually.
On the one hand, the negative samples lack prominent rules
to be discovered automatically. On the other hand, the intro-
duced labor work is acceptable since only a small number of
negative samples need to be labeled. Furthermore, as the

majority of <app, key > pairs are non-PI-related in practice,
negative samples can be labeled easily. Although the final
labeled dataset has a small size, the experimental results in
Section 6 show that it is enough to train an effective detector.

5.3. Detector. Finally, a detector is trained based on the
machine-learning algorithm to predict whether a <app, key
> pair transmits PI. As previously stated, the proposed
detector can identify unknown types of privacy leaks. In
other words, although our labeled dataset contains only six
types of PI-related samples, the detector could identify the
<app, key > pairs that transmit PI beyond those six types.

From the implementation of the detector, it can be seen
that the above detection can be performed after a certain
amount of traffic has been collected. However, the advantage
of this detection model is that it could predict a large num-
ber of <app, key > pairs within one prediction. Then a
blacklist can be built from the <app, key > pairs that are pre-
dicted as positive. After deploying the blacklist in the traffic
monitoring apps similar to Recon [12], only simple string
matching is required to find the privacy leaks in real-time
traffic. While processing the real-time traffic, new <app, key
> pairs and their data can be sent to a centralized server
so that the detector and its prediction results can be updated
periodically.

5.4. Deployment. Figure 5 details the deployment and the
execution process of the proposed detector. There are two
main subjects in the deployment environment. One is the
personal device, on which the user installs various apps
(e.g., app1 and app2 in Figure 5). The other is the detection
tool, which detects whether the apps installed by the user are
transmitting PI. The detection tool consists of a client and a
server. The server deploys the proposed detector. The client
is an app (the APP in Figure 5) that monitors the HTTP
requests generated by the personal device. Meanwhile, it
maintains a blacklist that contains the <app, key > pairs
found by the detector for transmitting PI. After launching
the monitoring app, it continuously monitors the HTTP
requests of the personal device and checks whether a key
in the blacklist appears in these HTTP requests based on
string matching. If a match occurs, a privacy leak will be
reported to the user. Meanwhile, the app continuously col-
lects the necessary HTTP request information.and sends it
to the server for retraining the detector. In this way, the
detector could be updated periodically; then the blacklist
can be updated simultaneously.

6. Experiments

6.1. Dataset. In our work, a self-developed app Netlog [31] is
utilized to collect the traffic of mobile devices. The working
principle of Netlog is similar to the tool used in Recon
[12]. Then 224 volunteers are recruited to participate in
the traffic collection. At last, the collected traffic dataset
covers 350 apps with a total of 5,374,633 HTTP requests.
This dataset is planned to be made public in our future work.

After preprocessing, 16,968 valid <app, key > pairs are
extracted from 335 apps. The cumulative distribution

7Wireless Communications and Mobile Computing

function (CDF) of the number of users for <app, key > pairs
is depicted in Figure 6. It can be seen from Figure 6 that
more than 90% of the <app, key > pairs have less than five
users. Meanwhile, 58.56% of the <app, key > pairs come
from the traffic of only one user. It indicates that more than
half of the <app, key > pairs do not have values from differ-
ent users, and hence, they cannot obtain reliable local fea-
tures. Consequently, the difficulty of correctly identifying
such samples would increase. Subsequent experimental
results further prove this viewpoint.

Using the labeling method introduced in Section 5.2, 404
positive samples and 404 negative samples are obtained from
16,968 samples. Those 808 samples come from 229 different
apps. Similar to the distribution of the whole dataset, 59.6%
of the 808 labeled samples have only one user, and 94.5% of

the samples have no more than four users. Table 2 provides
the composition of the positive samples.

Several conclusions can be made from Table 2. First of
all, the leakage of IMEI is the worst. About 20% of apps
transmit IMEI in 10.35% of their HTTP requests. This
should be taken seriously since IMEI can be directly used
to identify an individual. Secondly, although 47 <app, key
> pairs transmit UserID, which is less than those of the
other deviceID and MAC, the leakage frequency of UserID
exceeds that of the other deviceID and MAC. Therefore, it
can be inferred that IMEI and UserID are more commonly
utilized to identify the users of the app compared with other
device identifiers. Besides, the leakage of the phone number
shows a little difference. In our dataset, nine <app, key >
pairs transmit phone numbers, while 49,453 leaks happen.

......

.......

.......

Traffic
set

(1) Preprocessing

< app1, key1, 11 features >

< app2, key2, 11 features >

Unlabeled < APP, Key >

String-form

rules
Manaullylabeling

(2) Dataset preparation
Positive samples

< app1, deviceid, 11 features >
< app2, IMEI, 11 features >

< app2, timestamp, 11 features >
< app3, format, 11 features >

Negative samples

Unlabeled pairs
Prediction

Training &
testing Detector

(3) Detection

Figure 4: The implementation of the PI detector.

