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Monitoring the states of network links is essential to detect network outages and improve Internet reliability. Currently, existing
work detects network outages by monitoring all the links, which requires thousands of probes and large-scale measurements,
resulting in high resource occupancy and cost. To solve this problem, this paper proposes the KL-Dection approach, which
detects network outages via key links instead of all links. Firstly, we recognize the key links based on flow density, degree
centrality, and probe-distance centrality. Next, based on the recognized key links, we give the critical value of their Round-Trip
Time (RTT). Then, we detect the network outages by observing whether the RTT of the key link exceeds the critical value.
Finally, we leverage two historical events to evaluate our approach, and the results demonstrate that our approach can detect
the network outages effectively by only monitoring less than 0.06% of the links in detection area.

1. Introduction

The unprecedented growth of the Internet has resulted in an
explosive increase in network security issues, such as net-
work outages. Network outages inevitably degrade network
connectivity and influence network performance [1–4]. For
example, the network outage caused by censorship in 2011
blocked the Internet access of Libya [5]. Hence, the detection
of network outages has become vital.

Over the years, several detection approaches have been pro-
posed to detect network outages. These approaches are based
on active probing, which deploy a large number of probes to
monitor the changes in link performance (e.g., delay and con-
nectivity). Specifically, Fontugne et al. detected the network out-
ages by analyzing the Round-Trip Time (RTT) of all links in
detection areas [6]. Quan et al. detected the network outages
by deploying the probes to observe the connectivity of all links
in edge networks [5]. Padmanabhan et al. detected the network
outages by using ThunderPing [7] to measure the connectivity
of all residential links in detection areas [7].

The above work detected the network outages by moni-
toring the performance of all links in detection area. How-

ever, they lead to high resource occupancy and cost in
practice. The reasons lie in the following: (1) monitoring
the network performance of all links needs to perform a bulk
of measurement tasks. These tasks will inject extra traffic
into the network, which may occupy the link bandwidth,
reduce the network transmission speed, and increase the
network burden [8, 9]. (2) Monitoring all links in detection
area needs to deploy more probes, and managing the probes
is costly for network operators (e.g., periodic maintenance
and electricity costs). Thus, how to reduce the resource
occupancy and cost by reducing the number of monitoring
links without compromising the validity of outage detection
is a challenge.

Previous work of traffic monitoring provided initial
inroads to address this challenge [10, 11]. Their research
results showed that a few key links that deliver larger traffic
flows can well represent the traffic load information of all
links in the detection area. However, focusing on these key
links recognized by traffic load information is inadequate
to detect network outages.

This is because detecting the network outages also needs
to focus on the changes in link performance, e.g., RTT [4,
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12]. In fact, due to the presence of noise and the interaction
between the RTT of links, the fluctuation of RTT of each link
is different. Only the link whose RTT fluctuation can notably
and accurately reflect the deviations between the state of net-
work outages and normal state can be regarded as the key
link. Based on the above analysis, recognizing the key links
for network outage detection should consider two aspects,
one is the traffic load information, another is the factors
affecting the RTT of link.

To achieve it, we use the number of flows going through
the links to describe the traffic load information and use
connected relation as well as the position of the link to
describe the factors affecting the RTT of link. The reasons
are as follows: (1) the number of flows going through the
links describes the ability of links delivering traffic flows
[13]. The links delivering larger flows can approximatively
represent the traffic load information of all links in the
detection area [12]. (2) The RTT of links will be affected
by neighbor correlation [4]. The RTT of the links with
poorer connected relations will not be significantly influ-
enced by the neighbor correlation because these links have
fewer adjacencies [4]. This causes that the RTT of these links
may not fluctuate obviously in the case of a network outage.
Hence, monitoring the links with poor connected relation
may fail to detect the network outages. (3) With the distance
between the probes and the nodes of links increases, the
noise of measurements inflates [14]. Generally, the link is
closer to the probe, and the RTT of the link we obtain is
more accurate. Hence, monitoring the links close to the
probes can accurately obtain the fluctuation of its RTT,
which can detect network outages effectively.

After recognizing the key links, we monitor their RTT
and detect the network outages finally. Our contributions
are summarized as follows:

(i) For all we know, this is the first work that leverages
the key links to detect network outages. Our
approach can reduce the number of monitoring
links notably without compromising the validity of
outage detection

(ii) This paper proposes a key link recognition algorithm
based on three metrics, i.e., flow density, degree cen-
trality, and probe-distance centrality of links. Specifi-
cally, flow density describes the number of flows
going through the links in unit time, degree centrality
describes the connected relation, and probe-distance
centrality describes the position of the link

(iii) This paper proposes a detection algorithm based on
interquartile range, which detects the network out-
ages by observing whether the RTT of any key link
exceeds its critical value for a period of time. The
experimental results demonstrate that our approach
can detect network outages via key links rather than
all links

The rest of this article is organized as follows. The fol-
lowing section provides a brief overview of network outage
detection. Our approach and its architecture used for detect-

ing the network outages have been explained in Section 3.
The performance of the detection approach is discussed in
Section 4. Finally, we draw the conclusions in Section 5.

