
Research Article
Coupled-Map-Lattices-Based Vulnerability Assessment of UAV
Network in Interference Scenarios

Xiaoyu Xie ,1 Jinglei Li,1 Zijia Huang,2 Qinghai Yang,1 and Kyung Sup Kwak 3

1School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
2The 20th Research Institute of China Electronic Technology Group Corporation, Xi’an 710068, China
3Communication Engineering, Inha University, Incheon 402-751, Republic of Korea

Correspondence should be addressed to Xiaoyu Xie; h578960@163.com

Received 13 June 2022; Revised 26 September 2022; Accepted 6 October 2022; Published 21 October 2022

Academic Editor: Chi-Hua Chen

Copyright © 2022 Xiaoyu Xie et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

On the modern information battlefield, UAV have been widely used due to the advantages of no casualties and good
maneuverability. However, during the UAV swarm combat, the UAV network will be interfered by the enemy, which will
damage some key UAV nodes or communication links and affect the connectivity of the entire network, thus leading to the
fact that the entire network becomes more vulnerable. Therefore, it is necessary to study the network vulnerability of UAV
networks in interference scenarios. In this paper, a coupled map lattice (CML) model which is a dynamic system with discrete
time, discrete space, and continuous state variables is proposed to assess the vulnerability of UAV networks. The CML model
integrates multiple topological indicators such as node degree, node betweenness, and node clustering coefficient, and reflects
the node state change of the UAV network in the interference scenario from the topological point of view. When changing the
strategy of interfering UAV nodes in different interfering scenarios, the relative network efficiency and failure proportion are
used as indicators to study the change of network vulnerability. The studies show that precisely interfering important UAV
nodes in a network can cause more damage to the UAV network. We also discover that as the intensity of external
interference increases, the entire network will become increasingly vulnerable and the vulnerability of the network will also
have different manifestations under different interfering strategies.

1. Introduction

In recent years, UAVs have been widely used in the field of
wireless communication due to their advantages of simple
operation, flexible application, strong adaptability, and wide
coverage. However, malicious attacks and electromagnetic
interference from the enemy will block the communication
channel of the UAVs, destroy the communication link of
the UAV network, and even make the UAVs lose contact
with the console. Therefore, stability and connectivity will
be greatly affected. To protect some master control nodes
and important communication links in the whole UAVs net-
work, it is necessary to study the vulnerability of the network
under different interference scenarios.

Network vulnerability analysis is a critical part of the
overall network performance assessment. The research on
network vulnerability and related assessment methods has

become a current research hotspot. The topology of a net-
work is the most important of all factors that affect network
vulnerability. For many years, people have been working on
assessing the vulnerability of network topologies and finding
effective algorithms to enhance the robustness of networks.
Although predecessors have done some research on the vul-
nerability of the network, the evaluation indicators for the
key nodes in the network topology are relatively single,
and cannot comprehensively reflect the importance of the
nodes in the network. Because of these deficiencies in the
research, we analyze and study the network’s vulnerability
in terms of network topology.

When it comes to studying the change in the network
vulnerability, cascading failure is another key research point
that cannot be avoided. Researchers have found cascading
failures in many important natural and man-made net-
works, including power networks and the Internet.
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Cascading failure refers to the avalanche failure process
caused by the initial disturbance in the complex network.
Due to the coupling relationship between nodes, failures
can continue to spread from a node to other nodes in the
network through cascading, which may cause large-scale
damage and serious economic losses.

In this paper, three different interference scenarios that
UAV communication networks may encounter in practice
are considered to analyze the vulnerability of the network.
Aiming at the problem that the importance evaluation indi-
cators in previous studies are relatively single, we use three
commonly used node importance evaluation indicators as
factors such as degree, betweenness, and clustering coeffi-
cient when constructing the model. Since the dynamic vul-
nerability of a network is difficult to measure, we use a
discrete-time, discrete-space, and continuous-state coupled
map lattice approach to identify cascading failures and assess
the network’s vulnerability. Based on coupled map lattices
theory, an integrated cascading failure analysis model which
evaluates key nodes and state changes from a topological
perspective is proposed for exploration. Meanwhile, cascad-
ing failures are introduced in the in-depth analysis of net-
work vulnerability in interference scenarios to observe the
dynamic changes of the network when it has interfered.

