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Exploiting the idle computation resources distributed at wireless devices (WDs) can enhance the mobile edge computing (MEC)
computation performance. This paper studies a multiuser cooperative computing system consisting of one local user and multiple
helpers, in which the user solicits multiple nearby WDs acting as helpers for cooperative computing. We design an efficient
orthogonal frequency-division multiple access- (OFDMA-) aided three-phase transmission protocol, under which the user’s
computation-intensive tasks can be executed in parallel by local computing and offloading. Under this setup, we study the
energy consumption minimization problem by optimizing the user’s task partition, jointly with the communication and
computation resources allocation for task offloading and results downloading, subject to the user’s computation latency
constraint. For the nonconvex problem, we first transform the original problem into a convex one and then use the Lagrange
duality method to obtain the globally optimal solution. Compared with other benchmark schemes, numerical results validate
the effectiveness of the proposed joint task partition and resource allocation (JTPRA) scheme.

1. Introduction

The real-time communication and computation of massive
wireless devices (WDs) (e.g., smart wearable devices and lap-
tops) promote the rapid growth of emerging applications
(e.g., face recognition, smart grid, and autonomous driving)
[1]. In fact, these applications or tasks may be computation-
intensive and latency-critical, but WDs are generally of small
size and only have the finite battery power. Hence, how to
enhance their computation capabilities and reduce the com-
putation latency is one crucial but challenging task to be
handled. To deal with such limitations, mobile edge comput-
ing (MEC) has been proposed as a promising technology by
providing cloud-like computing at the network edge (e.g.,
base stations (BSs) and access points (APs)) [2].

Various efforts have been devoted to handling technical
challenges against different computation task models. Two
extensively adopted task models in the current research works
are partial and binary offloading, respectively. Note that in
partial offloading, the mutual dependency of the computing
tasks significantly affects the computation offloading process

[3]. That means partial offloading can be classified as the
task-call graph and the data-partition model. Also, there exists
different types of MEC system architectures, such as single
user single-server [4–7], multiuser single-server [8–14], and
single/multiuser multiserver [15–18].

Due to the increasing number of WDs, resource conten-
tion may occur on MEC servers. Under this circumstance,
cooperative computing provides a viable solution by utilizing
abundant idle computation resources distributed at WDs
[19, 20]. In a basic two-user device-to-device (D2D) coopera-
tive computing system, [19] jointly optimized both users’ local
computing and task offloading decisions over time, in order to
minimize their weighted sum-energy consumption. Under a
single-user single-helper single-server setup, [21, 22] jointly
optimized the communication and computation resources
allocation at both the user and helper based on time-division
multiple access (TDMA) and nonorthogonal multiple access
(NOMA), respectively. In a cellular D2D MEC system, [23]
proposed a joint task management architecture to achieve effi-
cient information interaction and task management. Also, by
integrating D2D into the MEC system, [24] jointly optimized
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D2D pairing, task split, and the communication and computa-
tion resource allocation, in order to improve the system com-
putation capacity.

In the above research works, the user is mostly assumed to
cooperate with single helper at the same time. In practical
design, multiple helpers can simultaneously share their own
computation and communication resources to help the user
[20, 25–27]. In the D2D MEC system, [25] jointly optimized
helpers’ selection and the communication and computation
resource allocation for minimizing the energy consumption.
In [26], a multihelper MEC with NOMA-based cooperative
edge computing has been presented to maximize the total off-
loading data subject to the latency constraints. However, the
system model in [25, 26] ignores results downloading, which
may be not applicable for practical design. Thus, [20, 27] focus
on the joint task offloading and results downloading. In the
D2D-enabled multihelper MEC system, [27] jointly optimized
the time and rate for task offloading and results downloading,
as well as the computation frequency for task execution, in
order to minimize the computation latency. Unlike the binary
offloading model in [20, 27], it investigated a multiuser com-
putational offloading scheme, in which the controlling user
partially distributes its computing tasks to multiple trusted
helpers. Also, [20] ignores computation resource of the local
user and dynamic management of computation frequency.

Despite the recent research progress, cooperative com-
puting still faces some technical challenges. First, the previ-
ous research works mostly consider cooperating with the
MEC server or single helper. When multiple helpers share
unused resources to help the user, how to effectively coordi-
nate the cooperation between the user and multiple helpers
for achieving computing diversity remains challenging, espe-
cially when the helper number becomes large. Second, the
previous research works generally ignore potential perfor-
mance improvement brought by dynamic management of
computation frequency as well as results downloading.
When the MEC system considers these options, how to solve
such a complex problem is also challenging.

Motivated by this, we consider a multiuser cooperative
MEC system consisting of one user and multiple nearby
WDs serving as helpers. The user has individual computa-
tion tasks to be executed within a given time block. To
implement the cooperation between the user and the
helpers, the time block is divided into three phases. In the
first phase, the user simultaneously offloads the computing
tasks to multiple nearby helpers. In the second phase, the
helpers execute their assigned computation bits. In the three
phase, the helpers send the computation results back to the
user. Under this setup, this paper develops an energy-
efficient multiuser cooperative MEC design by optimizing
the user’s task partition, jointly with the communication
and computation resource allocation for task offloading
and results downloading. The main contributions of this
paper are summarized as follows.

(1) We propose an MEC framework for multiuser coop-
erative computing, in which the user can simulta-
neously offload the computing tasks to multiple
nearby helpers

(2) We design an OFDMA-aided three-phase transmis-
sion protocol involving results downloading, which
efficiently coordinates the cooperation between the
user and multiple nearby helpers

(3) For the energy consumption minimization problem,
we optimize the user’s task partition, jointly with the
communication and computation resource allocation
for task offloading and results downloading. Due to
nonconvexity of this problem, we first transform it
into a convex one and then use the Lagrange duality
method to obtain the globally optimal solution

The rest of this paper is organized as follows. Section 2
introduces the system model. The proposed joint task parti-
tion and resource allocation problem is formulated in Sec-
tion 3. The joint task partition and resource allocation
algorithm is presented in Sections 4. Section 5 provides
numerical results, followed by the conclusion in Section 6.

