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This paper proposes a direct position determination (DPD) method for a digital modulation signal based on time difference of
arrival (TDOA) measurements. Unlike the two-step positioning process, the measurements are used to directly estimate the
source position. Fully utilizing information in a transmitted waveform can improve the accuracy of source localization in a
single-step method. Based on maximum likelihood (ML) estimates, when the digital modulation scheme is known to the
location system, an alternating iterative DPD method is developed to locate the emitter. The objective function of the proposed
algorithm takes into account the source position and transmitted symbol sequence, which makes it a mixed-integer
optimization problem. In particular, ML sequence estimation is adopted and the complex envelope is restored using a genetic
algorithm. Then, based on Newton’s method, an alternating iterative algorithm is proposed to update the position and symbol
sequence results. Compared with the existing DPD method, the proposed algorithm gives more accurate location results for
unknown waveforms. In addition, the proposed algorithm can reach the Cramér-Rao bound (CRB) for known signal
waveforms, as verified using comprehensive simulations.

1. Introduction

High-precision passive localization is very important in
many applications, such as signal processing, underwater
acoustic, radar, navigation, traffic, and smart home technol-
ogy. The conventional decentralized positioning methods
require two-steps procedure [1–3]. Under the decentralized
framework, firstly, the measurements, such as the angle of
arrival (AOA) [4, 5], the time of arrival (TOA) [6, 7], the
time difference of arrival (TDOA) [8, 9], frequency of arrival
(FOA) [10, 11], the frequency difference of arrival (FDOA)
[12, 13], the received signal strength (RSS) [14], and the gain
ratios of arrival (GROA) [15, 16], are extracted from the
received signals, and then the data collected by sensors are
stored in data processing center to estimate the source posi-
tion using various location methods. However, in order to
achieve the optimal performance of the two-step methods,
measurements must correspond to a single emitter. In con-
trast, direct position determination (DPD) methods concen-

trate the raw data from each sensor in a data processing
center and then estimate the source location in one step.

DPD methods [17–22] can provide the optimal source
location results in various localization scenarios, because
they can make full use of the signal observations [23]. Weiss
[17] proposed a maximum likelihood- (ML-) based DPD
method, which was applied to a single source of unknown
and known waveforms, and then extended to multiple
sources of known waveforms [18]. It indicates that the accu-
rate signal information is helpful to optimizing the model
and improving the positioning accuracy. In addition, the
methods based on the maximum likelihood have been
proven to reach the corresponding Cramér-Rao bound
(CRB). It is generally believed that if the signal waveform
is known, the DPD methods can accurately estimate the tar-
get position. Considering that it is difficult to obtain the
original signal waveform in practical application, a series of
DPD methods have been developed with specific signal
properties to improve the estimation accuracy. Reuven and
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Weiss [24] proposed a cyclic DPD method that combines
centralized processing and cyclostationary exploitation for
narrowband cyclostationary signals. Furthermore, Wang
et al. [25] constructed an ML-based estimator and devised
an alternating iteration algorithm by using the constant
modulus of the phase-modulated source. On the basis of
subspace data fusion (SDF), the characteristics of orthogonal
frequency division multiplexing signals were used to opti-
mize TOA and AOA measurements [26]. Some conven-
tional decentralized methods, such as the NC-MUSIC
algorithm, use the noncircular property of complex signals
to provide high-resolution DOA measurements [27]. Yin
et al. [28] proposed the NC-SDF DPD method, which com-
bines the SDF criterion and signal noncircularity. To reduce
the computational complexity, a decoupled ML-based DPD
algorithm for noncircular sources is developed based on
Doppler shifts and AOA measurements [29]. Nevertheless,
DPD methods can apply the product of various signal prop-
erties of the transmitted signals and improve the localization
accuracy in the associated scenarios.

In the harsh electromagnetic environment, the waveform
of the received signal is usually difficult to determine. Unfor-
tunately, the abovementioned DPD methods did not con-
sider the digital modulation signal, especially the
modulation scheme known to the location system. Nowa-
days, digital modulation signals (e.g., binary phase shift key-
ing (BPSK) and quadrature phase shift keying (QPSK), and
quadrature amplitude modulation (QAM) signals) are
widely used in modern communication systems. The Global
Positioning System (GPS) also provides high-precision posi-
tion perception through satellite constellations [30] using
specific waveforms, so typical examples include communica-
tion transmitters, such as airplanes, drones, or transport
ships. The extraction of the received signal features can
greatly improve positioning accuracy. If the digital modula-
tion mode is known, the baseband complex envelope of the
received signal can be reconstructed from the estimated data
sequence. Then, the positioning problem of digital modula-
tion signal can be transformed into the combination of posi-
tion estimation and data sequence estimation. Because the
estimated parameters include the source position and the
data sequence of the transmitted waveforms, the cost func-
tion of the proposed algorithm is actually a mixed-integer
optimization problem [31]. Note that the existing DPD
methods usually use exhaustive search methods, which is
impractical when the search dimension is determined by
the length of the data sequence. The previous optimization
methods are inevitable for integer optimization problems.
Therefore, in this case, it is important to develop the
mixed-integer DPD method, and the improvement of the
prior information of digital modulation schemes is still
unclear.