Table 1: The rules for positive samples discovering.

PI type String-form rules

User identifier user, userid, user_cid, user_id, and user-id

Device identifier imei, meid, imsi, misi, deviceid, device_id, and serialnumber

MAC address mac, mac_address, ((([a-f0-9A-F]{2}:){5}z) a − f0 − 9A − F½ � 2f g − Þ 5f gð Þð Þ a − f0 − 9A − F½ � 2f gj
Location location, gps, latlng, longitude, ltt, lat, latitude, lgt, lng, lon, and address

Email a − zA − Z0 − 9 :+−½ �+@ a − zA − Z0 − 9 −½ �+ _a − zA − Z0 − 9−:½ �+
Phone number ^(86)? 13 0 − 9½ � 14 5 7j½ �j j15 0 − 9½ � 166j j17 3 6j 7j 8j½ � 18 0 − 9½ �j j19 1 8j j9½ �ð Þ \ d 8f g$

......

......

Update < app, key > pairs that transmit PII

Personal
device

APP

app1

app2

< app, key > that transmits PII

app1, (key1, key2, key3, ...)
app2, (key1, key2, key3, ...)

String
matching

HTTP requests of apps on device

app1, Get/index?key 1 = a&d = 123
app2, Get/select?imei = xxxx&key 3 = ⁎⁎

CollectHTTP requests to update the detector

Report
PII
leakage

Server end

Detector
in fig. 4

Figure 5: The deployment and the execution process of the detector.

8 Wireless Communications and Mobile Computing

After analyzing these nine samples, we found that 44,561
privacy leaks occurred in the same app. What is more, this
app is the official application of a telecom service provider
in China. Lastly, only two <app, key > pairs are found to
transmit email accounts. It seems that the email account
has been well protected during its collection.

The positive samples in Table 2 are further divided into
four categories: UserID-related, DeviceID-related, MAC,
and Location. Then five datasets are obtained by combining
different categories of samples, as listed in Table 3. T_ all-
Type means that all positive samples are randomly split into
training samples and test samples. The other four datasets
use three categories of positive samples as the training sam-
ples and the remaining one as the test samples. For different
datasets, negative samples with the same number of positive
training samples are randomly selected to build the training
set. The remaining negative samples are added to the posi-
tive test samples to form the test set.

6.2. Comparison of Machine-Learning Classifiers. To verify
the impact of machine-learning algorithms on the perfor-
mance of the detector, four machine-learning algorithms

are applied to train the detector, including Random Forest
(RF), SVM with Gaussian kernel, KNN, and Gaussian Naive
Bayes (NB). Three metrics in machine-learning are used to
evaluate the performance of the detectors, including preci-
sion, recall, and accuracy. Dataset T_allType is used in this
experiment, and it is randomly split into a training set and
a test set with a ratio of 8 : 2 for each experiment. The aver-
age performance of four detectors on 10 experiments is pro-
vided in Figure 7.

As illustrated in Figure 7, the detector based on Random
Forest achieves the highest accuracy and precision, which
are 87% and 84%, respectively. Besides, the recall of the Ran-
dom Forest detector reaches 91%. The performance of KNN
is slightly inferior to Random Forest. Although Naive Bayes
realizes the highest recall, its precision and accuracy are far
lower than those of the other three detectors. SVM shows
similar performance as Naive Bayes.

Then, the detectors are evaluated on the other four data-
sets. The accuracy of the detectors on different datasets is
shown in Figure 8. Overall, our detectors show effectiveness
on these four datasets, which proves that it is capable of
detecting the PI of unknown types. In terms of accuracy,

1.0

0.8

0.6

0.4

0.2

0.0

0 50 100 150 200

CD
F

Number of users

User = 1,
0.5856

User = 4,
0.9283

Figure 6: The CDF of the number of users for <app, key > pairs.

Table 2: The composition of positive samples.

Category PI No. of <app, key > No. of leaks No. of apps

UserID-related
Email 2 438 2

UserID 47 134,626 41

DeviceID-related

Phone number 9 49,453 7

IMEI 124 556,389 67

Other DeviceID 92 18,340 76

MAC MAC 66 21,901 57

Location Location 64 22,516 34

Total 404 803,663 162

9Wireless Communications and Mobile Computing

Table 3: The datasets obtained by different combinations of positive samples.

Datasets Training Test

T_allType All categories

T_DeviceID UserID-related, MAC, Location DeviceID-related

T_UserID DeviceID-related, MAC, Location UserID-related

T_MAC DeviceID-related, UserID-related, Location MAC

T_Location
DeviceID-related,

UserID-related, MAC
Location

1.0

0.8

0.6

0.4

0.2

0.0
RF NB KNN SVM

0.87
0.91

0.84

0.72

0.96

0.65

0.80
0.86

0.77 0.77

0.89

0.72

Accuracy
Recall
Precision

Figure 7: The performance of different detectors on T_allType.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

T_DeviceID T_UserID T_MAC T_Location

Datasets

RF
NB

KNN
SVM

Figure 8: The accuracy of detectors on different datasets.