Notation is as follows: we employ uppercase boldface let-
ters and lowercase boldface ones for matrices and vectors,
respectively. Δ is represented by “denoted by” ½x�ba. And
[x]+ is denoted by fb, min fa, xgg and maxf0, xg, respec-
tively. A continuous random variable z uniformly distrib-
uted over [a, b] is denoted by z ∼U [a, b]. |A| denotes the
determinant of a matrix A. Moreover, lu +∑K

k=1lk = Lu and
R+ stand for the sets of nonnegative real vectors of dimen-
sion K and positive real numbers, respectively.

2. System Model

As shown in Figure 1, we consider a multiuser cooperative
MEC system, which consists of one user and a set.

K = Δ f1,⋯,Kg of nearby helpers all equipped with single
antenna. We focus on a time block with length T, where the
user should execute the computing tasks with data-size Lu (in
bits) within this block. Here, T is no larger than the channel
coherence time [21]. Suppose that there is a central controller
that is responsible for collecting the network information, such
as the global channel state information (CSI), accordingly, the
central controller can send the optimized strategies to the user
and helpers to take actions [21, 22]. For easy implementation,
it is further assumed that the task offloading and result down-
loading channel reciprocity are leveraged in this paper [20].

Specifically, the Lu bits generally can be divided into K
+ 1 independent parts for local computing and offloading
to the helpers, respectively. Let lu ≥ 0 and l1 ≥ 0,⋯, lK ≥ 0
denote the numbers of bits for local computing at the user
and offloading to K helpers, respectively. Then, we have

lu + 〠
K

k=1
lk = Lu: ð1Þ

2.1. Local Computing. The lu bits are executed locally with the
optimal central process unit (CPU) frequency given as [21]

f u =
culu
T

, ð2Þ
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where cu denotes the number of CPU cycles for computing
1-bit input-data at the user. Note that fu is subject to the maxi-
mum frequency constraint, that is,

f u ≤ fmax
u : ð3Þ

Accordingly, the user’s energy consumption for local com-
puting is given by

Ecomp
u = γuculu f

2
u: ð4Þ

where γu denotes a constant related to the user’s hardware
architecture [21]. Replacing fu in (4) with (2), Ecomp

u can thus
be reexpressed as

Ecomp
u = γu

culuð Þ3
T2 : ð5Þ

2.2. Remote Computing at Helpers. The OFDMA-aided three-
phase transmission protocol is shown in Figure 2. At first, the
user first offloads lk bits to the k -th helper with duration toff k
via OFDMA in the task offloading phase, k ∈ K. Then, the k
-th helper executes its assigned bits with duration tcomp

k in the
task execution phase. At last, in the result downloading phase,
the k -th helper sends the computation results back to the user
with duration tdlk via OFDMA. Note that the cooperation
between the user and K helpers does not affect each other. To
meet the user’s latency requirement, we have the following time
constraint:

toffk + tcomp
k + tdlk ≤ T ,∀k ∈K : ð6Þ

In the following, we describe the OFDMA-aided three-
phase transmission protocol in detail.

2.2.1. Phase I (Task Offloading). Let hoff k denote the channel
power gain from the user to the k -th helper, k ∈ K . The

achievable offloading rate at the k -th helper is given by

lk = toffk roffk poffk

� �
, ð7Þ

where W in Hz denotes one frequency resource block,
poff k is the transmit power for offloading data to the k -th
helper, and σk

2 is the power of additive white Gaussian noise
(AWGN) at the k -th helper. Hence, we have the offloaded
bits lk from the user to the k -th helper as

lk = toffk roffk poffk

� �
: ð8Þ

Accordingly, the total energy consumption for task off-
loading consumed by the user is expressed as

Eof f
u = 〠

K

k=1
tof fk pof fk : ð9Þ

2.2.2. Phase II (Task Execution). After receiving lk bits, the k
-th helper executes with the optimal CPU frequency given as

f k =
lkck

T − toffk − tdlk
, ð10Þ

where ck denotes the number of CPU cycles for comput-
ing 1-bit input-data at the k -th helper. Similarly as in (3), f k
is also subject to the maximum frequency constraint, that is,

f k ≤ fmax
k ,∀k ∈K : ð11Þ

Consequently, the energy consumption for cooperative
computation at the k -th helper is expressed as

Ecomp
k = γk

lkckð Þ3
T − toffk − tdlk
� �2 , ð12Þ

where γk denotes a constant related to the k -th helper’s
hardware architecture [21].