In this paper, we propose a mixed-integer DPD method
for the digital modulation signal source based on original
signal observations, which contain the TDOA measure-
ments. First, the received signals are modeled with a known
digital modulation scheme. Different from the existing DPD
methods of processing observations in the frequency
domain, the proposed method employs the sinc function

[32] to reconstruct the time-domain model based on TDOA
measurements. Then, a nonlinear cost function that con-
siders the source position and data sequence is established
by using the ML criterion. In addition, an iterative technique
is applied to update the data sequence and source position
alternatively to reduce computational complexity. A modi-
fied genetic algorithm (GA) [33] is adopted in the mixed-
integer solution. In order to evaluate the performance of
the proposed method, the CRBs with the known and
unknown waveforms are derived. However, as described in
detail later, the proposed DPD method for a digital modula-
tion signal cannot be regarded as a native fusion of the data
sequence and source position estimation.

The main contributions are summarized as follows:

(1) Firstly, the time-domain signal model based on
TDOA measurements is established in this paper.
In addition, an ML-based cost function is formulated
for digital modulation signals. In order to improve
the positioning accuracy, the digital modulation
scheme is known to the positioning systems

(2) To solve the mixed-integer optimization problem, a
computationally sufficient DPD method was devel-
oped to locate the emitter source based on a modi-
fied genetic algorithm and Newton’s method. The
proposed solution can guarantee the optimal posi-
tion estimation, rather than simply combining the
process of estimating the source position and the
transmission sequence

(3) The CRB on the estimated variance of unknown and
a known signal waveform is derived. They are used
to evaluate the performance of the proposed method.
Simulation results show that the proposed method
outperforms the existing DPD method for unknown
waveforms and its performance can reach the CRB
for the known waveform case

The rest of this paper is organized as follows. In Section
2, a digital modulation signal model is described to formu-
late the localization problem based on TDOA measure-
ments, and the CRBs with unknown and known signal
waveform are derived for evaluation. In Section 3, an alter-
nating iterative DPD method is developed for data sequence
estimation and source position estimation. Numerical simu-
lations are conducted to compare the performance of the
proposed algorithm with existing methods in Section 4 and
conclusions are drawn in Section 5.

1.1. Notations. We use uppercase and lowercase boldface to
represent the matrices and vectors, respectively. In this
paper, ON×n is a N × n matrix with all-zero entries and IN
is a N dimensional identity matrix; AT , AH , A‐1, and A†

are the transpose, the conjugate transpose, the inverse, and
the Moore-Penrose inverse of matrix A; kak denotes the
Euclidean norm of vector a; <·>i,j is the element at ith row
and jth column of its argument and <·>i denotes the i

th ele-
ment; vecf·g, Ef·g, and b·c are the vectorization,
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expectation, and rounded down operation; ⊗ is the Kro-
necker product.

2. Problem Formulation

2.1. Signal Model. We consider a two-dimensional (D = 2)
scenario shown in Figure 1 including an unknown emitter
at p = ½x y�T ∈ℝD×1 and a location system equipped with M
known sensors, which are located at um = ½xm ym�T ∈ℝD×1.
Suppose the emitter transmits a digital signal with a known
modulation scheme, but the symbol sequence is unknown to
the location system.

Without loss of generality, all sensors are synchronized
in time and the intercepted signals only propagate in the line
of sight (LOS). Thus, the received waveform of the mth sen-
sor is given by

rm tð Þ = bms t − τm − t0ð Þ +wm tð Þ, ð1Þ

for m = 1, 2,⋯,M, where τm = kp − umk/c represents the
signal propagation time between the emitter and the mth

sensor, and t0 is transmitted time. c is the signal propa-
gation speed. bm is the mth path loss coefficient and wm
ðtÞ is a complex additive white Gaussian noise with zero
mean and the power density σ2n. By denoting with T the
symbol period and the baseband chip waveform hðtÞ, the
baseband complex envelope of the signal sðtÞ can be writ-
ten as

s tð Þ = 〠
L

l=1
xl ⋅ h t − lTð Þ, ð2Þ

where xl ∈ f0, 1g represents the lth symbol of the
unknown transmitted sequence. In this paper, the chip
waveform hðtÞ is a known root-raised cosine filter. If
the modulation scheme is known to the location system,
the relationship between the transmitted waveform and
the data sequence x = ½x1 x2 ⋯ xL�T can be regarded as a
functional mapping relation sðxÞ. Based on a certain type
of digital modulation scheme, the discrete sequence is
converted into a signal waveform using a root-raised cosine
filter.