The paper is organized as follows. In Section 3, we dis-
cuss the network topology index and evaluation index. Sec-
tion 4 demonstrates the CML-based cascading failure
model. In Section 5, simulation results and discussion are
provided. Finally, the work is summarized in Section 6.

2. Literature Review

In recent years, more and more researchers have shown
interest in the vulnerabilities of various networks. In this
regard, most scholars’ research focuses on the identification
of key nodes. Wang et al. studied the vulnerability of urban
rail transit networks based on graph and complex network
theory [1–3]. Jing et al. proposed a method to identify key
nodes and analyzed the vulnerability of Shanghai Metro
[4]. Cats et al. analyzed the link capacity of the subway net-
work based on complex network [5]. Liu and Song analyzed
the distribution of Guangzhou rail transit network degree,
clustering coefficient, and average shortest path [6]. Zhang
et al. explored the topological characteristics of the Shanghai
subway system and assessed the connectivity or reliability of
the subway lines [7]. Hong et al. developed a method to ana-
lyze the vulnerability of urban public transport systems from
the perspective of their common functions [8]. At the same
time, there are many kinds of literature that study the struc-
tural characteristics and vulnerabilities of transportation
networks [9–11]. Yang et al. proposed a new weighted com-
posite index to evaluate node importance and study the
topological properties of subway systems by evaluating their
robustness in the face of random failures and malicious
attacks [12]. Taking the Shanghai subway network as an
example, Sun evaluates the vulnerability of the subway net-
work from the perspective of line operation based on on-
site passenger flow data [13]. Qiao et al. propose a key node
identification algorithm based on multiattribute weighted

fusion. This algorithm can not only be used to identify the
key nodes of different types of complex networks but also
be easy to be extended [14].

In the research of cascading failures, many scholars at
home and abroad have also made a lot of good research.
Zhu et al. studied cascading failures in HK scale-free net-
works with tunable clustering coefficients under targeted
attacks and found that the links around the removed nodes
played two opposite roles in the load redistribution process.
The redistributed load can be distributed more evenly to the
neighbors of the removed node through these links, and they
can also bring the catastrophic additional load to collapse
more nodes. Simulations and analysis show that between
the two effects moderate clustering networks that make the
best compromise are the most robust [15]. Xu et al. have
introduced a CML model based on cascading faults, where
the perturbations are not uniformly distributed. The results
show that to avoid cascades in the coupled map lattice, the
network structure should be as uniform as possible [16].
Wang et al. proposed a coupled map lattice-based cascading
failure model in which a given number of critical nodes are
simultaneously perturbed. The results show that increasing
the reconnection probability can reduce the scope of cascad-
ing faults, but increase the propagation speed of cascading
faults. In addition, a more compact network structure will
lead to a faster cascade fault propagation speed, and the
propagation speed of the cascade is inversely proportional
to the characteristic path length of the WS small-world net-
work [17]. Ma et al. proposed a cascading failure model for
k-uniform supernetworks based on CML theory. Simulation
results show that hyper networks are more robust than gen-
eral complex networks [18]. Du et al. used CML to model a
complex public transportation network with multiple links
and analyzed cascading failures under different external dis-
turbances and coupling strengths [19]. Zhang et al. proposed
an integrated coupled map lattice to assess the vulnerability
of weighted urban rail transit networks and proposed a new
passenger flow redistribution rule to discuss cascading fail-
ures of URTNs [20]. Sun et al. analyzed the statistical topol-
ogy parameters of the Beijing rail transit network (BRTN)
based on complex network theory. Then, a weighted BRTN
cascading failure analysis model considering multiple static
passenger flow loading and redistribution based on coupled
map lattice is proposed [21].