2.2.3. Phase III (Result Downloading). After executing the
user’s assigned bits, the k -th helper begins sending the
computation results back to the user via OFDMA. Let
hdlk denote the channel power gain from the k -th helper
to the user. The achievable downloading rate from the k
-th helper is given by

rdlk pdlk
� �

=W log2 1 + pdlk h
dl
k

σ2
0

 !
, ð13Þ

where pdlk is the transmit power of the k -th helper,
and σ20 is the power of AWGN at the user. The corre-
sponding computation results are thus given by

qlk = tdlk r
dl
k pdlk
� �

, ð14Þ
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Figure 1: System model of multiuser cooperative MEC.
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where q ∈ R+ denotes the normalized ratio between the
size of computation results and the size of computing
tasks [20]. The energy consumption for results download-
ing consumed by the k -th helper is expressed as

Edl
k = tdlk p

dl
k : ð15Þ

3. Problem Formulation

In this paper, we aim to minimize the total energy consump-
tion of the multiuser cooperative MEC system (i.e., Eoff

u +
Ecomp
u +∑K

k=1ðEdl
k + Ecomp

k Þ) by jointly optimizing the user’s
task partition, the task offloading time, the result download-
ing time, and the transmit power of the user and helpers,
subject to the user’s computation latency constraint T . Spe-
cifically, the energy consumption minimization problem is
formulated as

P1ð Þ: min
l,toff,tdl ,poff,pdl

Eoff
u + 〠

K

k=1
Edl
k + Ecomp

k

� �
+ Ecomp

u s:t:lk ≤ toffk roffk poffk

� �
,∀k ∈K ,

ð16aÞ

qlk ≤ tdlk r
dl
k pdlk
� �

,∀k ∈K , ð16bÞ

〠
K

k=1
toffk poffk ≤ Eoff

max, ð16cÞ

tdlk p
dl
k ≤ Edl

max,∀k ∈K , ð16dÞ

tdlk ≤ T , toffk ≤ T ,∀k ∈K , ð16eÞ

l ∈ℝK+1
≥0 , toff ∈ℝK

≥0, tdl ∈ℝK
≥0,

poff ∈ℝK
≥0, pdl ∈ℝK

≥0

1ð Þ, 3ð Þ, 11ð Þ
,

ð16fÞ

where l ≙ flu, l1,⋯,lKg ∈ℝK+1
≥0 , toff ≜ ftoff1 ,⋯,toffK g ∈ℝK

≥0,
tdl ≜ ftdl1 ,⋯,tdlKg ∈ℝK

≥0, pof f ≜ fpoff1 ,⋯,poffK g ∈ℝK
≥0, and pdl ≜

fpdl1 ,⋯,pdlKg ∈ℝK
≥0. (1) denotes the user’s task partition con-

straint, (3) and (11) denote the maximum CPU frequency
constraints at the user and helpers, respectively, (16a) and
(16b) denote the constraints for data transmission between
the user and the helpers, and (16c) and (16d) denote the
transmission energy consumption constraints at the user
and helpers, respectively. Note that in problem (P1), we
replace the equality in (8) and (14) as the inequality con-
straints (16a) and (16b), respectively. (16a) and (16b) should
be met with strict equality at optimality of problem (P1).
This is consistent with intuition. Because of the coupling of
toffk and poffk and tdlk and pdlk in the objective function and
the constraints (16a) and (16b), problem (P1) is nonconvex.

3.1. Feasibility of Problem (P1). Before solving problem (P1),
we need to guarantee its feasibility so that the multiuser
cooperative MEC system can support the latency-
constrained task execution. Let Lmax denote the maximum
data size in bits supported by the proposed MEC system
within duration T . There is no doubt that only when Lmax
≥ Lu, problem (P1) is feasible, or problem (P1) is infeasible.
Hence, we check the feasibility of problem (P1) by determin-
ing Lmax. Intuitively, Lmax is obtained when the user and
helpers make full use of the communication and computa-
tion resources in the proposed MEC system. This
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Figure 2: An illustration of the OFDMA-aided three-phase transmission protocol.

4 Wireless Communications and Mobile Computing



corresponds to letting the constraints (3) and (11) be met
with strict equality in problem (P1). Then, the data maximi-
zation problem is formulated as

P2ð Þ: Lmax ≜ max
toff,tdl ,poff,pdl ,l

Tfmax
u

cu

+ 〠
K

k=1

T − toffk − tdlk
� �

fmax
k

ck
s:t:

T − toffk − tdlk
� �

fmax
k

ck

≤ toffk roffk poffk

� �
,∀k ∈K ,

q
T − toffk − tdlk
� �

f max
k

ck
≤ tdlk r

dl
k pdlk
� �

,∀k ∈K ,〠
K

k=1
toffk poffk ≤ Eoff

max,

tdlk p
dl
k ≤ Edl

max,∀k ∈K
16eð Þ, 16fð Þ

: ð17aÞ

Due to the similarity of between problems (P1) and (P2),
problem (P2) can be solved like problem (P1). By comparing
Lmax and Lu, we finally check the feasibility of problem (P1).

4. Optimal Solution

In this section, we first transform problem (P1) into a con-
vex one and then present an efficient algorithm to obtain
the globally optimal solution.

To accomplish this target, we introduce two auxiliary

variable vectors yoff ≜ ½yof f1 ,⋯,yof fK � and ydl ≜ ½ydl1 ,⋯,ydlK � with
yoffk = toffk poffk and ydlk = tdlk p

dl
k , ∀k ∈ K . Then, it holds that

poff k = yk
off /toff k if toff k > 0, and poffk = 0 if either yoffk = 0 or

toffk = 0. Similarly, this also applies to pdlk = yk
dl/tdlk. By

substituting poffk = yoffk /toffk and pdlk = ydlk /tdlk , problem (P1)
can be reformulated as

P1:1ð Þ: min
l,toff,tdl ,yoff,ydl

〠
K

k=1
yoffk + ydlk + γk lkckð Þ3

T − toffk − tdlk
� �2

 !
+ γu lucuð Þ3

T2 ,

s:t lk ≤ toffk roffk
yoffk

toffk

 !
,∀k ∈K ,

ð18aÞ

qlk ≤ tdlk r
dl
k

ydlk
tdlk

 !
,∀k ∈K , ð18bÞ

〠
K

k=1
yoffk ≤ Eoff

max, ð18cÞ

ydlk ≤ Edl
max,∀k ∈K , ð18dÞ

tdlk ≤ T , toffk ≤ T ,∀k ∈K , ð18eÞ

l ∈ℝK+1
≥0 , tdl ∈ℝK

≥0, toff ∈ℝK
≥0,

ydl ∈ℝK
≥0, yoff ∈ℝK

≥0:

1ð Þ, 3ð Þ, 11ð Þ
ð18fÞ

Lemma 1. Problem (P1.1) is a convex problem.