In passive localization problem, the TDOA measure-
ments contain the source position information but it is diffi-
cult to obtain the transmitted time. By setting the first sensor
as the reference, the TDOA between the mth sensor and the
first sensor is given by the following formula

τm,1 = τm − τ1 =
1
c

p − umk k − p − u1k kð Þ, ð3Þ

for m = 1, 2,⋯,M. Then, the received signal can be rewrit-
ten as

rm tð Þ = bm~s t − τm,1ð Þ +wm tð Þ, ð4Þ

where ~sðtÞ = sðt − τ1 − t0Þ. Using the properties of the Fou-
rier transform that

F e−jωτm,1
È É

=
1
2π

ðπ
−π
e−jωτm,1ejωtdω = sinc t − τm,1ð Þ, ð5Þ

and defining the function sinc ðνÞ = sin ðπνÞ/ðπνÞ, the
delayed signal in (4) is given by

~s t − τm,1ð Þ =
ð∞
−∞

sinc ν − τm,1ð Þ~s t − νð Þdν: ð6Þ

After being sampled at t = nTs in each interval, where Ts
denotes the sampling period, the received signal of sensor m
can be rewritten as

rm nð Þ = bm~s nTs − τm,1ð Þ +wm nð Þ, ð7Þ

and then the delayed signal waveform in (6) is transformed
into

~s nTs − τm,1ð Þ ≜ 〠
∞

k=−∞
sinc k − τm,1/Tsð Þs nTs − kTsð Þ: ð8Þ

In practice, the coefficient K cannot be infinite, so we
refer K to a limited non-infinite integer K which is larger
than bτm,1/Tsc, so we have

~s nTs − τm,1ð Þ ≈ 〠
K

k=−K
sinc k − τm,1/Tsð Þs nTs − kTsð Þ: ð9Þ

To minimize the truncation errors, using a higher
order K will lead to higher modeling accuracy. We further
composite all the N observation samples into a vector and
yield

�r = A~s xð Þ + �w ð10Þ

in which

�r = rT1 r
T
2 ⋯ rTM

Â ÃT ∈ℝMN×1

A = b1A
T
1 b2A

T
2 ⋯ bMA

T
M

Â ÃT ∈ℝMN×N

~s = s Ts − τ1 − t0ð Þs 2Ts − τ1 − t0ð Þ⋯ s NTs − τ1 − t0ð Þ½ �T ∈ℝN×1

�w = wT
1w

T
2 ⋯wT

M

Â ÃT ∈ℝMN×1:

8>>>>>>><>>>>>>>:
:

ð11Þ
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With the definition SincðkÞ = sinc ðk − τm,1/TsÞ, we
have the matrix

for m = 2,⋯,M and A1 = IN . Multiplied with the special
matrix Am, the transmitted waveform ~s is delayed with τm,1.
Therefore, the waveformssmðtÞ is produced with the s1ðtÞ
and matrix Am with corresponding time delay. Different
from the conventional methods in the frequency domain,
Am can realize the fractional time delay, which is much more
precise and direct to model the received signals.

2.2. Comparison with the CRBs. CRB is the lowest possible
variance that can be achieved by an unbiased estimator
[34]. Here, the CRB is needed to be deduced to evaluate
the performance of the proposed method. Let us compose
all the unknown parameters into a real vector. The unknown
parameters are contained in the vector

ρ = xTpT Re bT
� �

Im bT
� �h iT

: ð13Þ

It can be seen that in the proposed method, the transmit-
ted digital modulation scheme is called prior information,

and it is inappropriate to differentiate the cost function with
respect to the integer data sequence x together with p and b.
Therefore, the CRBs are considered to be derived for both
known and unknown waveforms, which means the vector
ρ can be transformed to

φ = Re ~s xð ÞT
� �

Im ~s xð ÞT
� �

pT Re bT
� �

Im bT
� �h iT

:

ð14Þ
And then the CRB of unknown waveform can be devised

first. In order to reduce the calculation of the inverse of high
dimensional Fisher information matrix (FIM), a novel prop-
osition is introduced to derive the CRB, which is based on
the following proposition.

Proposition 1. For a real vector x whose CRB is CRBðxÞ, if
we define a new real vector y = Jx, where J is an invertible
matrix, the CRB of vector y can be obtained by CRBðyÞ = J
⋅ CRBðxÞ ⋅ JT [35].
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Figure 1: Location model: the emitter source is located by M stations equipped with sensors.
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Let bφ be an unbiased estimate of the parameter vector φ.
The corresponding CRB bounds the mean square error of
any unbiased estimator of φ and the mean square error
(MSE) matrix of bφ satisfies the following information
inequality

E φ − bφð Þ φ − bφð ÞT
n o

≻J−1φ , ð15Þ

where Jφ is the FIM of φ defined as

Jφ = −E
∂2 ln f �r φjð Þ
∂φ∂φT

 !
: ð16Þ

The log-likelihood ratio of the corresponding signal
model (10) is given by

ln f �r φjð Þ∝ 1
σ2
n
〠
M

m=1
rm − bmAm~s xð Þk k2 = 1

σ2
n

�r −A~s xð Þk k2,

ð17Þ

up to an additive constant, and thus we can derive the CRBs
of the unknown waveforms. After performing differentia-
tion, the associated CRB matrix for φ can be computed by