10 Wireless Communications and Mobile Computing

the RF detector also achieves the best performance on these
four datasets. In addition, the performance of these detectors
on different datasets presents differences. Among these four
datasets, all detectors achieve the highest accuracy on the
dataset T_UserID, with the accuracy of the RF detector as
88.23%. The best accuracy on T_DeviceID and T_MAC is
slightly lower than that of T_UserID, which is around 80%.

In contrast, the accuracy on T_Location declines signifi-
cantly, which is 61.29% at best. For T_Location, the detec-
tors are trained by the samples from the categories
UserID-related, DeviceID-related, and MAC. However, the
features of these samples are quite different from that of
Location. Therefore, it is difficult to recognize the location
information with high accuracy. On the contrary, the perfor-
mance on the other three datasets is satisfying because the PI
of UserID-related, DeviceID-related, and MAC has similar
occurrence patterns.

In view of the above results, the RF detector and the
dataset T_allType are used in the subsequent experiments.

6.3. Effectiveness of the Proposed Features. The effectiveness
of the local features and global features is analyzed in this
section. The performance of the detector trained on different
feature sets is shown in Table 4.

It can be seen from Table 4 that the detector based on
global features shows slightly lower performance than the
detector based on whole features, while the performance of
the detector is the worst when only local features are used.
A possible reason is that more than half of the samples
involve one user only; thus, the local features themselves
cannot distinguish PI from non-PI effectively. For instance,
the keys that transmit IMEI and the package name are likely
to have similar local features when the app traffic comes
from one user. On the contrary, those two keys would have
different L-VRD when there are multiple users.

To verify the above conjecture and illustrate how the
number of users affects the performance of the detector,
the distribution of the number of users for the false predic-
tions in 10 experiments is depicted in Figure 9. The category
“others” in Figure 9 includes 11 types of number of users,
i.e., 5, 7, 8, 10, 11, 13, 14, 17, 39, 41, and 43.

As Figure 9 shows, most false predictions result from the
samples with a small number of users. The false prediction
rate reaches 16.95% and 13.53% when there are one or two
users for a sample. With the increase in the number of users,
the false predictions decrease significantly. Noted that there
are no false predictions for the 52 samples within the cate-
gory “others.” Besides, only 18 false predictions are gener-
ated out of 279 predictions when the predicted samples
have more than two users. In this case, the false prediction
rate is reduced to 6.45%. Therefore, it can be inferred that
the more users exist for a sample, the more reliable the pre-
diction result is.

6.4. Impact of the Number of Apps. For an <app, key > pair,
its local features are computed from the data of the app
itself, while its global features are influenced by the data of
all apps in the app set. The impact of the number of apps
in the app set on the detector is analyzed in this section.

The 808 labeled samples are randomly divided into a
fixed training set and a fixed test set firstly. Since these sam-
ples are selected from 229 apps, each of our app sets contains
those 229 apps to ensure that the local features of each sam-
ple can be extracted. Then, the app set starts from a size of
230 and 10 apps are added to the app set at random each
time until the app set size reaches 330. For each app set,
the features of the labeled samples are extracted (note that
only the global features change), and the RF detector is
retrained. Figure 10 shows the performance of the RF detec-
tor on the test set for different app sets.

As shown in Figure 10, there is no significant change in
the performance of the RF detector as the size of the app set
increases. It indicates that our initial app set, which contains
230 apps, is sufficient to extract effective global features.
Adding more apps is of little use to improve the effectiveness
of global features. Therefore, it is feasible to choose a fixed
number of apps for feature extraction when applying our
detector in practice.

6.5. Analysis on False Prediction. This section further inves-
tigates the source of the false predictions of the detector.
Then, prediction confidence is utilized to improve the pre-
diction accuracy. In 10 experiments, the true labels of all
predicted samples and false predicted samples are collected.
The label distribution of false predictions is shown in
Figure 11.

Several observations can be obtained from Figure 11.
Firstly, our detector cannot identify the “email” samples
effectively. One possible reason is that there are only two
email samples in our dataset. Even worse, one sample
involves one user, and another sample only has four valid
values. Another observation is that “location” samples are
more prone to be falsely predicted than the samples with
other PI types. As mentioned earlier, location has different
traits compared with other kinds of PI. For example, its
value could change frequently when the user moves. There-
fore, more features can be added to identify location infor-
mation separately in future work, such as the data format.
Finally, the false positive is the main source of our false pre-
diction. In the prediction of 807 negative samples, 145 sam-
ples are classified as positive incorrectly. In contrast, 88 false
negatives are generated in the prediction of 808 positive
samples. However, the detector is expected to generate as
few false positives as possible in many application scenarios.
Therefore, a measure is taken in our work to improve the
performance of the detector.