Proof. It is obvious that the function rk
off ðxÞ is a concave

function with respect to x ≥ 0. As the perspective operation
maintains convexity, xroffk ðy/xÞ is jointly concave with
respect to x ≥ 0 and y ≥ 0 [28]. Similarly, this also applies
to xrdlk ðy/xÞ. Therefore, the set defined by the constraints

(18a)–(18d) is convex. The Hessian of l3k/ðT − toffk − tdlk Þ
2
is

H =

6lk
T − toffk − tdlk
� �2 6l2k

T − toffk − tdlk
� �3 6l2k

T − toffk − tdlk
� �3

6l2k
T − toffk − tdlk
� �3 6l3k

T − toffk − tdlk
� �4 6l3k

T − toffk − tdlk
� �4

6l2k
T − toffk − tdlk
� �3 6l3k

T − toffk − tdlk
� �4 6l3k

T − toffk − tdlk
� �4

2
666666666664

3
777777777775
:

ð19Þ

The leading principal mirrors of H are given by

Δ1j j = 6lk
T − toffk − tdlk
� �2 ≥ 0,

Δ2j j =

6lk
T − toffk − tdlk
� �2 6l2k

T − toffk − tdlk
� �3

6l2k
T − toffk − tdlk
� �3 6l3k

T − toffk − tdlk
� �4

�����������

�����������
= 0:

ð20Þ

From the above analysis, we can validate that l3k/
ðT − toffk − tdlk Þ

2
is convex and so is l3u/T2. Hence, problem

(P1.1) is convex.
In view of Lemma 1, to gain engineering insights, we

next leverage the Lagrange duality method to solve problem
(P1.1).

[28]
Let λ1 ∈ RK

≥0 and λ2 ∈ RK
≥0 indicate the dual variables

related to the constraints in (18a) and (18b), respectively,
and let μ1 ∈ R ≥ 0, μ2 ∈ R, and μ3 ∈ R

K
≥0 be the dual variables

related to the constraints in (18c), (1), and (18d),
respectively.

Define λ ≜ ½λ1, λ2�, μ ≜ ½μ1, μ2, μ3�, λ1 ≜ ½λ1,1,⋯,λ1,K�, λ2
≜ ½λ2,1,⋯,λ2,K�, and μ3 ≜ ½μ3,1,⋯,μ3,K�. The partial
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Lagrangian of problem (P1.1) is given by

L toff, tdl, yoff, ydl, l, λ, μð Þ = 〠
K

k=1
1 + μ1ð Þyof fk

�
+ μ3,k + 1
� �

ydlk

− μ3,kE
dl
max +

γk lkckð Þ3
T − toffk − tdlk
� �2

+ λ1,k − μ2 + λ2,kqð Þlk

− λ1,kt
off
k roffk

yoffk

toffk

 !
− λ2,kt

dl
k r

dl
k

ydlk
tdlk

 !!

+ γu lucuð Þ3
T2 − μ2lu + μ2Lu − μ1Emaxoff :

ð21Þ

The dual function of problem (P1.1) is expressed as

g λ, μð Þ = min
toff ,tdl,yoff ,ydl,l

L toff , tdl, yoff , ydl, l, λ, μð Þ

s:t:  3ð Þ, 11ð Þ, 18eð Þ, 18fð Þ:
ð22Þ

As a result, the dual problem of problem (P1.1) is given by

P1:1‐dualð Þ: max
λ,μ

g λ, μð Þ

s:t:λ ∈ℝ2K
≥0 , μ1 ≥ 0, μ2 ∈ℝ, μ3 ∈ℝK

≥0:
ð23Þ

DenoteΨ and λopt and μopt as the feasible set and the opti-
mal dual variables for problem (P1.1-dual), respectively.

Since problem (P1.1) is convex and satisfies Slater’s con-
dition, there is zero duality gap between problems (P1.1) and
(P1.1-dual) [28]. Next, we first find the dual function g (λ, μ)
by solving problem (22) under any given (λ, μ) ∈Ψ and then
obtain λopt and μopt to maximize g (λ, μ).s.

4.1. Derivation of Dual Function g (λ, μ). Denote ðt∗off , t∗dl,
y∗off , y∗dl, l∗Þ as the optimal solution for problem (22) under
any given (λ,μ) ∈ Ψ, ðtoptoff , t

opt
dl , y

opt
off , y

opt
dl , loptÞ as the optimal

primal solution for problem (P1.1), respectively. In the fol-
lowing, we find the dual function g (λ,μ) by solving problem
(22) under any given (λ,μ) ∈ Ψ. Equivalently, we decompose
(22) into K + 1 subproblems as follows:

P1:1‐sub1ð Þ: min
toff1 ,tdl1 ,yoff1 ,ydl1 ,l1

1 + μ1ð Þyoff1

+ μ3,1 + 1
� �

ydl1 − μ3,1Emaxdl +
γ1 l1c1ð Þ3

T − toff1 − tdl1
� �2

+ λ1,1 − μ2 + λ2,1qð Þl1 − λ1,1t
off
1 roff1

yoff1
toff1

� �

− λ2,1t
dl
1 r

dl
1

ydl1
tdl1

� �

s:t:  11ð Þ, 0 ≤ toff1 ≤ T , 0 ≤ tdl1 ≤ T ,0 ≤ l1, 0 ≤ yoff1 , 0 ≤ ydl1 ,⋮,

P1:1‐subKð Þ: min
toffK ,tdlK ,yoffK ,ydlK ,lK

1 + μ1ð ÞyoffK + μ3,K + 1
� �

ydlK

− μ3,KE
dl
max +

γK lKcKð Þ3
T − toffK − tdlK
� �2 + λ1,K − μ2 + λ2,Kqð ÞlK

− λ1,Kt
off
K roffK

yoffK

toffK

� �
− λ2,Kt

dl
K r

dl
K

ydlK
tdlK

� �
,

s:t:  11ð Þ, 0 ≤ toffK ≤ T , 0 ≤ tdlK ≤ T ,

0 ≤ lK , 0 ≤ yoffK , 0 ≤ ydlK ,

P1:1‐subK + 1ð Þ: min
lu

γu lucuð Þ3
T2 − μ2lu

s:t:  3ð Þ:
ð24Þ

As these subproblems are independent of each other,
they can be parallelly solved. Also, the optimal solutions
for problems (P1.1-sub1)-(P1.1-subK+1) are presented in
Lemmas 21,···, 2K, and 3, respectively. Note that we only
show the proof of Lemma 2 since Lemmas 21,···, 2k−1, 2k
+1,···, 2K, and 3 can be similarly proved via Karush-Kuhn-
Tucker (KKT) conditions.

Lemma 2. Under given (λ,μ) ∈ Ψ, the optimal solution ð
ðyoffk Þ∗, ðydlk Þ

∗, ðtoffk Þ∗, ðtdlk Þ
∗, l∗k Þ to problem (P1.1subk) sat-

isfies

yoffk
� �∗

= toffk
� �∗

poffk
� �∗

, ð25Þ

ydlk
� �∗

= tdlk
� �∗

pdlk
� �∗

, ð26Þ

l∗k = Mkð Þ∗ T − toffk
� �∗

− tdlk
� �∗� �

, ð27Þ

toffk
� �∗

=
T , ρk,1 > 0,
0, T½ �, ρk,1 = 0,
0, ρk,1 < 0,

8>><
>>: ð28Þ

tdlk
� �∗

=
T , ρk,2 > 0,
0, T½ �, ρk,2 = 0,
0, ρk,2 < 0,

8>><
>>: ð29Þ

where ðpoffk Þ∗ = ½λ1,kW/ln 2ð1 + μ1Þ − σ2k/hoffk �+, ðpdlk Þ
∗ =

½λ2,kW/ln 2ð1 + μ3,kÞ − σ20/hdlk �
+
, and

M∗
k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − λ1,k − λ2,kq

3γkc3k

s" #fmax
k /ck

0

, μ2 − λ1,k − λ2,kq ≥ 0,

0, μ2 − λ1,k − λ2,kq < 0,

8>><
>>:

ð30Þ
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ρk,1 = λ1,kr
off
k poffk

� �∗� �
− α1

fmax
k

ck
− 2γk ckM

∗
kð Þ3

−
λ1,kW hoffk /σ2k

� �
poffk

� �∗
ln 2 1 + hoffk /σ2k

� �
poffk

� �∗� � , ð31Þ

ρk,2 = λ2,kr
dl
k pdlk
� �∗� �

− α1
fmax
k

ck
− 2γk ckM

∗
kð Þ3

−
λ2,kW hdlk /σ20

� �
pdlk
� �∗

ln 2 1 + hdlk /σ20
� �

pdlk
� �∗� � , ð32Þ

α1 =
0, M∗

k <
fmax
k

ck
,

μ2 − λ1,k − λ2,kq − 3γkc3k M∗
kð Þ2, M∗

k =
fmax
k

ck
:

8>>><
>>>:

ð33Þ
Proof. Since problem (P1.1-subk) is convex and satisfies
Slater’s condition, there is zero duality gap between prob-
lems (P1.1-subk) and its dual problem [28]. Hence, we use
the KKT conditions to solve problem (P1.1-subk). The
Lagrangian function of problem (P1.1-subk) is given by

Lk = 1 + μ1ð Þyoffk + μ3,k + 1
� �

ydlk + γk lkckð Þ3
T − toffk − tdlk
� �2

− μ2lk + λ1,k lk − toffk roffk
yoffk

toffk

 ! !
+ λ2,k qlk − tdlk r

dl
k

ydlk
tdlk

 ! !

+ α1 lk −
T − tof fk − tdlk
� �

fmax
k

ck

0
@

1
A + a1 toffk − T

� �

− a2t
off
k − b1lk − β1y

off
k − η1y

dl
k + d1 tdlk − T

� �
− d2t

dl
k ,

ð34Þ

where a1, a2, b1, α1, β1, η1, d1, and d2 are the nonnegative
Lagrange multipliers associated with toffk ≤ T0 ≤ tdlk , 0 ≤ lk, lk
≤ ðT − toffk − tdlk Þfmax

k /ck, 0 ≤ yoffk , 0 ≤ ydlk , tdlk ≤ T , and 0 ≤ tdlk,
respectively.

According to the KKT conditions, it follows that

a1 toffk − T
� �

= 0, ð35Þ

a2t
off
k = 0, ð36Þ

b1lk = 0, ð37Þ

β1y
off
k = 0, ð38Þ

η1y
dl
k = 0, ð39Þ

d1 tdlk − T
� �

= 0, ð40Þ

d2t
dl
k = 0, ð41Þ

a1 lk −
T − toffk − tdlk
� �

fmax
k

ck

 !
= 0, ð42Þ

∂Lk

∂toffk

= 2γk lkckð Þ3
T − yoffk − ydlk
� �3 − λ1,kW log 2 1 + yoffk

toffk

hoffk

σ2k

 !