CRB uð Þ
φ

� �−1
= J uð Þ

φ =
2
σ2n

Re
∂ A~s xð Þð Þ
∂φT

� �H ∂ A~s xð Þð Þ
∂φT

� �( )
=

2
σ2n

Re α β½ �H α β½ �È É
,

ð18Þ

where

α = ∂ A~sð Þ
∂ Re ~s xð ÞT

� � ∂ A~sð Þ
∂ Im ~s xð ÞT

� �
24 35, ð19Þ

β = ∂ðA~sÞ/∂ðωoÞT =
∂ðA~sÞ/∂pT ∂ðA~sÞ/∂ Re ðbTÞ ∂ðA~sÞ/∂ Im ðbTÞ
Â Ã

,in which

ωo = ½pT Re ðbTÞ Im ðbTÞ�T . It can be seen that the parame-
ter vector determines the dimension of the CRB matrix.
Therefore, we can reduce computational complexity of
matrix inversion by using Proposition 1. Using Proposition
1 and Schur-Complementary theorem [36], the FIM of ωo

can be reformulated as

J uð Þ
ωo =

J uð Þ
pp J uð Þ

pb

J uð Þ
bp J uð Þ

bb

24 35 = 2
σ2
n
Re βHΠ⊥

αβ
È É

: ð20Þ

Then, the CRB for the unknown waveform is given by

CRB uð Þ
p = J uð Þ

pp − J uð Þ
pb J uð Þ

bb

� �−1
J uð Þ
bp

� �−1
: ð21Þ

In the case of known waveforms, the emitter position p

and path loss coefficient b are retained in ωo =

½pT Re ðbTÞ Im ðbTÞ�T . Based on the log-likelihood function
(17), the FIM of unknown parameter ωo can be partitioned
into sub-matrices, which reduces to

CRB kð Þ
ωo

� �−1
= J kð Þ

ωo =
2
σ2n

Re
∂�As pð Þb
∂ ωoð ÞT

 !H
∂�As pð Þb
∂ ωoð ÞT

 !( )
=

J kð Þ
pp J kð Þ

pb

J kð Þ
bp J kð Þ

bb

24 35:
ð22Þ

Then, we can compute the p corner of the CRB matrix as
follow

CRB kð Þ
p = J kð Þ

pp − J kð Þ
pb J kð Þ

bb

� �−1
J kð Þ
bp

� �−1
: ð23Þ

The diagonals of CRBðuÞ
p and CRBðkÞ

p both contain D
values that are the variance bounds for the parameters in p
. The trace of CRBðuÞ

p and CRBðkÞ
p are compared with the

localization mean square errors of the proposed estimator
in Section 4.

3. Location Algorithm: Digital Signal with
Known Modulation and Unknown
Symbol Sequences

In this section, a mixed-integer DPD optimization model is
developed for the digitally modulated signal. For previous
works, the estimators for the cases of known and unknown
waveforms are investigated in [18]. When the transmitted
signals are known or the waveforms can be restored based
on the symbols and the known modulation scheme, the
transmitted waveforms can be regarded as prior informa-
tion, which can be used to improve the accuracy of position
estimation. Based on the concept of restoring transmitted
waveforms with a known modulation scheme, an efficient
iterative algorithm is proposed for estimating the source
position.

Assume that �w is white complex Gaussian noise with

zero mean and variance σ2n, the parameters ρ = ½xTpTbT �T
need to be estimated. To decouple the uninterested parame-
ters b, the vector �r of observation samples can be rewritten
as

�r = �Asb + �w ð24Þ

where

�As =

A1~s ON×1 ON×1 ON×1

ON×1 A2~s ON×1 ON×1

⋮ ⋮ ⋮

ON×1 ⋯ ON×1 AM~s

2666664

3777775: ð25Þ

After omitting the constant terms, we can minimize the
log-likelihood function (17) with respect to the unknown
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path loss coefficient b, which is given by

b̂ = �AH
s
�As

� �−1
�AH
s �r: ð26Þ

Submitting (26) into the objective function (17), we have

f2 p, xð Þ = 2�rH ⋅Π⊥
�As
⋅ �r, ð27Þ

where

Π⊥
�As
= IMN − �As

�AH
s
�As

� �−1
�AH
s : ð28Þ

Note that the optimization model is a mixed-integer
nonlinear programming problem, which can be formulated
as follows

min
p,x

f2 p, xð Þ

s:t: p ∈ℝD×1,

xl ∈ 0, 1f g, l = 1,⋯, L

8>>><>>>: : ð29Þ

It can be seen that ML sequence estimation (MLSE) has
been used to obtain the data sequence of the transmitted sig-
nal. If the estimated parameter p acts as a constant vector,
the abovementioned cost function (29) can be regarded as
the ML estimator of the data sequence, and it is a standard
integer nonlinear optimization problem. Based on the idea
of a decoupled iteration solution, we can update the source
position and the data sequence alternatively. We divide the

unknown parameters ρ = ½xTpTbT �T into two groups, fxg
and fp, bg. The two groups are optimized in turn, until the
cost function finally converges to the minimum. The optimi-
zation model is divided into the following two stages.