2. Related Work

Several approaches have been proposed to detect network
outages based on active probing. These approaches can be
roughly divided into three categories according to different
performance indexes they are based on, i.e., the approaches
based on RTT, the approaches based on the number of
probe responses, and the approaches based on the number
of links change, respectively.

RTT-based outage detection approaches, such as [1, 4, 6,
15], have been proposed by utilizing different statistical
models to characterize the RTT of all links to detect the net-
work outages. Fontugne et al. [1] first obtained the differen-
tial RTT of all links. Then, they leveraged normal
distribution to model the measurements and detected the
network outages by applying the Wilson score. However,
[6] rarely investigated the performance of the last-mile net-
work, and the last-mile network is the centerpiece of broad-
band connectivity. Hence, Fontugne et al. [1] improved the
previous work [6] and captured the RTT of all links in
last-mile networks. Then, they used the Welch method to
analyze the measurements and detected the network
outages.

Since several studies [16–18] reported that normal distri-
bution failed to characterize several distinct modes of the
RTT distribution of links, Fontugne et al. [15] leveraged
the log-normal distribution to model the RTT of all links
and identified all the modes of RTT distribution. Then, they
detected the network outages by observing the transitions
between the different modes. However, [15] cannot precisely
distinguish whether RTT changes are caused by network
outage events or “normal” RTT fluctuations. In response to
this fact, B. Hou et al. [4] collected the RTT measurements
of all links and utilized the change-point detection algorithm
twice to detect network outages. Their approach can effec-
tively reduce the false positive rate.

Other outage detection approaches detected network
outages by probing all links in the detection area and analyz-
ing the number of probe responses [5, 7, 19, 20]. Heidemann
et al. [20] and Dainotti et al. [19] used pings to probe all
links in detection areas and detected the network outages
by observing the apparent decrease in the number of probe
responses. However, these approaches [19, 20] achieved
low accuracy of detection. In order to improve this, Quan
et al. [5] proposed a detection system named Trinocular.
Specifically, they probed all links in detection area to capture
the number of probe responses. Then, they used Bayesian
inference to analyze these measurements and detected the
network outages. However, [5] did not study the effect of
weather on last-mile Internet performance, and the perfor-
mance of last-mile networks affects the network connectivity
of a large number of users. Hence, Padmanabhan et al. [7]
used ThunderPing [21] to probe all residential links in the
detection area and obtained the number of probe responses.
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Then, they applied statistics to analyze the measurements
and detected the network outages.

Recently, a novel approach [14] has been proposed to
detect network outages by monitoring the paths of all links
in the detection area and analyzing the number of link
changes. The authors used traceroute to obtain the stable
state of all links and leveraged the notion of empathy to
aggregate the paths that changed similarly over time. Then,
they detected the network outages by analyzing the number
of link changes.

Note that the existing work detected the network outages
by monitoring different performance metrics of all links in
the detection area. Although they can detect network out-
ages, they will lead to high resource occupancy and cost in
practice. In detail, (1) active probing injects a mass of traffic
into the network. Monitoring all the links may occupy the
link bandwidth, reduce the network transmission speed,
and increase the network burden [8, 9]. (2) Active probing
is subject to its scalability. Monitoring all links prompts
researchers to deploy more probes, and the deployment
and operation of probes (e.g., periodic maintenance, fault
analysis, and electricity costs) increase the costs in practice.

To address these challenges, we propose an approach to
detect network outages by monitoring the RTT of key links.
We first recognize the key links in the detection area in
terms of three aspects. Then, we give the critical value of
RTT for each key link. Finally, we detect the network outages
by observing whether the RTT of the key link exceeds the
critical value.

3. Network Outage Detection Approach

In this section, we propose an approach to detect network
outages based on key links. The approach is called KL-Dec-
tion, which mainly consists of four parts: data preprocessing,
key link recognition, critical value calculation, and detection
algorithm. The architecture is depicted in Figure 1. Next,
we describe each part in turn.

3.1. Data Processing. In order to monitor the network state
and detect the network outages of the detection area, we
need to obtain the performance measurements of the links
in the detection area, i.e., the RTT of links. Hence, this paper
obtains the performance measurements from two public
datasets, i.e., RIPE Atlas Dataset [22] and Maxmind GeoIP
City Dataset [23]. Specifically, we collect the traceroutes
from RIPE Atlas and map each hop (node) in traceroutes
to the geographic location using GeoIP City Dataset. For a
certain detection area D, we obtain their corresponding tra-
ceroutes, denoted as dataset A. For each traceroute in dataset
A, we extract the links formed by every adjacent node and
focus on the RTT of each link.

3.2. Key Link Recognition. In this section, we propose a key
link recognition algorithm to recognize the key links in the
detection area. Previous work of traffic monitoring provided
initial inroads to recognize the key links [10, 11]. These work
defined the key link as the link delivering the larger traffic
flows in the detection area. However, based on a basic obser-

vation, we find that monitoring the links that deliver larger
traffic flows is inadequate to detect the network outages
(see Section 4). This is because detecting the network out-
ages also needs to monitor the link performance, e.g., RTT
[4, 12].