In the research of UAV networks, there are research-
related data on its vulnerability, mainly focusing on its net-
work performance. Carlos et al. propose an identity and
location validation scheme that combines a public-key-
based authentication mechanism with a movement plausi-
bility check for groups of UAVs. The key idea is to supple-
ment the authentication mechanism by periodically
checking the plausibility of the locations of neighboring
UAVs, allowing the detection of intruders that are unable
to follow expected trajectories [22]. Liu et al. investigate
the performance of a downlink UAV integrated terrestrial
cellular network (UTCN) and analytically study the influ-
ence of varying UAP altitude and density on the spatial
throughput (ST) of UTCN [23]. Anjum et al. have derived
the critical node density of coverage of the UNs using the
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percolation theory, and adopted the comprehensive mobility
model for UNs comprising of three key parameters such as
speed, angular velocity, and pitch angle. By analyzing the
theoretical analysis and simulation results, it has been
affirmed that the proposed model can be used to estimate
the critical node density to ensure the desired network cov-
erage of UNs [24]. Cao et al. select six key indicators in the
UAV Ad hoc network, including delay, delivery rate,
throughput, link security, link stability, and mobility factor
and use the classical ADC effectiveness evaluation model to
quantitatively analyze and evaluate the task effectiveness of
the UAV ad hoc network. That is an effective method to
evaluate the effectiveness of the UAV Ad hoc network in a
complex task environment [25].

3. Network Characteristics

In order to facilitate analysis, the general UAV network
model can be abstracted by the nodes and edges of an undi-
rected graph G = ðV , EÞ, where V = fViji = 1, 2,⋯, ng repre-
sents the set of nodes, E = fðVi, V jÞji, j = 1, 2,⋯, ng
represents the set of edges, Eij is the edge between node i
and node j, and n = jV j is the number of nodes in the graph
G.

The network topology characteristics, such as the degree,
the betweenness, and the clustering coefficient, are used to
evaluate the state of each node in the network under the cas-
cading failure.

3.1. Degree. The degree describes the direct influence of a
node according to the number of its neighbor nodes. The
degree of a node represents the number of edges connected
to other nodes. In the UAV network, the degree could be
degraded as the association of a UAV node to other UAV
nodes in the UAV network. The degree is bigger, the quan-
tity of UAV nodes to a selected UAV node is more. The
degree of node i is written as

ki = 〠
n

j=1
aij, ð1Þ

where A = ðaijÞ represents the adjacency matrix of the net-
work, and aijðaij ∈ ð0, 1ÞÞ represents the connection relation-
ship between node i and node j. When aij = 1, node i is
directly connected to node j. When aij = 0, node i is undir-
ectly connected to node j.

3.2. Betweenness. The betweenness describes the load capac-
ity of a node according to the amount of the shortest paths
passing this node in a network, and it represents the force
and influence of nodes or edges in the entire network. The
betweenness of a node counts the fraction of the shortest
paths passing through a given node, and it is an important
evaluation index based on the paths in the network. In the
UAV network, the distribution of betweenness represents
the role of UAV nodes in the interaction of information

flow. The betweenness of node i is

Bi = 〠
m=n

gmn ið Þ
gmn

, ð2Þ

where gmnðiÞ represents the number of the shortest paths
from nodem to node n passing through node i, and gmn rep-
resents the number of the shortest paths from node m to
node n.

The betweenness of edge Eij is

Bij = 〠
m=n

gmn Eij

� �
gmn

, ð3Þ

where gmnðEijÞ represents the number of the shortest paths
from node m to node n passing through edge Eij.

3.3. Clustering Coefficient. The clustering coefficient
describes the tightness among a node’s neighbors according
to the proportion of the number of edges connected to its
neighbor nodes to the maximum number of the possible
edges connected to its neighbors. The target of the clustering
coefficient is to compare the degree of cohesion, and the
clustering coefficient of a node reflects the possibility that
its neighboring nodes are also connected. In the UAV net-
work, the clustering coefficient can reflect the aggregation
among UAV nodes. If the clustering coefficient is relatively
large, it can be seen that there are many UAVs gathered
here, and most of them are UAV groups flying in formation.
Otherwise, the distribution of UAVs is scattered, and most
of the UAVs fly in the network. The clustering coefficient
of node i is

Ci =
2si

ki ki − 1ð Þ , ð4Þ

where si represents the number of triangles shaped by node i
with its neighbors.