3.1. First Stage: Sequence Estimation. First of all, by minimiz-
ing the cost function (29) with an appropriate initial esti-
mate p̂ using a method for unknown waveforms, MLSE
can be simply derived. Then, the previous mixed-integer
nonlinear programming problem can be transformed into
the following pure-integer nonlinear optimization problem

min
x

f2 x, p̂ð Þ
s:t: xl ∈ 0, 1f g, l = 1,⋯, L

(
: ð30Þ

The above sequence estimator is the first step in the pro-
cess of alternating iteration. Because the length of the trans-
mitted data sequence is finite, the finite feasible set contains
2L members, and the number of feasible solutions increases
nonlinearly with the length of data sequence. Here, a feasible
set can be regarded as a population and a feasible solution as
an individual. An improved real-coded genetic algorithm
utilized in the GA toolbox in MATLAB [33] can be used
to solve the integer optimization problem. Without loss of
generality, the fitness functions in the GA are derived based
on the original objective function. Through mathematical

deduction, the objective function (30) can be rewritten as

x̂MLSE = arg max
xl∈ 0,1f g,l=1,⋯,L

f fitness x, p̂ð Þ

= arg max
xl∈ 0,1f g,l=1,⋯,L

�rH �As x, p̂ð Þ �AH
s x, p̂ð Þ�As x, p̂ð Þ

� �−1
�AH
s x, p̂ð Þ�r

� �
,

ð31Þ

which is a standard integer nonlinear optimization problem.
Different from the conventional algorithm for mixed-integer
optimization problems, the elements in each sequence are
limited to f0, 1g without equality and inequality constraints
in the proposed estimator, but the fitness function is equal to
the original objective function.

The extended Laplace crossover operator and the power
mutation operator are applied, and the elite individuals in
the last generation are used to make a mating pool. With
the Laplace crossover operator, two offspring are generated
from two elite members, x = ½x1, x2,⋯, xL�T and y =
½y1, y2,⋯, yL�T , which are called parents here. The following
Laplace distribution is used

ℓl =
u − v log λlð Þ, γl ≤ 0:5

u + v log λlð Þ, γl > 0:5

(
, ð32Þ

where λl, γl ∈ ½0, 1� are uniform random numbers. Because
of the restriction of a discrete sequence, these parameters u
and v are set to zero and unity, respectively. Then, the ele-
ments of the offspring w = ½w1,w2,⋯,wL�T and z =
½z1, z2,⋯, zL�T can be obtained as

wl = xl + ℓl xl − ylj j,
zl = yl + ℓl xl − ylj j:

ð33Þ

Then, after applying crossover and mutation to the old
population, the truncation procedure is carried out to ensure
that the integer restriction is satisfied. The element xl is
equal to either 0 or 1 with probability 0.5 if xl is not an
integer.

The complexity of calculation depends on the signal
duration and the oversampling method. Considering the
running time in real-world application, the number of sam-
ples may be limited.

3.2. Second Stage: Position Estimation. When the updated
sequence converges, we move to the second stage. After esti-
mating the sequence x̂MLSE with an imprecise source posi-
tion estimation, it is necessary to update the position
estimation p̂ by the following estimator

p̂ = arg min
p∈ℝD×1,b

f2 p, x̂ð Þ = arg min
p∈ℝD×1,b

�rH ⋅Π⊥
�As p,x̂ð Þ ⋅ �r, ð34Þ
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where

Π⊥
�As p,x̂ð Þ = IMN − �As p, x̂ð Þ �AH

s p, x̂ð Þ�As p, x̂ð Þ
� �−1

�AH
s p, x̂ð Þ:

ð35Þ

Because the traditional grid search requires repeated
computations, the estimator (34) can be minimized using

Newton’s iteration method. The updated vector ωo =
½pT Re ðbTÞ Im ðbTÞ�T is given by

ωo
q+1 = ωo

q − μqH
−1 ωo

q

� �
h ωo

q

� �
, ð36Þ

where μq ∈ ð0, 1Þ is the step size of the qth iteration. hðωoÞ
and HðωoÞ are the gradient vector and the Hessian matrix
of (34), respectively.