In fact, the RTT of the link is affected by multiple
aspects, including the neighbor correlation [4] and the pres-
ence of noise [2]. Specifically, the RTT of the links with
poorer connected relation (fewer adjacencies) is less affected
by the RTT of other links [4]. This causes that the RTT of
the links with poor connected relation may not fluctuate
obviously in the case of a network outage [24]. Hence, mon-
itoring their RTT may fail to detect the network outages
even though they deliver larger traffic flows. Moreover, the
accuracy of the RTT is influenced by the distance between
probes and the nodes of links. Generally, the links are closer
to the probes, and the RTT of the link can be measured more
accurately [14]. Hence, we may fail to detect the network
outages by monitoring the RTT of the links far from the
probes, even though these links deliver larger traffic flows.

In response to this fact, we recognize the key links by
considering the traffic load information and the factors
affecting the RTT of the link, consisting of three metrics,
i.e., flow density, degree centrality, and probe-distance cen-
trality. The flow density describes the number of flows going
through the links in unit time. The degree centrality
describes the connected relation. The probe-distance cen-
trality describes the distance (hop) between the node of the
link and probes. Next, we give the definitions of these three
metrics and describe the process of key link recognition.

3.2.1. The Flow Density. The flow density represents the
number of flows going through the links in unit time. We
conduct the measurement in the detection area with short
time intervals and over long timescales (days to weeks).
The flow density of links at different time intervals is repre-
sented by a matrix M ∈ Rt∗l which is given as

M =

f11 ⋯ f1l

⋮ ⋮

f i1 ⋯ f ij ⋯ f il

⋮

f t1 ⋯

⋮

f tl

0
BBBBBBBB@

1
CCCCCCCCA
, ð1Þ

where f ij denotes the flow density of j-th link during the
time interval i, t denotes the number of consecutive time
intervals (the number of rows), l denotes the number of total
links in the network (the number of columns), and t>>l.

Next, we perform the singular value decomposition
(SVD) [25] on M and illustrate how SVD can recognize a
small set of links that can well represent the flow density
of all links in the detection area. The decomposition of
matrix M is given as

M =U〠VT , ð2Þ
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where U ∈ Rt∗t and UTU = I, V ∈ Rl∗l and VTV = I, and ∑ is
a t × l diagonal matrix, whose diagonal entry δiðδi ≥ 0Þ is
known as the singular value and represents the importance
of the link in the matrix M. The columns of U are denoted
as fuiji ∈ f1,⋯, tgg, and the columns of V are denoted as
fvjjj ∈ f1,⋯, lgg. Hence, the matrix M can be calculated as

M = δ1u1v
T
1 + δ2u2v

T
2 +⋯+δlulvTl , ð3Þ

Suppose there are q positive singular values among all
singular values δi; this means that we can find q columns
in M to represent itself according to the crucial property of
SVD [25]. Moreover, existing work [10] demonstrated that
the singular value of flow density matrix M is sparsely dis-
tributed, and there are only r large singular values among
q positive singular values (r<<q). The r is called the effective
rank of the matrix M, which means that the flow density of
all links can be approximately represented by the flow den-
sity of r basic links in the detection area.

According to the analysis above, we first obtain the flow
density matrixM of the detection area; then, we perform the
SVD on matrix M; finally, we extract r basic links based on
the singular values. For convenience, the set of these r basic
links is denoted as B.

3.2.2. The Degree Centrality. The degree centrality of the
node represents the number of adjacencies of the node. In
view of this definition, we extend it to describe the degree
centrality of the link. According to the bucket effect, the cen-

trality of the link is constrained by the minimum of the cen-
trality of its two nodes. Hence, we define the degree
centrality of the link as the minimum of the degree centrality
of its two nodes. Noting that the network is in a stable state
during a period of time, we consider that the centrality of the
link will not change over time. For convenience, the link
formed by two adjacent nodes vi and vj is denoted as li,j.
The degree centrality of the link li,j (i.e., di,j) is calculated
as follows:

di,j =min d við Þ, d vj
� �� �

, ð4Þ

d við Þ = Nu u ∈ V , u, við Þj ∈ Ef g, ð5Þ
where dðviÞ is the degree centrality of the node vi, V repre-
sents the set of nodes, E represents the set of links, and Nu
represents the number of nodes that vi connected with. Note
that the larger value of di,j represents that the link li,j has
richer connected relation, and its RTT can reflect the net-
work state notably.

3.2.3. The Probe-Distance Density. In order to describe the
distance between the probes and the node of the link, we
propose a metric called probe-distance centrality. Since the
distance is obtained by calculating the number of hops
between two nodes, we calculate the probe-distance central-
ity of the link li,j based on the following steps: (1) we extract
the two nodes of li,j, and for each node, we calculate the
average hops between it and all the probes in detection area;

Select the
detection area

Recognize the key
links

Calculate the RTT
of key links

�e set of key
links with their

critical value

Collect the data of
the area

Data pre-processing
D

atasets
KL-D

ection approach

�e set of data
in detection area

Key links recognition and critical value calculation

Detection algorithm

Detect the outages
YY Last for

11min?