During the prediction, the RF detector can not only give
the label but also provide the probability of its prediction.

Table 4: The performance of the detector trained on different
feature sets.

Feature set Precision Recall Accuracy

Local features 0.6718 0.7179 0.6870

Global features 0.8265 0.8817 0.8475

All features 0.8322 0.9177 0.8703

11Wireless Communications and Mobile Computing

Figure 12 illustrates the prediction probability of one ran-
dom test.

As Figure 12 shows, the correct prediction usually
has a high prediction probability. By contrast, the prob-
ability of a false prediction is likely to be below 0.75.
Therefore, prediction confidence can be utilized to reduce
false predictions. When the prediction probability is
lower than the confidence, the detector would reject to

give a prediction. Although this measure would decrease
the recall of the detector, the precision can be improved
significantly in practice. For example, when the confi-
dence is set as 0.75, 7 of the original 10 false positives
are rejected, and the precision of positive samples would
be improved to 95.58%. In the meantime, the recall of
positive samples is 74.71%. In total, 79.01% of samples
can be predicted.

1000

800

600

400

200

0

Th
e n

um
be

r o
f s

am
pl

es

1 2 3 4 6 9 Others

The number of users

979

166

362

49

134

9
64

184 3

166

362

49

134

9
64

184 3 2
52

0

All predictions
False predictions

Figure 9: The distribution of the number of users for the false predictions.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
230 240 250 260 270 280 290 300 310 320 330

Size of the app set

Precision
Recall
Accuracy

Figure 10: The performance of the detector on the app sets of different sizes.

12 Wireless Communications and Mobile Computing

6.6. Prediction on Unlabeled Samples. Based on the RF detec-
tor and the confidence of 0.75, the remaining 16,160 unla-
beled samples in our dataset are classified. Finally, 909
samples are identified as PI-related. We manually check
those samples to validate their predictions.

Since the value of PI is unknown and even has been
obfuscated, the predictions cannot be verified objectively.

Under this circumstance, conservative evaluation strategies
are applied. The strategies are set as follows: (1) When the
information transmitted by the <app, key > pair is evidently
not PI, such as URLs or domain names, then a false positive
is generated. Contrarily, the prediction is correct for the <a
pp, key > pair with PI-related values or its key has definite
PI-related semantics. (2) If semantic information cannot be

800

700

600

500

400

300

200

100

0

N
um

be
r o

f s
am

pl
es

DeviceID IMEI MAC Phone UserID Location Email Negative

Types of samples

172

240

153

12 26

89
128

30
5 4

145

807

48264

All predictions
False predictions

Figure 11: The label distribution of false predictions.

60

50

40

30

20

10

0

N
um

be
r o

f s
am

pl
es

0.5
 – 0.5

5

0.5
5 –

 0.6

0.6
 – 0.6

5

0.6
5 –

 0.7

0.7
 – 0.7

5

0.7
5 –

 0.8

0.8
 – 0.8

5

0.8
5 –

 0.9

0.9
 – 0.9

5

0.9
5 –

 1

Prediction probability

Correct predictions
False predictions

Figure 12: The distribution of prediction probability.

13Wireless Communications and Mobile Computing

inferred from the <app, key > pair, the prediction is
regarded as a false positive when the key carries different
values for one user. Otherwise, the prediction of this <app,
key > pair is uncertain. Strategy (2) is conservative since
the PI that is similar to the location would be misjudged.
Another example is the case where a mobile device has two
identifiers, such as two IMEIs. In this case, strategy (2)
would also misjudge the prediction. Therefore, the following
analysis would give a lower bound of the performance of our
detector. According to the above strategies, the predictions
of the 909 samples are listed in Table 5.

As shown in Table 5, the samples identified are far
beyond the six types of PII in the labeled dataset. Among
these privacy leaks, device information and AndroidID are
the most frequently leaked information. The device informa-
tion includes the phone model, the phone brand, and CPU
information. In addition to these common PI, it can be seen
that some user behavior-related PI is also collected by apps,
such as the app install time and the market which the app is
downloaded from. Note that those collections could happen
without user consent and awareness, and our detector could
assist in detecting such privacy leaks.

Besides, several interesting points are also found during
our manually checking process. Firstly, for several <app, ke
y > pairs, their keys contain the string “imei_md5,” and
their values are unique to each user. Therefore, it can be
inferred reasonably that they are used to transmit the obfus-
cated IMEI. As for the 443 uncertain samples, all of their
values appear to be obfuscated strings, and most <app, key
> pairs have the string “∗∗id” in the name string of their
keys. Hence, we speculate that these keys are likely to trans-
mit user-related identifiers.