Applying the first-order derivation operator of the
orthogonal projection matrix Π⊥

�Asðp,x̂Þ, we can obtain the gra-

dient vector hðωoÞ. Therefore, Hessian matrix HðωoÞ which
is essential to Newton’s-type method can be derived based
on equation (38). As a result, the approximation has no
effect on the numerical value of the estimation. Differentiat-
ing f2ðp, x̂Þ with respect to ωo, the ith element of the gradient
vector hðωoÞ is

Following some algebraic manipulations, the ði, jÞ ele-
ment in the Hessian matrix HðωoÞ is given by

∂2 f2 p, x̂ð Þ
∂ <ωo>i∂ <ωo> j

≈ 2 Re

�rH ⋅ �A†
s p, x̂ð Þ

� �H
⋅
∂�AH

s p, x̂ð Þ
∂ < ωo>i

⋅Π⊥
�As p,x̂ð Þ ⋅

∂�As p, x̂ð Þ
∂ <ωo> j

⋅ �A†
s p, x̂ð Þ ⋅ �r

 !
:

ð38Þ

With the matrix transformation vecðXYZÞ = ðZT ⊗ XÞ ⋅
vecðYÞ, the gradient vector hðωoÞ can be expressed as

where

V �As p,x̂ð Þ = vec
∂�As p, x̂ð Þ

∂p

� �
vec

∂�As p, x̂ð Þ
∂ Re bð Þ

� �
vec

∂�As p, x̂ð Þ
∂ Im bð Þ

� �� �T
:

ð40Þ

Based on the property that Π⊥
�Asðp,x̂Þ =Π⊥

�Asðp,x̂Þ ⋅Π
⊥
�Asðp,x̂Þ,

the Hessian matrix HðωoÞ can be formulated as follow

H ωoð Þ ≈ 2 Re V �As p,x̂ð Þ ⋅ �A†
s p, x̂ð Þ�r

� �
⊗Π⊥

�As p,x̂ð Þ
� �

�A†
s p, x̂ð Þ�r

� �T
⊗Π⊥

�As p,x̂ð Þ

� �
⋅VT

�As p,x̂ð Þ

� �
,

ð41Þ

which is essential to the Newton’s-type method. Then, we
can compute the gradient vector hðωoÞ and HðωoÞ for New-
ton’s iteration algorithm in (36).

The main formulas are given above. With appropriate
step-size factors [37], the updated result can converge to

the corresponding optimal result in several iterations, which
is verified by the experiments in Section 4. The step-size fac-
tor μq can be adaptively determined to follow the strong
Wolfe conditions [38], which means

f2 ωo
q + μq ⋅H

−1 ωo
q

� �
⋅ h ωo

q

� �� �
, x̂

� �
≤ f2 ωo

q, x̂
� �

+ μq ⋅ h
T ωo

q

� �
⋅H−1 ωo

q

� �
⋅ h1 ωo

q

� �
,

ð42Þ

jhT1 ðωo
q + μq ⋅H

−1ðωo
qÞ ⋅ hðωo

qÞÞ ⋅H−1ðωo
qÞ ⋅ hðωo

qÞj ≤ c1jhTðωo
q

Þ ⋅H−1ðωo
qÞ ⋅ hðωo

qÞj,with 0 < c1 < 1:
Note that the data sequence is initially estimated using a

relatively inaccurate position estimation. A good initial esti-
mate is very important for subsequent iteration. In this
paper, the position estimate for the first MLSE in (31) is
set as the initial estimate, which is accurate enough for the
proposed convergence. The procedure of the proposed

∂f2 p, x̂ð Þ
∂ < ωo>i

= Re �rH ⋅ −Π⊥
�As p,x̂ð Þ ⋅

∂�As p, x̂ð Þ
∂ <ωo>i

⋅ �A†
s p, x̂ð Þ − Π⊥

�As p,x̂ð Þ ⋅
∂�As p, x̂ð Þ
∂ <ωo>i

⋅ �A†
s p, x̂ð Þ

� �H
 !

⋅ �r

 !
: ð37Þ

h ωoð Þ = − Re V �As p,x̂ð Þ ⋅ �A†
s p, x̂ð Þ�r

� �
⊗ �rHΠ⊥

�As p,x̂ð Þ
� �T� �

+ Π⊥
�As p,x̂ð Þ

� �H
�r

� �
⊗ �rH �A†

s p, x̂ð Þ
� ��� H

� �T
 ! ! !

, ð39Þ
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DPD method is shown in Table 1, and for clarity, the flow
diagram can be seen in Figure 2.

3.3. Computational Complexity Analysis. Table 2 summa-
rizes the numerical complexity, where Kstep1, Kstep2, and
K iter are the amount of looping in the procedure,
respectively.

4. Simulation Results

In this section, several Monte Carlo simulations are intro-
duced to verify the effectiveness of the proposed DPD
methods. The performance of the proposed method is com-
pared with that of the DPD methods with unknown and
known waveforms, and the CRB given in Section 4 is also
compared. The simulation results exceeded 200 Monte Carlo
tests on average. We focus on the root mean square error
(RMSE) to evaluate the performance of our methods, which
is defined by

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nexp
〠
Nexp

i=1
p − p̂ ið Þ



 


2

2

vuut ð43Þ

where Nexp is the number of the Monte Carlo trials and p̂ðiÞ

is the ith position estimate. Besides, two different localization
scenarios are considered. The following simulations are car-
ried out for these two cases. The source and sensor positions
are indicated by random symbols.