�e RTT
exceeds the

critical value?

Monitor the RTT
of key links

Figure 1: The architecture of KL-Dection.
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(2) similar to the definition of the degree centrality of link,
we select the minimum average hops as the probe-distance
centrality of the link li,j.

The probe-distance centrality of the link li,j (i.e., pi,j) is
formulated as

pi,j =min p við Þ, p vj
� �� �

, ð6Þ

p við Þ = ∑K
k=1σ vi ,kð Þ
K

, ð7Þ

where pðviÞ represents the average hops between node vi and
all probes in the detection area, K represents the number of
probes in the detection area, and σðvi ,kÞ represents the num-
ber of hops between the node vi and the k-th probe. Note
that the lower value of pi,j indicates that the link is closer
to all the probes, and its RTT can reflect the network state
accurately.

3.2.4. Key Link. Based on the definitions of these three met-
rics, we define key link as follows. For each link li,j in D, the
set of key links K is defined as

K = li,j P li,j ⊂ C, li,j ⊂ E li,j ⊂ B
��� ��� = 1

� �
, ð8Þ

where C represents the set of links with di,j ≥ Δ1 and E rep-
resents the set of links with pi,j ≤ Δ2. Δ1 and Δ2 are the crit-
ical value of the degree centrality and probe-distance
centrality, respectively. As can be seen from Equation (8),
if a link li,j is a basic link (li,j ⊂ B) and it meets the conditions
of di,j ≥ Δ1 and pi,j ≤ Δ2, it can be regarded as the key link.

Note that the process of key link recognition is not lim-
ited by network topology and detection area. For conve-
nience, we take Colorado as an example to illustrate how
to obtain B, C, and E in turn.

First, we extract the traceroutes from July 31 to August
30, 2020, in Colorado. Then, based on the traceroutes, we
obtain the flow density matrix in this area, a 11424 × 556
matrix, consisting of the flow density of 556 links during
11424 time intervals. Finally, we get 556 singular values
and sort them in a descending order manner. We note that
the 30-th singular value is already close to zero. Therefore,
we only present the first 30 singular values of the matrix in
Figure 2(a).

From Figure 2(a), we can observe that the singular value
decreases rapidly from the first element to the 17-th element,
and after the 17-th element, the singular value decreases
slowly and eventually stabilizes. We note that the singular
value becomes very small and is almost closed to zero after
the 17-th element. Considering the fact is that the larger sin-
gular value, the more important the link is; hence, we con-
clude that the effective rank of the matrix is 17, which
means that only 17 basic links are enough to represent the
traffic load information of Colorado. Next, we use the QR
factorization with column pivoting [25] to obtain these 17
basic links, which constitute the set B.

Then, based on Equation (4) and Equation (5), we give
the distribution of the degree centrality of the links in Colo-
rado. Figure 2(b) reveals that the percentage increases rap-
idly when the degree centrality is below 4; then, the
percentage increases slowly between the degree centrality is
5 and 8; finally, the percentage stabilizes when the degree
centrality is above 9. From Figure 2(b), we note that only
about 10% of the links have a higher degree centrality (≥8).
As mentioned before, during the network outages, the RTT
of links with high degree centrality may fluctuate substan-
tially due to the influence of neighbor correlation, which
can reflect the network state notably. Monitoring the RTT
of these links can help the network managers to detect net-
work outages. Therefore, we define the set of links with di,j
≥ 8 as C.

In addition, we also give the distribution of probe-
distance centrality for all links according to Equation (6)
and Equation (7). In Figure 2(c), the value of probe-
distance centrality is divided into six bins. We note that a
large share of links has the probe-distance centrality above
7 (first two bins). On the contrary, the links with lower
probe-distance centrality (≤7) only account for 26.52%,
which indicates that they are closer to the probes in Colo-
rado. As mentioned before, the RTT of the links with lower
probe-distance centrality can reflect the network state accu-
rately. Monitoring the RTT of these links can help the net-
work managers to detect network outages. As a result, we
define the set of links with pi,j ≤ 7 as E.

In conclusion, for each link li,j in Colorado, if it satisfies
the conditions,

K = li,j P pi,j ≤ 7, di,j ≥ 8 li,j ⊂ B
��� ���� = 1

n o
, ð9Þ

it can be regarded as the key link. The process of the key link
recognition is summarized in Algorithm 1. Specifically, we
first select the detection area D and obtain the flow density
matrix M of D. Then, we apply SVD on M and acquire r
basic links. The set of these basic links are denoted as B.
For all the links in B, we extract the links belonging to sets
C and E. The results are the set of key links K .