Lastly, 270 samples are judged as false positives. Among
those samples, 142 samples have a unique value for each
user, and 134 samples out of those 142 samples have only
one user. We believe some of those false positives can be
eliminated after the traffic of more users is added. The rest
128 false positives are judged by the strategy (2). As stated
earlier, those judgments are conservative. Moreover, we do
find that some <app, key > pairs have at most two values
for each user.

In conclusion, the above analysis demonstrates that the
proposed detector can automatically identify privacy leaks
in the traffic, including the unknown types of privacy leaks
and the privacy leaks with obfuscation.

6.7. Comparison with Other Works. In this section, the pro-
posed detector is compared with three existing traffic
monitoring-based detection methods based on our labeled
dataset. The difference between those three works and ours
is summarized in Table 6. Compared with the existing three
methods, the proposed detector can detect the PI with obfus-
cation and unknown types. In terms of the number of classi-
fiers, our method builds one general classifier, while Recon
and Antshield train a classifier for each domain name or
each app. Besides, with one prediction, our method can
identify the privacy leaks in the HTTP requests through sim-
ple string matching. However, Recon and Antshield have to
classify each HTTP request by the classifiers. Therefore, our

method would introduce less time overhead compared with
them, which has been verified in the following experiment.

Table 7 gives a detailed comparison of those methods in
terms of detection capability and time overhead. It can be
seen from Table 7 that the simplest method, i.e., the
Seeded approach, has the worst detection ability. The
Seeded approach only identifies 3 positive samples cor-
rectly. Meanwhile, it generates 26 false positives. Recon
achieves the best detection capability among the existing
three methods. Compared with Recon, our detector has
the same recall with it. However, our detector achieves
higher precision than Recon. The false positives generated
by our detector are 20 less than that generated by Recon.
As for the time overhead, the training time and prediction
time consumed by our model are far less than those of
Recon and Antshield. For the Seeded approach, the time
overhead of it is close to ours since its detection model
is also implemented based on string matching. Overall,
the performance of the proposed detector in this paper is
better than the existing methods.

6.8. Discussion

6.8.1. Limitation. The proposed detector may show limita-
tions when it is directly applied to the following scenarios:

(1) Where app developers adopt special naming rules to
name their keys

When the naming of the key shows new characteristics
(e.g., the key is unique), the corresponding <app, key > pairs
would present new distributions in their KRD. Note that
other features are not affected as their calculations are irrel-
evant to the naming of the key. If the training samples of the
detector do not have <app, key > pairs with similar distribu-
tions, the trained detector would not identify such samples
effectively.

Table 5: The details of the 909 samples with the positive
prediction.

Type No. of <app, key > No. of apps

AndroidID 30 27

Device information 104 70

IMEI 13 13

IP 16 16

Username 1 1

App install time 1 1

Location 3 3

ISP 2 2

Screen size 22 20

Serial number 2 2

App download market 2 2

Uncertain 443 /

Potential false positives
142 /

128 /

14 Wireless Communications and Mobile Computing

Take the password as an example. Although the pass-
word is highly sensitive personal information, occasional
disclosure of it is still be observed [32, 33]. We use key-
words such as “password” and “pwd” to match the <app
, key > pairs contained in our dataset, and one matching
<QuanminTVLive, password > is found. It means that
the key “password” is only used by QuanminTVLive in
our dataset; hence, it can be regarded as a unique key.
We use the detector trained in Section 6.2 to classify this
sample, and the detector cannot recognize it transmits
PII. This result is confusing since the password should
have similar occurrence patterns with PII such as user
ID intuitively. For such PII, the values of a user are
unchanged for a period of time, and different users own
different values. Therefore, we checked the difference
between the features of the UserID-related samples in
our training set and those of <QuanminTVLive, passwor
d > . We found that the main difference is in KRD. Since
“password” is only used in QuanminTVLive, its KRD is
0. However, none of the KRD of UserID-related samples
in our training set is 0. Consequently, the detector fails
to learn such patterns of KRD. After modifying the KRD
of <QuanminTVLive, password > to other values that are
not 0, our detector can correctly identify it. In addition,
<QuanminTVLive, password > can be identified correctly
at the cost of reducing the average accuracy of the detector
by 2.53% when we remove KRD from the feature set and
retrain the detector.

Therefore, it can be inferred that the effectiveness of the
proposed detector is closely related to the training samples,
which is explicable since the machine-learning algorithm can
only learn the experience from the training samples. The per-
formance of the detector would decline when the samples to
be identified do not conform to the distribution of training
samples. To alleviate this problem, we recommend that the
detector should be periodically updated with the latest sample
data and recollect samples and train the detector when the
apps in the detection scene change significantly.