+
λ1,kW yoffk /toffk

� �
hoffk /σ2k
� �

ln 2 1 + yoffk /toffk

� �
hoffk /σ2k
� �� �

+ α1
fmax
k

ck
+ a1 − a2 = 0,

ð43Þ

∂Lk

∂tdlk
= 2γk lkckð Þ3

T − toffk − tdlk
� �3 − λ2,kW log 2 1 + ydlk

tdlk

hdlk
σ2
0

 !

+
λ2,kW ydlk /tdlk

� �
hdlk /σ20
� �

ln 2 1 + ydlk /tdlk
� �

hdlk /σ20
� �� � + α1

f max
k

ck

+ d1 − d2 = 0,

ð44Þ

∂Lk

∂yoffk

= 1 + μ1ð Þ −
λ1,kW hoffk /σ2

k

� �
ln 2 1 + yoffk /toffk

� �
hoffk /σ2k
� �� � − β1 = 0,

ð45Þ

∂Lk

∂ydlk
= 1 + μ3,k
� �

−
λ2,kW hdlk /σ2

0

� �
ln 2 1 + ydlk /tdlk

� �
hdlk /σ20
� �� � − η1 = 0,

ð46Þ

∂Lk

∂lk
= 3γkc3kl2k

T − toffk − tdlk
� �2 − μ2 + λ1,k + λ2,kq + α1 − b1 = 0,

ð47Þ

where (35)–(42) denote the complementary slackness
condition, (43)–(47) are the first-order derivative conditions
of Lk with respect to toff k, t

dl
k, yk

off , yk
dl, and lk, respectively.

Hence, we have (27) and (28) based on (45) and (46), respec-
tively, and (29) holds due to (47). In addition, we have (29)
based on (47) and some manipulations.

Also, by substituting (25) and (27) into (43) and (26) and
(27) into (44) and assuming ρk,1 = a1 − a2 and ρk,2 = d1 − d2,
we have ρk,1 and ρk,2 in (31) and (28), respectively. Conse-
quently, the optimal ðtoffk Þ∗ and ðtdlk Þ

∗
are given in (28) and

(29), respectively.
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Lemma 3. Under given (λ, μ) ∈ Ψ, the optimal solution l∗u to
problem (P1.1-subK+1) is

l∗u = T
ffiffiffiffiffiffiffiffiffiffiffi
μ2

3γuc
3
u

r
 �T fmax
u /cu

0

: ð48Þ

Remark 4. Note that in (28) and (29), if ρk,i = 0 (for any i

∈ f1, 2g), the optimal solution ðtoffk Þ∗ or ðtdlk Þ
∗
is generally

nonunique. In this case, we choose ðtoffk Þ∗ = 0 or ðtdlk Þ
∗ = 0

for evaluating g (λ, μ). Since such choice may not be feasible
or optimal for problem (P1.1), we add an additional step to
find the primal optimal ðtoffk Þopt and ðtdlk Þ

opt
, as will be shown

in Section 4.3.

By combining Lemmas 21,···, 2K with 3, g (λ,μ) is evalu-
ated for any given (λ, μ) ∈ Ψ.

4.2. Obtaining λopt and μopt to Maximize g (λ, μ). With ð
t∗off , t∗dl, y∗off , y∗dl, l∗Þ obtained, we then solve problem (P1.1-
dual) to maximize g (λ, μ). Due to the property of g (λ,
μ), the ellipsoid method is utilized to obtain ðλopt, μoptÞ
[29]. For the objective function in (22), one subgradient is
given by [29]

e = l∗1 − toff1

� �∗
roff1

yoff1
� �∗
toff1
� �∗

 !
,⋯,l∗K − toffK

� �∗
roffK

yoffK

� �∗
toffK

� �∗
 !

, ql∗1

"

− tdl1
� �∗

rdl1
ydl1
� �∗
tdl1
� �∗

 !
,⋯,ql∗K − tdlK

� �∗
rdlK

ydlK
� �∗
tdlK
� �∗

 !
, 〠

K

k=1
yoffk

� �∗

− Eoff
max, Lu − l∗u − 〠

K

k=1
l∗k ydl1
� �∗

− Edl
max,⋯, ydlK

� �∗
− Edl

max

#
:

ð49Þ

For the constraints λ ∈ℝ2K
≥0 , μ1 ≥ 0, μ2 ∈ℝ and μ3

∈ RK
≥0,

the subgradients are e1,···,e2K , e2K+1, e2K+2, and e2K+3,···,e3K+2,
respectively. Note that ei is of all zero entries except for the i
-th entry being one.

4.3. Finding the Optimal Primal Solution to (P1). Having
obtained λopt,μopt, we still need to further solve problem
(P1.1). By replacing (λ,μ) with λopt,μopt in Lemmas 21,···,
2K, and 3, we obtain the corresponding poptoff = ½ðpoff1 Þopt, L,
ðpoffK Þopt�, poptdl = ½ðpdl1 Þ

opt,⋯,ðpdlK Þ
opt�, Mopt = ½Mopt

1 ,⋯,Mopt
K �,

and lu
opt, respectively. However, due to the nonuniqueness

of ðtoffk Þ∗ and ðtdlk Þ
∗, k ∈K , we implement an extra proce-

dure to obtain the optimal solution of other variables for
problem (P1). With poptoff , p

opt
dl , Mopt, and loptu , the optimal

solution must satisfy lk =Mopt
k ðT − toffk − tdlk Þ, yoffk = toffk

ðpoffk Þopt, and ydlk = tdlk ðpdlk Þ
opt
. By substituting them in

(P1.1), we have the following linear program (LP) to obtain

toptoff and toptdl :