4. Vulnerability Evaluation of UAV
Networks with Interference

4.1. The Interference Scenario. The UAV network may inter-
fere with different features in practical applications, thus
three different interference scenarios are set in this paper.

In the first interference scenario, we mainly focus on the
situation where some important nodes in the UAV commu-
nication network are precisely interfered with by the outside
world [26]. When the UAV network is in this interference
scenario, the communication of some important nodes in
the network, such as the control center, will be precisely
affected, and the vulnerability of the network will be signifi-
cantly increased in this case.

Some UAVs that play a key role in the UAV network are
affected by electromagnetic interference and cannot work
normally. That can affect the normal operation of many
functions in the network. For example, in the UAV network,
UAV nodes with a relatively large clustering coefficient are
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usually the leaders of the UAV formation. When these nodes
have interfered, other UAVs in the formation have no lead-
ership, which will have a huge impact on the entire forma-
tion and even the entire network.

In the second interference scenario, this paper mainly
focuses on the situation where the communication link in
a certain frequency band in the UAV network is interfered
with by the other party’s signal [26]. In this paper, a part
of the important communication links in the UAV network
is disrupted by electromagnetic interference.

For example, after most of the links used for information
exchange and data transmission in the drone network have
interfered, the interaction between drones will become very
difficult, which greatly affects the performance of the UAV
network.

In the third interference scenario, the influence of the
strength of the external interference on the UAV network
[27] will be simulate in the paper. According to the intensity
of the interference signal, the signals are divided into the
suppressive interference signal, the strong interference sig-
nal, and the weak interference signal. The intensity of the
suppressive interference signal considerably exceeds the
intensity of the target signal, and the signal will make the
target unable to communicate at the disturbing frequency.
The strong interference signal uses large interference power
in which the intensity equals the target signal’s intensity or
exceeds the target signal’s intensity, and the signal makes it
difficult to communicate at the disturbing frequency. The
weak interference signal uses small interference power to
disturb the enemy’s communication. The interference inten-
sity is less than the target signal’s intensity, and it will make
it more difficult to receive, but its communication form is
not completely suppressed.

The importance of network nodes and links is measured
according to indicators such as the degree and betweenness
of network nodes and the connectivity of network links. If
the interference is a selective attack based on the importance
of nodes or links, it will have a serious impact on the connec-
tivity of the network topology and greatly increase the vul-
nerability of the network.

4.2. Coupled Map Lattices Model. In the network, if the load
on a node exceeds its computing capacity or the load on an
edge exceeds its communication capacity, the node or the
edge will fail, and its original load will be distributed to other
edges or nodes according to a certain mechanism. However,
once a complex network is formed, the topology of the net-
work is fixed, and the capacity of each edge or node in the
network is also fixed. As the load is redistributed, the load
on other nodes and edges may exceed their original capacity,
resulting in a new failed edge or node, and a new round of
load redistribution, which may cause a chain reaction, or
even cause the entire network crashes. This process is called
the cascading failure of the network.

In network topology, each node has an initial state when
it is running normally. When a network node is attacked
deliberately, not only the current node will be removed but
also the status of its neighbor nodes will be affected due to
the adjacency between adjacent nodes. Based on the above

cascading failures theories, a coupled map lattice model is
built to evaluate the vulnerability of the network from the
perspective of topology.

The coupled map lattice is a dynamic system with dis-
crete time, discrete space, and continuous state variables.
Coupled map lattices have been extensively studied in simu-
lating the dynamic behavior and cascading failures of com-
plex networked systems. The model overcomes some of the
shortcomings of traditional partial differential equations
while ensuring high numerical calculation efficiency. In a
network system modeled with a coupled map lattice, the cas-
cading failure process can be well studied by observing the
interactions between nodes and the changes in node states.
A coupled map lattice model is built to describe the nonlin-
ear system by the following procedure.