4.1. Near-Field Source. In this subsection, the performance of
the proposed DPD method is examined for both known and

unknown transmitted waveforms. Figure 3 shows the geo-
metric position of the near-field scenario, where the sensors
are located at (-3, 3) [km], (-3, -3) [km], (3, -3) [km], and (3,
3) [km] and the emitter source is located at (1.4, 1.88) [km].
Then, a QPSK signal is transmitted from the emitter, and 20
samples are taken of each symbol. The roll-off factor of the
root-raised cosine filter is set as 0.35. The data sequence of
the QPSK signal is random, the symbol rate is 10 [kHz],
the length of the symbol sequence is 10, and the order K is
equal to 401 in this case.

Here, the proposed method and existing DPD methods
for both unknown and known signals are compared. The
signal-to-noise (SNR) varied from -10 to 35 [dB] at 5 [dB]
intervals. Figure 4 shows the RMSE of the proposed method
and existing DPD methods based on the above conditions. It
can be seen that for known waveforms, the performance of
the proposed method can reach that of the DPD method.
By making use of the modulation scheme, when the wave-
form is unknown, the proposed method outperforms the
existing DPD method. Because the data sequence of the
transmitted signals is unknown to the location system, the
proposed method has a lower threshold than that of the
DPD method for known waveforms. In addition, the estima-
tion accuracy of the proposed DPD method can attain the
corresponding CRB when the SNR is 0 [dB].

Further, we compare the distributions of the source posi-
tion estimation when SNR=5 [dB]. In Figure 5, the estima-
tion results of these methods are compared together. In
order to evaluate the accuracy of these methods intuitively,
we introduce the uncertainty ellipse of circular error proba-
bility (CEP) [39] as an approximate measure to evaluate
their performance. Figure 6 shows that 50% of the estimates
of the two methods are encapsulated in an ellipse. The two
ellipses of the proposed method and the DPD for known
waveforms are about the same size, which is in good agree-
ment with the RMSE results of the source position
estimation.

4.2. Far-Field Source. In this section, the performance of
locating a far-field source is studied. The geometric structure
of the position of the far-field scenario is seen in Figure 7.
The sensors are located at (0, 0) [km], (-43.76, 25.4) [km],
(43.76, 25.4) [km], and (0, -42.5) [km] and the emitter
source is located at (70, 94) [km].

The other conditions are the same as those in the first
set. As shown in Figure 8, the proposed DPD method can
reach the corresponding CRB. Due to the model errors, the
estimation accuracy of the DPD method for unknown
waveforms cannot achieve CRB even at high SNR.
Figure 9 shows the distributions of these methods at
SNR=5 [dB]. In Figure 10, the ellipse of the proposed
method is slightly larger than that of the existing DPD
method for known waveforms, but much smaller than that
of unknown case. In general, our method performs signif-
icantly better and has a higher threshold compared with
the DPD method for unknown waveforms. Besides, this
method can also achieve the same accuracy as that for
the DPD method for known waveforms under a suffi-
ciently high SNR.

Table 1: The direct localization algorithm for digital modulation
signals.

Require: Obtain the initial guess of emitter position p̂0; the
received signal of each sensor rm,m = 1, 2,⋯,M; thresholds ε and
δ (sufficiently small and positive values, which are 10-6 in this
paper).

A. First-stage processing (sequence estimation):

(i) Apply crossover and mutation to Xi
elite and generate P random

discrete data sequences Xi = xi1, xi1,⋯,xiP−p, Xi
elite

n o
as the ith

population. The subset Xi
elite contains the elite individuals in the

last generation

(ii) Update the maximum of fitness value and the corresponding
sequence x̂ = xibest in Xi

(iii) Update the searching generation i⟵ i + 1
B. Second-stage processing (position estimation):

(i) Compute the gradient vector h ωð Þ and the hessian matrix H
ωð Þ using (39) and (41)

(ii) Update the iterative result ωq+1 via (36), then q⟵ q + 1

(iii) If h ωq

À Á

 

 ≤ ε, obtain p̂ = ωq

Â Ã
1:D

(iv) If p̂ − p̂0k k ≤ δ, output p̂ as the estimated position, otherwise,
reset p̂0 = p̂ and return to the first-stage

Output: The estimated position p̂.
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4.3. Different Symbol Rates. In this subsection, the perfor-
mance of the proposed DPD method is evaluated for differ-
ent symbol rates. Because the data sequence is actually
random, the symbol rate is one of the most important attri-
butes of a digital modulation signal as it determines the
bandwidth of the received signal. In the following simula-
tions, the position geometry is the same as that in Figure 7

and QPSK is used as the modulation scheme for 10 symbols.
The symbol rate varies from 5 [kHz] to 35 [kHz]. The roll-
off factor of the root-raised cosine filter is 0.35, and 20 sam-
ples are taken of each symbol.

Figure 11 shows the performance of the proposed
method and the existing DPD methods for unknown and
known waveforms, respectively, at SNR=10 [dB]. The

Figure 2: Flow diagram of the proposed DPD method.