3.3. Critical Value Calculation. RTT is demonstrated as a key
metric to gain insights into the performance of links [4, 7].
Moreover, the critical value of RTT can distinguish whether
network outages occur [24]. Hence, we propose a critical
value calculation algorithm based on interquartile and give
the critical value of RTT for the recognized key links. Specif-
ically, we first extract the raw RTT of each key link over a
period of time and sort them in an ascending order manner.
Then, for each key link li,j, we define Ruqðli,jÞ as its upper
quartile (the value located at 75% of the data range), Rlqðli,j
Þ as its lower quartile (the value located at 25% of the data
range), and Rdðli,jÞ as the difference between the upper and
lower quartiles. The critical value Rcvðli,jÞ is calculated as fol-
lows:

Rcv li,j
� �

= Ruq li,j
� �

+ kRd li,j
� �

, ð10Þ
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where k is the regular factor. Finally, according to [26], we
set k as 1.5 and obtain the critical value of RTT for each
key link.

3.4. KL-Dection Algorithm. Note that network outages are
different from network congestion since they will persis-
tently influence the state of the network [27–29]. Therefore,
we add a constraint of duration to the definition of network
outages. Existing work [5, 7] defined network outages as no
response or missing a set of pings from any vantage point in
11 minutes. As a reference, in this paper, we define the net-
work outage as the phenomenon that the RTT of any key
link exceeds its critical value and lasts for more than 11
minutes.

Next, we summarize the process of the KL-Dection
approach and give its pseudocode in Algorithm 2. Firstly,
we select the detection area D and obtain their correspond-
ing traceroutes, denoted as dataset A. Then, we recognize
the key links from A using Algorithm 1. Next, we calculate
the critical value Rcvðli,jÞ of each key link li,j, respectively.

Finally, we detect the network outages by observing whether
the RTT of any key link exceeds the critical value for more
than 11 minutes. It is worth noting that the KL-Dection
algorithm can be used in any network topology and detec-
tion area.

4. Results and Discussion

Although our approach is applicable for the network outage
detection in any detection area, due to space limitations, we
take California as the detection area for presentation. We
first present the visualization results of key links in this area.
Then, we leverage one outage event in California to demon-
strate the validity of the definition of key link. Next, we
leverage another outage event to demonstrate the validity
of the KL-Dection approach. All outage events we consid-
ered occurred in the Internet. Finally, we compare the exist-
ing approach [14] and our approach in terms of the number
of monitoring links in three detection areas.
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Input: D, r, Δ1, Δ2;
Output: K ;
1: Calculate the matrix M in D and apply SVD over it,
2: Acquire r basic links, and denote them as the set B,
3: According to Δ1, Δ2, extract the links that satisfy the conditions in B, and denote them as K ,
4: return The set of key links K .

Algorithm 1: The recognition of key links.
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4.1. The Visualization Results of Key Links. We first collect
the traceroutes going through California from July 31 to
November 30, 2020, in RIPE, corresponding to 2.7T data.
Based on the data, we analyze 11936 links and leverage Algo-
rithm 1 to recognize seven key links. The visualization
results of these seven key links are shown in Figure 3. To
protect the privacy of address information, we describe the
nodes of key links in the form of prefixes.

Based on the key links, we extract their raw RTT from
the 2.7T data and obtain their corresponding critical value.
The critical value (ms) is shown in Table 1.

From Table 1, we can infer that the network outage is
happening if the RTT of any key link exceeds its critical
value and lasts for 11 minutes.

4.2. The Validity of the Definition of Key Link. After obtain-
ing the critical value, we consider an outage event that
occurred on October 21, 2016 [30], in California to evaluate
the validity of the definition of key link. In this case study,
we extract the RTT from 2016-10-21 11 : 00 UTC to 17 : 30
UTC for analysis.

The RTT of each key link during 2016-10-21 11 : 00 UTC
to 17 : 30 UTC is shown in Figure 4. In each figure, the x-axis
is the time (in hours), the y-axis is the RTT (ms), and the
dotted line is the critical value of the RTT. We take
Figure 4(a) as an example to illustrate. In Figure 4(a), the
RTT is below the critical value before 11 : 53; then it

increases rapidly and exceeds the critical value during
11 : 53 to 12 : 45; afterward, the RTT is gradually back to nor-
mal during 12 : 45 to 17 : 10; next, the RTT increases again
and exceeds the critical value during 17 : 10 to 17 : 30. From
Figure 4(a), we can observe that the outage occurred from
11 : 53 to 12 : 45 and 17 : 10 to 17 : 30, respectively, which is
in good agreement with the time reported in [31].

As can be seen from Figure 4, we can detect the network
outages effectively by monitoring the RTT of any key link. It
is worth noting that the time consumption of our approach
is low because it monitors the state of all key links in parallel.

Next, in order to evaluate the validity of the definition of
key link, we randomly select four links (except the key links),
which represent different types of links in California. We
present the three metrics of these four links in Table 2.