(2) Where there are severe imbalance problems in the
traffic data

(i) Unbalanced PI and non-PI

In practical mobile network scenarios containing a large
number of apps, there are usually far more keys transmitting
non-PI in the traffic than those transmitting PI. It may result
in nonnegligible false positives since our experiments show
that the main source of misclassification of our detector is
the false positive. However, a reasonable confidence thresh-
old could alleviate this problem as shown in Section 6.5.

(ii) Unbalanced users

The local features proposed in our method are closely
related to the number of users. The experiments in Section
6.3 show that the false prediction rate of our detector is
higher when there are less than three users for an <app, ke
y > pair. Therefore, we suggest that the prediction result of
the detector should be treated with caution when few users
are discovered for an <app, key > pair. A conservative strat-
egy is to make the prediction for an <app, key > pair until it
has accumulated enough different users.

(iii) Unbalanced values

Some personal data has obvious occurrence patterns of
PI, while they may have a particular frequency of occur-
rence. For example, some PI is obtained by apps with a
low frequency (many apps support remembering the
accounts and passwords of users for a long time). Hence,
the observation of such information in the traffic would be
extremely rare. For our detector, it is unreliable to infer
whether the information is PI or not when only a few
observed values are used to extract features. However,
long-term data statistics not only reduce the timeliness of

Table 6: The difference between the existing methods and ours.

Work Features Model SSL Obfuscation Unknown types of PI No. of classifiers

Seeded approach [19] String pattern String matching N N N /

Recon [12] Bag-of-words Machine-learning Y N N 103

Antshield [13] Bag-of-words Machine-learning Y N N 102

Our method Statistical features Machine-learning N∗ Y Y 1
∗As Recon and Antshield did, our method could integrate MITM to deal with encrypted traffic in future work.

Table 7: The performance comparison with other works.

Work False positive False negative Precision Recall
F1

-measure
Training time (s) Prediction time per 1000 samples (s)

Recon 28 12 71.13% 85.18% 77.52% 878.85 0.4567

Antshield 30 19 67.39% 76.54% 71.67% 788.62 0.4488

Seeded approach 26 78 / / / / 0.079

Our method 8 12 89.61% 85.18% 87.34% 0.034 0.0129

15Wireless Communications and Mobile Computing

the prediction but also introduce additional storage over-
heads. Therefore, the identification of such PI in practical
scenarios still needs further research.

6.8.2. Malicious Usage. In this paper, the detector we propose
is intended to help users to understand which app transmits
their personal information at what time. However, there are
two sides of a medal, and the effectiveness of our detector
also indicates that users’ personal information can be stolen
by monitoring the traffic of personal devices. Furthermore,
the implementation of our detector is simple as it only
requires the traffic data of users. This makes it possible to
be maliciously used. For example, for an attacker, as long
as he has the ability to eavesdropping the traffic of users’
devices, the proposed detector can be employed to discover
the potential personal information. Then that personal
information can be exploited to analyze and profile users,
so as to implement malicious activities such as fraud. To pre-
vent such malicious usage, a powerful strategy is to prevent
attackers from eavesdropping on the traffic. Some counter-
measures can be taken, such as strengthening the authenti-
cation mechanism [34, 35].

7. Conclusion

To discover privacy leaks in mobile traffic, a novel detection
method based on traffic monitoring is presented in this
paper. The proposed method utilizes statistical features to
capture the occurrence patterns of personal information in
the traffic. Based on machine-learning, the detector could
identify more personal information in the traffic. Compared
with the existing methods, the proposed method can identify
unknown types of personal information. Besides, the pro-
posed method is resistant to obfuscation technology. Finally,
the experimental results show that the proposed method
could achieve better performance than the existing methods.

Data Availability

The personal information data used in this paper is not
made public due to privacy issues, while the original traffic
dataset used in this paper is being considered for publication
after necessary anonymization processing.

Disclosure

An earlier version of this paper has been presented as a pre-
print (https://arxiv.org/abs/2112.12346).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (61972410) and the Science and Tech-
nology Innovation Program of Hunan Province
(2020RC2047).

References

[1] Number of Mobile app Downloads in 2021/2022, “Statistics,
current trends, and predictions,” https://financesonline.com/
number-of-mobile-app-downloads/.

[2] T. Chadza, F. Aparicio-Navarro, K. Kyriakopoulo, and
J. Chambers, “A look into the information your smartphone
leaks,” in 2017 International Symposium on Networks, Com-
puters and Communications (ISNCC), pp. 1–6, Marrakech,
Morocco, 2017.

[3] Y. He, X. Zhao, and C. Wang, “Privacy mining of large-scale
mobile usage data,” in 2019 IEEE International Conference
on Power, Intelligent Computing and Systems (ICPICS),
pp. 81–86, Shenyang, China, 2019.