(i) Select one or some state field variables on a grid

(ii) Divide the system development process into a series
of independent processes

(iii) Each independent process is replaced by a simple
parallel kinetic process on the grid, that is to say,
the parallel nonlinear map of each grid point vari-
able and the states of some neighbor points will be
coupled with each other, or the above two processes
develop independently in parallel

(iv) Let each independent process proceed to complete
the evolution of a time unit

According to the coupled map lattices theory, a reaction-
diffusion process ∂iu, which can be divided into a local reac-
tion process FðuÞ and a diffusion process ε∇2u, represented
by

∂iu = F uð Þ + ε∇2u, ð5Þ

where u is the state vector, ε is the diffusion coefficient and i
is the lattice coordinate.

The local reaction process can be described by parallel
nonlinear mapping

xi ⟶ xi ′ = f xið Þ, ð6Þ

where xi is the state of this lattice i and the function f is a
nonlinear mapping.

The diffusion process can be expressed by discretizing
the Laplace operator, i.e., it corresponds to a second order
difference equation

xi ′⟶ xi ′ +
ε

2 xi+1 ′ + xi−1 ′
� �

− εxi ′: ð7Þ

According to Formula (8) and Formula (9), we can get a
coupled map lattice model

xi t + 1ð Þ = 1 − εð Þf xið Þ + ε

2 f xi+1 tð Þð Þ + f xi−1 tð Þð Þ½ �, ð8Þ

According to the above formulas, considering the
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influence of adjacent nodes on the current node, the network
topology features such as node degree, node betweenness,
and clustering coefficient are integrated to construct a
coupled graph model.

xi t + 1ð Þ = 1 − ε1 − ε2 − ε3ð Þf xi tð Þð Þ + ε1
ki

〠
n

j=1,j=i
aij f xj tð Þ

� �
�����

+ ε2
∑n

j=1,j=iaijBj
〠
n

j=1,j=i
aijBj f xj tð Þ

� �

+ ε3
∑n

j=1,j=iaijCj
〠
n

j=1,j=i
aijCj f xj tð Þ

� �
�����,

ð9Þ

where xiðtÞ is the state of node i at time t, ki is the degree of
node i, aij represents the adjacency between node i and node
j, Bi is the betweenness of node i, Ci is the clustering coeffi-

cient of node i, εiði = 1, 2, 3Þ are the coupled coefficients of
node degree, node betweenness and clustering coefficient,
and ðε1 + ε2 + ε3Þ ≤ 1, ε1, ε2, ε3 ∈ ð0, 1Þ.

The function f demonstrates the local dynamic behav-
iors which are chosen in this paper as the chaotic logistic
map and establishes the relation between the nodes states
at time t and the nodes states at time t + 1, f ðxÞ = 4xð1 − x
Þ, to demonstrate the evolution law of the network topology.
If the initial state of all nodes in the interval ð0, 1Þ and there
is no external perturbation, all the nodes will keep normal
states. On the contrary, if node i exceeds its capacity con-
straint at the l − th time, the node i will be removed at this
moment, and the state of the failed node will be assumed x
ðiÞ ≡ 0 at every later time.

This model integrates node degree, node betweenness,
and clustering coefficient to describe the node state from
their three perspectives. The integration is more suitable
and comprehensive than the single aspect. In addition, the
external perturbation R is involved in the expression of the

Calculate the failure proportion and NE

No

Yes

xi (t) > 1 Update xi (t),
t = t + 1

CML model

Add interference

Calculate network
initial state

Calculate topology
index

Calculate adjacency matrix

Network model G = (V, E)

Figure 1: The process of the CML based on the cascading failure.
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node state to imitate the failure intensity, therefore the node
state under the external perturbation R can be represented
by this formula.

xi t + 1ð Þ = 1 − ε1 − ε2 − ε3ð Þf xi tð Þð Þ
�����

+ ε2
∑n

j=1,j=iaijBj
〠
n

j=1,j=i
aijBj f xj tð Þ

� �

+ ε3
∑n

j=1,j=iaijCj
〠
n

j=1,j=i
aijCj f xj tð Þ

� �
�����+R:

ð10Þ

If node i fails at time t, then xðiÞ = 0, and the states of its
neighbor nodes will be affected, so that the network trans-
portation status will be recalculated at time t + 1. If the state
of its neighbor node is larger than 1, the neighbor node will
also fail and be removed from the network. If the condition
is serious, the network will be broken.