Table 2: Computational complexity of each iteration.

Items in first stage The number of multiplications Items in second stage The number of multiplications

f fitness x, p̂ð Þ M2N2 + 1
À Á

MN

ωo
q+1 D + 2Mð Þ D + 2M + 1ð Þ

f2 p, x̂ð Þ M2N2 + 1
À Á

MN

H ωoð Þ 4M3N2 + 2M2N2À Á
h ωoð Þ 2MN D + 2Mð Þ2 MN + 4M + 1ð Þ

Inverse of H ωoð Þ D + 2Mð Þ3 − 2 D + 2Mð Þ2 + 6 D + 2Mð Þ − 1

Total of first stage S1 = Kstep1 M2N2 + 1
À Á

MN Total of second stage S2 = Kstep2

M3N3 + 4M3N2 + 2M2N2 +MN +

2 D + 2Mð Þ2 M2N2 + 4M2N +MN
À Á

+

D + 2Mð Þ3 − D + 2Mð Þ2 + 7 D + 2Mð Þ − 1

0BB@
1CCA

Total K iter S1 + S2ð Þ
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Figure 3: Geometry for near-field source localization.
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performance of the proposed method is close to that of the
DPD method for known waveforms, which is consistent
with the previous two experiments. As shown in Figure 11,
the estimation accuracy of the proposed method and the
existing DPD methods decreases with the increasing symbol
rate.

4.4. Different Sequence Length. We examined the perfor-
mance of the proposed DPD method for another digital
modulation scheme and various data sequence lengths.
BPSK modulation scheme is used, and the location geometry
of the emitting source and the sensors is the same as that in
Figure 7. The roll-off coefficient of the root-raised cosine fil-
ter is 0.35, the symbol rates are both 10 kHz, and 20 samples
are taken of each symbol. In addition, the symbol sequence
is also random in this case.

Figure 12 shows the RMSE of the source position estima-
tion and the CRBs for various number of symbols. The
results demonstrate that the proposed method can reach
the relevant CRBs with high SNR. For a given number of
symbols in a data sequence, the proposed method has a
comparable performance. In addition, the CRBs and the
RMSEs for the proposed DPD method show that the accu-
racy of the estimation results increases with increasing num-
ber of symbols in the transmitted data sequence.

4.5. Running-Time Comparison. In this section, the running
time of the proposed DPD method is compared with the
previous DPD methods. All the simulations are conducted
using MATLAB R2017a, which is equipped with an Intel
Core i5-8400 CPU operating @ 2.8GHz and 16GB of ran-
dom access memory (RAM). The running-time results in

Case1: CRB (l= 5 known waveform)
Case1: RMSE of proposed (l= 5)
Case2: CRB (l= 10 known waveform)
Case2: RMSE of proposed (l= 10)
Case3: CRB (l= 15 known waveform)
Case3: RMSE of proposed (l= 1 5)
Case4: CRB (l= 20 known waveform)
Case4: RMSE of proposed (l= 20)
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103

104

105

RM
SE

 (m
)

Figure 12: RMSEs and associated CRBs versus SNR for BPSK.

Table 3: Comparison of run time (SNR=5 [dB]).

Localization algorithm
Running time in second

Sequence estimation
(20 samples/symbol)

Position estimation Total

Proposed 36.99 2.37 39.36

DPD with unknown waveform (grid search) 0 145.08 145.08

DPD with known waveform (grid search) 0 148.68 148.68
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Table 3 are averaged of the total number of Monte Carlo
experiments in each case.

As a result, the proposed methods can converge to the
optimal result with a good initial guess in several iterations.
Compared with the previous DPD methods based on the
grid search, the proposed method has a significant superior-
ity in the position estimation stage. The following conditions
for the simulation are the same as those in Section 4. It can
be seen from the statistical data that sequence estimations
take the greatest computational power in the procedure of
the proposed algorithm.

5. Conclusion

This paper proposed a DPD method for positioning the digital
modulation signal based on TDOA measurements. By utilizing
the digital modulation scheme of the transmitted signals, we
devise an ML-based cost function for the given digital modula-
tion signals. Considering that the estimator is a mixed-integer
optimization problem, amodified genetic algorithm andNewton
method are used to estimate the data sequence and source loca-
tion alternately. Numerical simulations have proven that the pro-
posed algorithm can converge to the optimal solution in several
iterations. In addition, the CRB for unknown waveform and
unknownwaveform are derived, and the performance of the pro-
posedmethod is compared. The results of existingDPDmethods
without modulation schemes are investigated to show the supe-
rior performance of the proposed algorithm. Numerical results
and the distribution of estimates reveal the benefits of the modu-
lation information and show that the proposed algorithm can
approach that of the existing method with known waveforms.

Currently, the proposed algorithm only uses the TDOA
information to locate single emitter. In the future work, we
will extend the proposed algorithm to hybrid TDOA/FDOA
localization in multiple-target localization scenarios.
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