As can be seen from Table 2, only one metric of the first
three links does not satisfy Equation (8), and the last link only
satisfies the condition of flow density. Then, we leverage these
four links to detect the outage event mentioned above, and the
RTT of these four links is given in Figure 5. It can be seen from
Figure 5 that the RTT of these four links has different fluctua-
tions, but they do not exceed the critical value. Hence, we con-
clude that no network outage occurs, which is inconsistent
with the ground truth. The results demonstrate that focusing
on the links recognized by any one or two metrics alone is
inadequate to detect network outages. Moreover, based on
the comparison of the results between Figures 4 and 5, we
can conclude that the definition of the key links proposed in
this paper is effective in network outage detection.

4.3. The Validity of KL-Dection Approach. In order to evalu-
ate the validity of KL-Dection approach, we consider an

Input: D, r, Δ1, Δ2;
Output: Network outage;
1: Extract the traceroutes in D, and denote them as dataset A,
2: Recognize the key links from dataset A using Algorithm 1,
3: Obtain Rcvðla,bÞ for each key link la,b,
4: Monitor the RTT of la,b in parallel,
5: if The RTT of any la,b exceeds its corresponding critical value Rcvðla,bÞ and lasts for more than 11 minutes then
6: return Network outage,
7: end if

Algorithm 2: KL-Dection algorithm.

l2,8 l3,11

l3,6 l9,10

l2,3
l2,4

l4,6 l6,7

l5,12
l5,4

l1,2

V5:184.105.X5.0/24

V8:184.105.X8.0/24 V11:184.105.X11.0/24

V9:216.218.X9.0/24

V10:130.152.X10.0/24
V7:184.105.X7.0/24

V6:184.105.X6.0/24

V12:184.105.X12.0/24

V4:184.105.X4.0/24

V1:184.105.X1.0/24 V2:72.52.X2.0/24 V3:184.105.X3.0/24

Figure 3: A part of visualization results of links. The topology of links is consistent with the practical environment. The orange lines
represent the key links, which are used to detect two outage events. The gray lines represent the links, which are used to detect the
outage event occurred on October 21, 2016.

Table 1: The critical value of RTT.

Key link l1,2 l2,3 l2,4 l5,4 l4,6 l3,6 l6,7
Critical value (ms) 26.0 81.9 25.4 19.3 27.6 21.5 18.0
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outage event that occurred on May 24, 2019, in California
[32]. Since the outage event lasted from 21 : 47 to 23 : 58,
we extract the RTT from 2019-05-24 20 : 00 UTC to 24 : 00
UTC for analysis.

From Figure 6, we can observe that the key links l2,3, l5,4,
l3,6, and l6,7 can detect the outage effectively. In detail, we can
detect the outage from Figure 6(d) because the RTT exceeds
the critical value and lasts from 23 : 30 to 23 : 50. Similarly,
we can also detect the outage from Figure 6(g) because the
RTT exceeds the critical value and lasts from 21 : 47 to
23 : 58. However, the duration of the outage event inferred
from these two key links are different. This phenomenon
can be explained by the fact that because part or parts of
the power grid remain operational, the links in some areas
of California still maintain the normal network state. This
phenomenon is verified in electric disturbance events’
annual summaries [32].

In addition, we found that the RTT of key links l1,2, l2,4,
and l4,6 is stable over time. This phenomenon can be
explained by the fact that the outage event occurred far away
from the location of these key links, and it did not affect the
performance of these key links. The results of Figure 6 dem-
onstrate that our approach can detect the outage event effec-
tively by observing whether the RTT of any key link exceeds
the critical value for more than 11 minutes.

4.4. Performance Comparison. In this section, we aim to com-
pare the KL-Dection approach with the existing approaches in
terms of the number of monitoring links when both approaches
can detect the network outages successfully. Consider that the
latest approach [14] detected the network outage by collecting
the traceroute and monitoring the performance of all links in
the detection area, which is similar to the dataset and detection
mode adopted in this paper. As a consequence, we compare our
approach with the latest approach [14] in terms of the number
of monitoring links in three detection areas. Specifically, our
approach and the existing work can successfully detect the out-
age event that occurred in these three detection areas [30], and
the results of the comparison are shown in Table 3.

As can be seen from Table 3, the number of monitoring
links our approach needed is notably smaller than the existing
work [14]. This is especially true when the number of links in
the detection area is large. Specifically, in California, our
approach only needs to monitor less than 0.06% of the links
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Figure 4: RTT of the key links.

Table 2: The three metrics of links.

Link li,j ⊂ B li,j ⊂ C li,j ⊂ E

Link l2,8 ✔ ✕ ✔

Link l9,10 ✔ ✔ ✕

Link l3,11 ✕ ✔ ✔

Link l5,12 ✔ ✕ ✕
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Figure 6: RTT of the key links.
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for network outage detection, and the runtime of our
approach is 2 seconds.

Monitoring a large number of links will prompt the
researchers to deploy more probes and take continuous
measurements, which may occupy the link bandwidth,
reduce the network transmission speed, and increase the
network burden [9]. Besides this, the operation of probes
increases the costs (e.g., periodic maintenance, fault analysis,
and electricity costs). Thus, the KL-Dection approach can
obviously reduce resource occupancy and cost without
compromising the validity of outage detection. We believe
that our approach can provide better scalability and is more
acceptable in practice than existing work.