Meanwhile, referring to the three interference scenarios
mentioned in the first section above, the external distur-
bance R is defined and assigned in different ways.

In the first interference scenario, since the UAV network
is faced with precise interference on important channels in
this scenario, external interference R is added to the network
in the form of interfering nodes. The interference strategies
for nodes can be specifically divided into node degree inter-
fering, node betweenness interfering, and clustering coeffi-
cient interfering, in addition, the random interference
strategy is introduced as a comparison.

In the second interference scenario, since the UAV net-
work faces a situation where some important communica-
tion links have interfered, external interference R is added

to the network in the form of a fraction of the edges with
the largest betweenness of the concentrated interference
edges.

In the third interference scenario, external interference R
is divided into three types according to the intensity of the
interference, suppressive interference, strong interference,
and weak interference, respectively, to explore the specific
influence of the external interference intensity on the net-
work vulnerability.

4.3. Vulnerability Assessment Index. To analyze the network
vulnerability, the nodes are selected according to several
interference strategies while selecting the important UAV
nodes to interfere with. In this paper, the relative network
efficiency and the cascading failure proportion are used to
evaluate the vulnerability of the network to disturbances.

The network efficiency(NE) is widely used to analyze the
vulnerability in complex networks. NE is the average sum of
the reciprocal of all shortest paths on the network and
reflects the global connectivity of the network.

NE = 1
n n − 1ð Þ〠i=j

1
Lij

, ð11Þ

where Lij is the shortest path length between node i and
node j.

The relative network efficiency to assess the vulnerability
of the network is presented as

NE = NE currentð Þ
NE initialð Þ : ð12Þ

Meanwhile, the cascading failure proportion of the
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Figure 2: The evolution curve of relative NE under weak interference.
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whole network is defined to assess the vulnerability of the
network. The cascading failure proportion is the proportion
of failed nodes from the initial state to the state after the cas-
cading failure, which reflects the extent of the cascading fail-
ure caused by deliberate attacks on the network.

It =
nt
n
: ð13Þ

where nt is the number of remaining nodes in the network
after the cascading failure.

4.4. Vulnerability Assessment Process. This paper constructs
an assessment process for network vulnerability based on
coupled map lattice model.

Firstly, generates a connectivity matrix of undirected
graphs A = ðaijÞN∗N

. Secondly, calculate the degree, the
betweenness, and the clustering coefficients of all nodes in
the network. Meanwhile, calculate the initial state of each
node in the network and make the state of all the N nodes
in the network normally. Then combine with the calculated
results of the node importance index and use a different type
of interference to select nodes with high importance and add
interference at time t. For the nodes where the cascading
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Figure 3: The evolution curve of failure proportion under weak interference.
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Figure 4: The evolution curve of relative NE under strong interference.
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failure occurs, the coupled map lattices model is applied to
update the state after time t for each node i in the network.
During the iteration, other nodes do not add the interference
except for the initially selected nodes. After a period of time,
if there are no new failure nodes appearing in the network,
the cascading failure phenomenon disappears naturally. Cal-
culate the failure node ratio and relative network efficiency
in the network to determine the influence range of the cas-
cading failure and the vulnerability of the network.

In Figure 1, we plot a flow chart to demonstrate the pro-
cess of the coupled map lattices based on the cascading fail-
ure model better in the interference scenario.