min
toff ,tdl

〠
K

k=1
toffk poffk

� �opt
+ tdlk pdlk

� �opt�
+ γk Mopt

k cu
� �3

T − toffk − tdlk
� ��

,

s:t:Mopt
k T − toffk − tdlk
� �

≤ toffk roffk poffk

� �opt� �
,∀k ∈K ,

qMopt
k T − toffk − tdlk
� �

≤ tdlk r
dl
k pdlk
� �opt� �

,∀k ∈K ,

〠
K

k=1
toffk poffk

� �opt
≤ Eoff

max,

tdlk pdlk
� �opt

≤ Edl
max,∀k ∈K ,

〠
K

k=1
Mopt

k T − toffk − tdlk
� �

+ loptu = Lu,

toffk + tdlk ≤ T ,∀k ∈K ,
0 ≤ toffk , 0 ≤ tdlk ,∀k ∈K:

ð50Þ

Since problem (50) is an instance of LP, it can be solved
by the interior-point method [28]. Finally, we obtain the
globally optimal solution for problem (P1). The proposed
joint task partition and resource allocation (JTPRA) scheme
is thus summarized in Algorithm 1.

Remark 5. With Lemmas 21,···, 2K, and 3, the following
insights can be obtained as follows:

(1) As for local computing, it is observed from Lemma 3
that lu

opt generally increases as T becomes large. This
indicates that the user prefers executing more tasks
when the user’s computation latency constraint
becomes loose

(2) As for cooperative computing, it is evident that,
based on Lemma 2, the offloading power ðpoffk Þopt
increases as the channel power gain hoff k becomes
stronger. That is, the user prefers offloading more
tasks to the closer helper, in order to reduce the mar-
ginal energy consumption for offloading. Similarly,
this also applies to ðpdlk Þ

opt

4.4. Complexity. The complexity of the ellipsoid method is
OðN2Þ, where N is the number of dual variables and N = 3
K + 2 in (23) [29]. Moreover, the complexity of the
interior-point method is OðM3:5 log ð1/εÞÞ where M is the
number of optimal variables, log (1/ε) is the iteration com-
plexity order, and M = 2K is in (50) [28]. Hence, the total
complexity of Algorithm 1 is OðK3:5 log ð1/1ε − εÞÞ.

5. Simulation Results

We provide simulation results for verifying the effectiveness
of the proposed joint task partition and resource allocation
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(JTPRA) scheme in Section 4, as compared against the fol-
lowing five benchmark schemes:

(1) Local Computing with Optimal Frequency (LCOF):
the computation tasks are executed locally with the
optimal CPU frequency, and thus the optimal energy
consumption for local computing is Eopt

local = γu
ðLucuÞ3/T2

(2) Local Computing with Fixed Frequency (LCFF): the
computation tasks are executed locally with the max-
imum CPU frequency, and thus the energy con-
sumption for local computing is
Efixed
local = γuLucuð fmax

u Þ2

(3) Full Offloading (FO): the computation tasks are par-
titioned into K parts for offloading to nearby helpers,
which corresponds to solving problem (P1) by set-
ting lu = 0

(4) Joint Offloading Ratio and CPU Frequency (JORCF)
[7]: in this scheme, the user adjusts both the offload-
ing ratio and CPU frequency to cooperate with the
MEC server

(5) Fixed Frequency (FF) [20]: let the constraints (3) and
(11) be met with strict equality. This corresponds to
solving problem (P1) by setting f u = fmax

u and f k =
f k

max, k ∈ K

In the simulation, the distance between the user and
helpers is d ∼U [dmin, dmax] meters, where dmax = 30meters
and dmin = 1meters. The path loss between any two nodes
is modeled as bd−φ, where b = 10−3 corresponds to the path
loss at a reference distance of 1 meter, d denotes the distance
from the user to a helper, and φ = 3 is the path loss exponent
[21]. Also, the helpers’ maximum CPU frequencies are
assumed to be uniformly chosen from the set {1.6, 2.4,
3}GHz. The other parameters are set as shown in Table 1
unless otherwise specified.

Figure 3 shows the maximum data-size versus the block
length T where Lu = 0:2Mb and K = 3. In the following sim-

ulation, under given T , we set Lu smaller than Lmax to guar-
antee the feasibility of problem (P1).

Figure 4 shows the average energy consumption versus
data size Lu where T = 0:15 sec and K = 3. It is observed that
our proposed JTPRA achieves the minimum energy con-
sumption than other schemes. Moreover, we have some
observations as follows.

(1) The average energy consumption by all the schemes
increases as Lu increases. JTPRA achieves significant
performance gain over FF. This indicates the benefit
of computation frequency optimization in energy
saving for MEC

(2) For schemes with unchanged CPU frequency, FF
achieves a lower energy consumption than LCFF.
This is because the user prefers offloading the com-
puting tasks to the helpers whose maximum CPU
frequencies are below that of the user, compared
with local computing

1 Initialization: Given an ellipsoid ε((λ,μ),A) contain-
ing (λopt,μopt), where (λ,μ) is the center point of ε
and A ≻ 0 characterizes the volume of ε.

2 repeat
3 Obtain p∗off, p∗dl, y∗off, y∗dl, t∗off, and t∗dl by Lemmas
21,⋯, 2K and 3 under given (λ,μ)∈Ψ, respectively;
4 Compute the subgradients of g (λ,μ), then update
(λ,μ) using the ellipsoid method [29];

5 until (λ,μ) converge to a specified accuracy.
6 Setðλopt, μoptÞ⟵ ðλ, μÞ.
7 Output: Obtain poptoff ,p

opt
dl , and loptu based on 21,···,2K

and 3 by replacing (λ,μ) with λopt,μopt, and then
compute toptoff , t

opt
dl , and lopt by solving the LP in (50).