[4] D. Patterson, “Facebook data privacy scandal: a cheat sheet,”
2020, https://www.techrepublic.com/article/facebook-data-
privacy-scandal-a-cheat-sheet/.

[5] “Rela, a Chinese lesbian dating app, exposed 5 million user
profiles,” https://techcrunch.com/2019/03/27/rela-data-
exposed/.

[6] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and
N. Vallina-Rodriguez, “Bug fixes, improvements, ...and privacy
leak, a longitudinal study of PII leaks across Android app ver-
sion,” in The 25th Annual Network and Distributed System
Security Symposium (NDSS 2018), IMDEA Networks, 2018.

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, PiOS: detecting
privacy leaks in iOS applications, NDSS, 2011.

[8] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
automatically detecting potential privacy leaks in android
applications on a large scale,” in International Conference on
Trust and Trustworthy Computing, S. Katzenbeisser, E.
Weippl, L. J. Camp, M. Volkamer, M. Reiter, and X. Zhang,
Eds., vol. 7344 of Lecture Notes in Computer Science,
pp. 291–307, Springer, Berlin, Heidelberg, 2012.

[9] J. P. Achara, V. Roca, C. Castelluccia, and A. Francillon,
“MobileappScrutinator: a simple yet efficient dynamic analysis
approach for detecting privacy leaks across mobile OSs,”
https://arxiv.org/abs/1605.08357.

[10] A. Continella, Y. Fratantonio, M. Lindorfer et al., “Obfusca-
tion-resilient privacy leak detection for mobile apps through
differential analysis,” NDSS, vol. 17, 2017.

[11] A. Shuba, A. Le, M. Gjoka, J. Varmarken, S. Langhoff, and
A. Markopoulou, “AntMonitor: network traffic monitoring
and real-time prevention of privacy leaks in mobile devices,”
in Proceedings of the 2015 Workshop on Wireless of the Stu-
dents, by the Students, & for the Students, pp. 25–27, Paris,
France, 2015.

[12] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Chones,
“ReCon: revealing and controlling privacy leaks in mobile net-
work traffic,” in Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services,
pp. 361–374, Singapore, Singapore, 2016.

[13] A. Shuba, E. Bakopoulou, M. A. Mehrabadi, H. Le,
D. Choffnes, and A. Markopoulou, “AntShield: on-device
detection of personal information exposure,” https://arxiv
.org/abs/1803.01261.

[14] T. Zhang and Y. Shunzheng, “Research prospects of user infor-
mation detection from encrypted traffic of mobile devices,”
Journal on Communications, vol. 42, no. 2, pp. 154–167, 2021.

[15] S. Zhao, S. Chen, and Z. Wei, “Statistical feature-based per-
sonal information detection in mobile network traffic,”
https://arxiv.org/abs/2112.12346.

16 Wireless Communications and Mobile Computing

https://arxiv.org/abs/2112.12346
https://financesonline.com/number-of-mobile-app-downloads/
https://financesonline.com/number-of-mobile-app-downloads/
https://www.techrepublic.com/article/facebook-data-privacy-scandal-a-cheat-sheet/
https://www.techrepublic.com/article/facebook-data-privacy-scandal-a-cheat-sheet/
https://techcrunch.com/2019/03/27/rela-data-exposed/
https://techcrunch.com/2019/03/27/rela-data-exposed/
https://arxiv.org/abs/1803.01261
https://arxiv.org/abs/1803.01261
https://arxiv.org/abs/2112.12346

[16] The Standardization Administration of China, Information
Security Technology - Personal Information Security Specifica-
tion, The Chinese National Standard GB/T, 2020.

[17] X. Wang, A. Continella, Y. Yang, Y. He, and S. Zhu, “LeakDoc-
tor: toward automatically diagnosing privacy leaks in mobile
applications,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 3, no. 1, pp. 1–
25, 2019.

[18] Y. Zhao, L. He, Z. Li et al., “Large-scale detection of privacy
leaks for BAT browsers extensions in China,” in 2019 Interna-
tional Symposium on Theoretical Aspects of Software Engineer-
ing (TASE), pp. 57–64, Guilin, China, 2019.

[19] Y. Liu, H. H. Song, I. Bermudez, A. Mislove, M. Baldi, and
A. Tongaonkar, “Identifying personal information in internet
traffic,” in Proceedings of the 2015 ACM on Conference on
Online Social Networks, pp. 59–70, Palo Alto, California,
USA, 2015.

[20] S. Arzt, S. Rasthofer, C. Fritz et al., “FlowDroid: precise con-
text, flow, field, object-sensitive and lifecycle-aware taint anal-
ysis for Android apps,” Acm Sigplan Notices, vol. 49, pp. 259–
269, 2014.