5. Simulation Result

This section assesses the network vulnerability from the per-
spective of multiple and uses the external disturbance R to
simulate interference and to set R according to the
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Figure 5: The evolution curve of failure proportion under strong interference.
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Figure 6: The evolution curve of relative NE under suppressive interference.
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interference of three different scenarios. We set three differ-
ent types of interference strategies including the large degree
interfering(LDA), the high betweenness interfering(HBA)
and the large clustering coefficient interfering(LCA). At the
same time, the proposed coupled map lattices model is used
to evaluate the state of the nodes when the cascading failure
occurs, and two evaluation parameters, failure proportion,
and relative network efficiency are used to evaluate the vul-
nerability of the network. Referring to the scale-free and
self-organizing characteristics of the UAV network, we take
the scale-free network as the simulated network, which con-
tains 300 nodes and the average node degree is 5.

5.1. Vulnerability Evaluation in First Scenario. In the first
interference scenario, as shown in Figures 2 and 3, the weak

interference R = 0:5 is chosen as external interference. Tak-
ing the relative network efficiency as the evaluation parame-
ter, for the nodes under the strategies based on LDA and
HBA, the relative network efficiency will decline at a very
fast speed at the beginning, but when it only drops to 63%,
the relative network efficiency will flatten out and gradually
stabilize. However, for the nodes under the strategy based
on LCA, although the relative network efficiency initially
declines slowly, it will eventually drop to about 47%. Com-
pared with the three followings, random interfering shows
the slowest decline trend, but it ultimately destroys more
than the above three. At the same time, when the failure
ratio is selected as the evaluation parameter, only 5% of
nodes failed under the strategies based on LDA and HBA,
failure nodes caused by LCA are more than 25%, while
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Figure 7: The evolution curve of failure proportion under suppressive interference.
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Figure 8: The evolution curve of NE in the second scenario.
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61% of nodes under random interfering failed. The network
will be more vulnerable under LCA. However, comparing
the random interfering strategy, it can be seen that the fail-
ure rate is significantly faster under LDA and HBA.

As shown in Figures 4 and 5, the strong interference R
= 1 is applied as the external disturbance. Under strong
interference, the vulnerability of the network in these three
strategies is almost not different from that under weak inter-
ference. Under the strategies based on LDA and HBA, the
relative network efficiency drops to about 0.6, and it results
that the failure proportion of the whole network dropping

about 5%, while under the strategy based on LCA, the net-
work damages the most. The relative network efficiency
drops to 44%, with more than 28% failed nodes. In other
words, the network is more vulnerable under the strategy
based on LCA, but under the random interfering strategy
the vulnerability is the most obvious.

Next, as shown in Figures 6 and 7, the suppressive inter-
ference R = 1:5 is added as the external disturbance. Under
the attack strategies based on LDA and HBA, the relative
network efficiency almost drops to 0, but under the attack
strategy based on LCA, it drops to about 44%. There are
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Figure 9: The evolution curve of relative NE under the LDA.
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Figure 10: The evolution curve of failure proportion under the LDA.
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52% nodes that failed under the LDA, 40% nodes failed
under the HBA and 28% nodes failed under the LCA. There-
fore, under inhibitory interference, the network almost col-
lapses and collapses extremely fast under LDA and HBA,
and the network is more vulnerable.

5.2. Vulnerability Evaluation in Second Scenario. In the sec-
ond interference scenario, the relative network efficiency is
taken as the evaluation parameter to perform large-scale

interference to multiple edges in the network according to
the order of edge betweenness. Here, 800 edges with high
edge betweenness are subjected to range interference. As it
can be seen from Figure 8, the change in relative network
efficiency only drops from 1 to about 0.76. Compared with
the results obtained in the first interference scenario, it is
obvious that in the case of network vulnerability, the precise
attack based on the nodes is better than interfering within a
range.
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Figure 11: The evolution curve of relative NE under the HBA.
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Figure 12: The evolution curve of failure proportion under the HBA.
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5.3. Vulnerability Evaluation in Third Scenario. In the third
interference scenario, we focus on the study of the impact
of the same interference strategies on the network under dif-
ferent interference intensities. The relative network effi-
ciency is also taken and the failure proportion of the whole
network as evaluation indicators.