5. Discussion

The results presented in this paper have several implications
for the networking community. Because our approach is
lightweight and effective, the network managers can leverage
our approach to understand the network performance of
their customers with less cost. Similarly, in the scenario of
the Internet of Things, managers can also effectively under-
stand the performance of the network by monitoring the
connectivity of links that connect the key devices.

However, several limitations should be considered when
leveraging our approach. First, the key links are recognized
from vantage points, but the vantage points may not be rep-
resentative of the detection area, especially when the number
of Atlas probes is low. Hence, the results are prone to the
bias of Atlas deployment. Second, in the scenario of the data
center, the result of our approach is not satisfactory. This is
because compared with edge network, the network topology
of the data center is small, and a majority of links in data
center have high flow density, degree centrality, and probe-
distance centrality. Hence, our approach does not work well
in this scenario. The solutions to these limitations are left as
a future work.

6. Conclusion

In this paper, we propose KL-Dection approach, which
detects network outages via key links instead of all links.
Specifically, we recognize the key links in terms of three met-
rics, including flow density, degree centrality, and probe-
distance centrality of links. Then, based on recognized key
links, we give a critical value calculation algorithm on RTT
that distinguishes whether network outages occur. Finally,
we leverage two historical events to demonstrate that our
approach can detect the network outages effectively.

Data Availability

The data included in this paper are available without any
restriction.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Key Research and
Development Program of China under Grant No.
2020YFE0200500.

References

[1] R. Fontugne, A. Shah, and K. Cho, “Persistent last-mile conges-
tion:not so uncommon,” in Proceedings of the Internet Measure-
ment Conference (IMC), pp. 420–427, New York, 2020.

[2] J. Kučera, R. B. Basat, M. Kuka, G. Antichi, M. Yu, and
M. Mitzenmacher, “Detecting routing loops in the data plane,”
in Proceedings of the 2020 ACM CoNEXT Conference, pp. 466–
473, Barcelona, 2020.

[3] G. Kumar, N. Dukkipati, K. Jang et al., “Swift: delay is simple
and effective for congestion control in the datacenter,” in Pro-
ceedings of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), pp. 514–528, New York, 2020.

[4] B. Hou, C. Hou, T. Zhou, Z. Cai, and F. Liu, “Detection and
characterization of network anomalies in large-scale RTT time
series,” IEEE Transactions on Network and Service Manage-
ment, vol. 18, no. 1, pp. 793–806, 2021.

[5] L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular: under-
standing internet reliability through adaptive probing,” in Pro-
ceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pp. 255–266, Hong Kong, 2013.

[6] R. Fontugne, C. Pelsser, E. Aben, and R. Bush, “Pinpointing
delay and forwarding anomalies using large-scale traceroute
measurements,” in Proceedings of the Internet Measurement
Conference (IMC), pp. 15–28, London, 2017.

[7] R. Padmanabhan, A. Schulman, D. Levin, and N. Spring, “Res-
idential links under the weather,” in Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM),
pp. 145–158, Beijing, 2019.

[8] N. Gaur, A. Chakraborty, and B. S. Manoj, “Delay optimized
small-world networks,” IEEE Communications Letters,
vol. 18, no. 11, pp. 1939–1942, 2014.

[9] M. Hasib and J. A. Schormans, “Limitations of passive & active
measurement methods in packet networks,” in London Com-
muni- cations Symposium (LCS), London, UK, 2003.

[10] J. Badshah, M. Alhaisoni, N. Shah, and M. Kamran, “Cache
servers placement based on important switches for SDN-
based ICN,” Electronics, vol. 9, no. 1, pp. 39–65, 2020.

[11] T. Yingying Cheng and X. Jia, “Compressive traffic monitoring
in hybrid SDN,” IEEE Journal on Selected Areas in Communi-
cations, vol. 36, no. 12, pp. 2731–2743, 2018.

[12] D. Perdices, D. Muelas, I. Prieto, L. de Pedro, and L. de Ver-
gara, “On the modeling of multi-point RTT passive measure-
ments for network delay monitoring,” IEEE Transactions on

Table 3: Existing approach [14] and KL-Dection approach all can
detect the outage event that occurred on October 21, 2016 [30].
Under this case, we give the results of the comparison of the
number of monitoring links in three detection areas.

Detection area KL-Dection (ours) Existing approach [14]

Colorado 5 5234

District of Columbia 6 7420

California 7 11936

10 Wireless Communications and Mobile Computing



Network and Service Management, vol. 16, no. 3, pp. 1157–
1169, 2019.

[13] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,”
in 2013 IEEE Symposium on Security and Privacy, pp. 127–141,
Berkeley, CA, 2013.

[14] M. Di Bartolomeo, V. Di Donato, M. Pizzonia, C. Squarcella,
and M. Rimondini, “Extracting routing events from tracer-
outes: a matter of empathy,” IEEE/ACM Transactions on Net-
working, vol. 27, no. 3, pp. 1000–1012, 2019.