[21] N. Wongwiwatchai, P. Pongkham, and K. Sripanidkulchai,
“Comprehensive detection of vulnerable personal information
leaks in android applications,” in IEEE INFOCOM 2020-IEEE
Conference on Computer Communications Workshops (INFO-
COM WKSHPS), pp. 121–126, Toronto, ON, Canada, 2020.

[22] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang,
“Finding clues for your secrets: semantics-driven, learning-
based privacy discovery in mobile apps,” in Network and Dis-
tributed Systems Security (NDSS), pp. 1–15, San Diego, CA,
USA, 2018.

[23] W. Enck, P. Gilbert, B.-G. Chun et al., “TaintDroid: an infor-
mation flow tracking system for real-time privacy monitoring
on smartphones,” Communications of the ACM, vol. 57, no. 3,
pp. 99–106, 2014.

[24] R. Herbster, S. DellaTorre, P. Druschel, and B. Bhattacharjee,
“Privacy capsules: preventing information leaks by mobile
apps,” in Proceedings of the 14th Annual International Confer-
ence on Mobile Systems, Applications, and Services, pp. 399–
411, Singapore, Singapore, 2016.

[25] A. J. Bhatt, C. Gupta, and S. Mittal, “iABC: towards a hybrid
framework for analyzing and classifying behaviour of iOS
applications using static and dynamic analysis,” Journal of
Information Security and Applications, vol. 41, pp. 144–158,
2018.

[26] Y. He, H. Binghui, and Z. Han, “Dynamic privacy leakage
analysis of android third-party libraries,” in International Con-
ference on Data Intelligence and Securitypp. 275–280, South
Padre Island, TX, USA, 2018.

[27] Y. Song and U. Hengartner, “PrivacyGuard: a VPN-based plat-
form to detect information leakage on android devices,” in
Proceedings of the 5th Annual ACMCCSWorkshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 15–26,
Denver, Colorado, USA, 2015.

[28] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan et al.,
“Haystack: a multi-purpose mobile vantage point in user
space,” https://arxiv.org/abs/1510.01419.

[29] L. Shen, X. Wang, and S. Chen, “Structural signature extrac-
tion method for mobile application recognition,” Journal of
Computer Applications, vol. 40, no. 4, pp. 1109–1114, 2020.

[30] S. Chen, S. Zhao, B. Han, and X. Wang, “Investigating and
revealing privacy leaks in mobile application traffic,” in 2019
Wireless Days (WD), pp. 1–4, Manchester, UK, 2019.

[31] X. Wang, S. Chen, and S. Jinshu, “Automatic mobile app iden-
tification from encrypted traffic with hybrid neural networks,”
IEEE Access, vol. 8, pp. 182065–182077, 2020.

[32] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted
online password guessing: an underestimated threat,” in Pro-
ceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 1242–1254, Vienna, Austria,
2016.

[33] S. Hui, Z. Wang, X. Hou et al., “Systematically quantifying IoT
privacy leakage in mobile networks,” IEEE Internet of Things
Journal, vol. 8, no. 9, pp. 7115–7125, 2021.

[34] Q. Wang, D. Wang, C. Cheng, and D. Hex, “Quantum2FA:
efficient quantum-resistant two-factor authentication scheme
for mobile deivces,” IEEE Transcations on Dependable and
Secure Computing, 2021.

[35] L. Yanrong, D. Wang, M. S. Obaidat, and P. Vijayakumar,
“Edge-assisted intelligent device authentication in cyber-
physical systems,” IEEE Internet of Things Journal, 2022.

17Wireless Communications and Mobile Computing

https://arxiv.org/abs/1510.01419

	Statistical Feature-Based Personal Information Detection in Mobile Network Traffic
	1. Introduction
	2. Background
	2.1. Personal Information
	2.2. Privacy Leak
	2.3. HTTP Request
	2.4. Motivation

	3. Related Work
	3.1. Static Analysis-Based Detection
	3.2. Dynamic Analysis-Based Detection
	3.3. Traffic Monitoring-Based Detection

	4. Personal Information Features
	4.1. <app,key> Pair
	4.2. Statistical Features of the <app,key> Pair
	4.2.1. Local Features
	4.2.2. Global Features

	5. Detector Construction
	5.1. Preprocessing
	5.2. Dataset Preparation
	5.3. Detector
	5.4. Deployment

	6. Experiments
	6.1. Dataset
	6.2. Comparison of Machine-Learning Classifiers
	6.3. Effectiveness of the Proposed Features
	6.4. Impact of the Number of Apps
	6.5. Analysis on False Prediction
	6.6. Prediction on Unlabeled Samples
	6.7. Comparison with Other Works
	6.8. Discussion
	6.8.1. Limitation
	6.8.2. Malicious Usage

	7. Conclusion
	Data Availability
	Disclosure
	Conflicts of Interest
	Acknowledgments