First of all, under the large node degrees interfering, we
can see in Figures 9 and 10 that when the weak interference
and the strong interference intensity, the network damage
degree is small, compared to the initial state of the network,
the relative network efficiency falls by about 38%, the failure

proportion of nodes is about 5.4%. But clearly, the increase
in the intensity of interference makes the relative network
efficiency and the failure ratio of nodes fall even faster. Sec-
ondly, when the external interference intensity is in the sup-
pressive interference, the network destruction degree is
greatly improved, the relative network efficiency drops to 0
and the failure proportion of nodes exceeds 50%, which
almost leads to the collapse of the entire network. But com-
pared with the strong interference intensity, the network
efficiency and failure proportion decrease almost at the same
speed. In addition, it can be seen from the figure that the
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Figure 13: The evolution curve of relative NE under the LCA.
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Figure 14: The evolution curve of failure proportion under the LCA.
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threshold of interference is about R = 1. Once the interfer-
ence value exceeds the threshold, the vulnerability of the net-
work will increase sharply.

Next, when node betweenness based interference strate-
gies are studied, from Figures 11 and 12 that when the inter-
ference intensity is in the state of weak interference and
strong interference, the relative efficiency of the network
drops to about 36% and 39%, and the failure proportion of
nodes is about 5%. The overall damage degree to the net-
work is flat with the attack based on the large node degree.
Meanwhile, it is obvious that as the intensity of interference
increases, the network efficiency and failure ratio decrease
faster. In addition, when the intensity of external interfer-
ence is suppressive, the network damage degree is greatly
improved, the relative network efficiency drops to 0, and
the failure proportion of nodes is more than 41%, it almost
causes the collapse of most of the network. Similarly, it can
be seen from the figure that the threshold of interference is
about R = 1. Once the interference value exceeds the thresh-
old, the vulnerability of the network will increase sharply.

In addition, under the interference strategies based on
clustering coefficients, from the simulation results in
Figures 13 and 14 that no matter whether the interference
intensity is in the weak interference state, strong interference
state, or suppressed interference state, the final network dam-
age degree caused by LCA has almost no difference. Com-
pared with the initial state, the relative network efficiency
decreases to 45% lower, and the failure proportion of the
whole network is about 28%. The only difference is that as
the intensity of the interference increases, the speed of the cas-
cading failure increases. That is to say, the attack based on
clustering coefficients is not obviously affected by the intensity
of interference, and in this attackmode, the network will suffer
a certain degree of damage but not very serious.

6. Conclusions

To sum up, we introduce a cascading failure model based on
coupled map lattices. Take the scale-free network as an
example to simulate the interference scenarios that the
UAV network may encounter in practice, and study the net-
work vulnerability changes in these scenarios. Furthermore,
we set up three different important node interfering strate-
gies for the scenario where the important UAV nodes in
the UAV network are precisely interfered with. The simula-
tion results show that the whole network will become more
and more vulnerable with the increase of external interfer-
ence intensity. At the same time, regardless of the intensity
of external interference, the network under the large cluster-
ing coefficient interfering will be affected to a certain extent.
Under the interference strategies based on a large degree
and high betweenness, the network failure rate is extremely
fast. When the interference is suppressive, the network is
very vulnerable, and when the interference is small, the net-
work’s vulnerability is not obvious. In addition, it can be
seen from the experimental data that the network is more
vulnerable when the UAV node is subjected to electromag-
netic interference, compared to interfering with a part of
the communication link.

Therefore, in the face of external interference of high
intensity, the first thing we need to do is to protect the nodes
to a large degree and high betweenness in the network. In
addition, when the intensity of external interference is small,
we also need to notice the nodes of large clustering coeffi-
cients in the network.

The current work is to analyze the vulnerability of the
UAV network considering the topology of the UAV net-
work. The next work will start from the information interac-
tion required by the network to complete its various
functions according to the functions of the network, and fur-
ther, analyze the vulnerability of the UAV network.
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