[15] R. Fontugne, J. Mazel, and K. Fukuda, “An empirical mixture
model for large-scale RTT measurements,” in 2015 IEEE Con-
ference on Computer Communications (INFOCOM), pp. 2470–
2478, Hong Kong, China, 2015.

[16] B.-Y. Choi, S. Moon, Z.-L. Zhang, K. Papagiannaki, and
C. Diot, “Analysis of point-to-point packet delay in an opera-
tional network,” Computer Networks, vol. 51, no. 13, pp. 3812–
3827, 2007.

[17] S. Shakkottai, N. Brownlee, A. Broido, and K. Claffy, “The RTT
distribution of TCP flows on the internet and its impact on
TCP based flow control,” Technical report, Cooperative Asso-
ciation for Internet Data Analysis (CAIDA), 2004.

[18] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dom-
inant characteristics of residential broadband internet traffic,”
in Proceedings of the Internet Measurement Conference (IMC),
pp. 90–102, Chicago, 2009.

[19] A. Dainotti, C. Squarcella, E. Aben et al., “Analysis of country-
wide internet outages caused by censorship,” IEEE/ACM
Transactions on Networking, vol. 22, no. 6, pp. 1964–1977,
2014.

[20] J. Heidemann, L. Quan, and Y. Pradkin, “A preliminary anal-
ysis of network outages during hurricane sandy,” Tech. Rep,
ISI-TR-685b, University of Southern California, Information
Sciences Institute, 2012.

[21] A. Schulman and N. Spring, “Pingin’ in the rain,” in Proceed-
ings of the Internet Measurement Conference (IMC), pp. 19–
28, New York, 2011.

[22] A. Milolidakis, R. Fontugne, and X. Dimitropoulos, “Detecting
network disruptions at colocation facilities,” in 2019 IEEE
Conference on Com- puter Communications (INFOCOM),
pp. 2161–2169, Paris, France, 2019.

[23] G. Aceto and A. Pescapé, “Internet censorship detection: a sur-
vey,” Com- puter Networks, vol. 83, pp. 381–421, 2015.

[24] J. H. Wang and C. An, “A study on geographic properties of
internet routing,” Computer Networks, vol. 133, pp. 183–194,
2018.

[25] G. H. Golub and C. F. Van Loan,Matrix Computations, vol. 3,
The Johns Hopkins Univ. Press, Baltimore, MD, USA, 2012.

[26] K. L. Spafford, J. S. Meredith, and J. S. Vetter, “Quartile and
outlier detection on heterogeneous clusters using distributed
radix sort,” in 2011 IEEE International Conference on Cluster
Computing, pp. 412–419, Austin, TX, USA, 2011.

[27] R. Zhao, Z. Li, Z. Xue, T. Ohtsuki, and G. Gui, “A novel
approach based on lightweight deep neural network for net-
work intrusion detection,” in 2021 IEEEWireless Communica-
tions and Networking Conference (WCNC), pp. 1–6, Nanjing,
China, 2021.

[28] P. Thorat, N. K. Dubey, K. Khetan, and R. Challa, “SDN-based
predictive alarm manager for security attacks detection at the
IoT gateways,” in 2021 IEEE 18th Annual Consumer Commu-
nications & Networking Conference (CCNC), pp. 1-2, Las
Vegas, NV, USA, 2021.

[29] N. Leslie, “An unsupervised learning approach for in-vehicle
network intrusion detection,” in 2021 55th Annual Conference
on Information Sciences and Systems (CISS), pp. 1–4, Balti-
more, MD, USA, 2021.

[30] G. C. M. Moura, J. Heidemann, M. Müller, R. O. de Schmidt,
and M. Davids, “When the dike breaks: dissecting DNS
defenses during DDoS,” in Proceedings of the Internet Mea-
surement Conference (IMC), pp. 8–21, Boston, MA, USA,
2018.

[31] S. Mansfield-Devine, “DoS goes mainstream: how headline-
grabbing attacks could make this threat an organisation’s big-
gest nightmare,” Network Security, vol. 2016, no. 11, pp. 7–13,
2016.

[32] “Electric disturbance events (oe-417) annual summaries,”
https://www.oe. http://netl.doe.gov//OE417annualsummary
.aspx.

11Wireless Communications and Mobile Computing

https://www.oe
http://netl.doe.gov//OE417annualsummary.aspx
http://netl.doe.gov//OE417annualsummary.aspx

	KL-Dection: An Approach to Detect Network Outages Based on Key Links
	1. Introduction
	2. Related Work
	3. Network Outage Detection Approach
	3.1. Data Processing
	3.2. Key Link Recognition
	3.2.1. The Flow Density
	3.2.2. The Degree Centrality
	3.2.3. The Probe-Distance Density
	3.2.4. Key Link

	3.3. Critical Value Calculation
	3.4. KL-Dection Algorithm

	4. Results and Discussion
	4.1. The Visualization Results of Key Links
	4.2. The Validity of the Definition of Key Link
	4.3. The Validity of KL-Dection Approach
	4.4. Performance Comparison

	5. Discussion
	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