Algorithm 1

Table 1: Simulation parameters.

Frequency resource block W 1MHz

Effective capacitance
coefficient γu = γ1 =⋯ = γK

3 × 10 − 27

Noise power σ20 = σ21 =⋯ = σ2K -120 dBm [22]

Computation intensities cu = c1 =⋯ = cK 103 cycle/bit [21]

User’s maximum CPU frequency f u
max 2GHz [21]

Available energy for data
transmission Eoff

max = Edl
max

0.5 joule

Normalized ratio between the size
of computation results and the size
of computing tasks q

0.2

Number of channel realizations 500
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Figure 3: The maximum data-size versus the block length T .
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(3) For schemes involving optimizing CPU frequency,
FO achieves significant energy reduction than LCOF,
which is because the helpers’ optimal CPU frequen-
cies are far below than that of the user. Also, by com-
parison with JORCF, JTPRA has about 69.9% energy
consumption reduction on average. This indicates
the performance gain brought by proximity

Figure 5 shows the average energy consumption versus
the block length T where Lu = 0:2Mb and K = 3. We have
generally similar observations in Figure 5 as in Figure 4. Spe-
cifically, it is observed that our proposed JTPRA has about
52.4% energy consumption reduction on average, compared
with JORCF. Moreover, we have some observations as fol-
lows. (1) For schemes with unchanged CPU frequency,
LCFF remains unchanged as T increases, while FF keeps
almost unchanged. This indicates there is no need for the
user and helpers to increase the transmission rate when the
latency requirement is loose.

(2) For schemes involving optimizing CPU frequency,
the average energy consumption by all the schemes
decreases as T increases, which is because as T increases,
the user and helpers can lower down their optimal CPU fre-
quency for consuming less energy. However, JORCF
decreases with T very slowly. This indicates fixing the trans-
mission rate is not conducive to improve the MEC
performance.

Figure 6 shows the average energy consumption versus
the frequency resource block W where T = 0:15 sec, Lu =
0:2Mb, and K = 3. We have generally similar observations
in Figure 6 as in Figure 5. Specifically, it is observed that
our proposed JTPRA has about 67.5% energy consumption
reduction on average, compared with JORCF. Moreover,
for schemes involving optimizing CPU frequency other than

LCOF and JORCF, the average energy consumption first
steadily decreases and then keeps almost unchanged as W
increases. This is because a large W not only signifies a high
transmission rate but incurs decreased transmission energy
consumption between the user and the helpers.

Figure 7 shows the average energy consumption versus
the helper number K where Lu = 0:2Mb and T = 0:15 sec.

We have generally similar observations in Figure 7 as in
Figure 6. Specifically, it is observed that our proposed JTPRA
has about 65.1% energy consumption reduction on average,
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Figure 4: The average energy consumption versus data size Lu.
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compared with JORCF. Obviously, for schemes with
unchanged CPU frequency, FF decreases as K becomes
large. In addition, for schemes involving optimizing CPU
frequency, JTPRA achieves a lower energy consumption
than both LCOF and FO, while when K < 2, JORCF achieves
a lower energy consumption than JTPRA, while the reverse
is true when Kbecomes large. This is because the more
helpers whose optimal CPU frequencies are below that of

the user are helpful for achieving more significant energy
reduction.

Figure 8 shows the average energy consumption versus
the maximum distance dmax from the user to the helpers
where Lu = 0:2Mb, T = 0:15 sec, and K = 3. We have gener-
ally similar observations in Figure 8 as in Figure 7. Specifi-
cally, it is observed that our proposed JTPRA has about
15.1% energy consumption reduction on average, compared
with JORCF. For schemes involving optimizing CPU fre-
quency, FO first grows rapidly as dmax increases and then
becomes even worse than both JORCF and LCOF, while
JTPRA steadily increases as dmax increases. This is because
as dmax increases, the channel gain between the user and
the helpers becomes smaller, which leads to increased trans-
mission energy consumption between the user and the
helpers, and thus local computing is more beneficial than
computation offloading at large dmax values.

6. Conclusion

In this paper, we have proposed a novel joint task partition and
resource allocation (JTPRA) scheme, in which nearby helpers
share their own communication and computation resources
to help the user. By considering an efficient OFDMA-aided
three-phase transmission protocol, we proposed an energy-
efficient design framework by jointly optimizing the user’s task
partition, and the communication and computation resources
allocation for task offloading and results downloading, subject
to the user’s computation latency constraint. Based on convex
optimization methods, we presented an efficient algorithm to
obtain the globally optimal solution. Extensive numerical
results demonstrated the merits of the proposed JTPRA
scheme over alternative benchmark schemes.

Due to space limitation, there are some other challenging
problems to be handled in this paper, which are investigated
as follows to inspire future work.

(1) Although this paper considered single-user multihel-
per model, our results are extendable to more gen-
eral ones with multiuser multihelper. In this case,
we can design helper selection policy to pair each
user with one or multiple helpers, such that the
helpers can use the proposed JTPRA scheme to help
the computation of the paired user. However, how to
efficiently handle the joint optimization problem of
helper selection and resource allocation is a quite
challenging problem worthy of further study

(2) Due to easy implementation of OFDMA, we
designed the proposed protocol based on it in this
paper. To further improve the system performance,
we can next exploit other orthogonal multiple access
schemes, e.g., NOMA schemes [22] and sparse code
multiple access (SCMA) [30]

(3) In terms of energy saving, we achieved the expected
goal. But for MEC standardization, how to improve
the propose scheme’s implementation like D2D, e.g.,
symbol synchronization and signaling interaction, is
a difficult problem worth pursuing in the future [31]
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