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Localization of vehicles in a 3D environment is a basic task in autonomous driving. In the low-light environments, it is difficult to
navigate independently using a visual odometry for autonomous driving. The main reason for this challenge is the blurred images
in the scenes with insufficient illumination. Although numerous works focused on this issue, it still has a number of inherent
drawbacks. In this paper, we propose a lightweight stereo visual odometry system for navigation of autonomous vehicles in
low-light situations. Contrary to the existing recovery methods, we aim to divide the captured image into the illumination
image as well as the reflectance image and only estimate the illumination one, where the enhanced map of the low-light image
is acquired by using the retinex theory. In addition, we further utilize a simplified and rapid feature detection scheme, which
reduces the computation time by about 85% but maintaining the matching accuracy similar to that of ORB features. Finally,
the experiments show that our average memory consumption of our proposed method is much less than the conventional
algorithm.

1. Introduction

Localization is one of the tasks for autonomous driving, and
it is also a necessity to achieve automatic navigation, whereas
visual odometry (VO) and visual simultaneous localization
and mapping (VSLAM) are considered to be the primary
technologies to achieve this goal [1]. Visual odometry is
the process of estimating the relative camera poses by
observing two cameras sharing a common field-of-view
[2]. A core part of it is to be able to track a sufficient number
of points during the continuous camera movements. These
points will be used to calculate the body pose (translation
and rotation). Visual odometry can be broadly divided into
two categories according to the method of processing the
input images. On the one hand, it is an indirect method
based on features; on the other hand, it is a direct method
based on pixels [3]. The heart of the indirect method is to

extract representative points from an image, which are often
called features. Then, these points are tracked in the succes-
sive frames. The body pose is recovered by minimizing the
reprojection error. In contrast, direct methods do not
require features. The pixels are usually tracked directly.
The body pose is achieved by minimizing the photometric
error between pixels. However, one downside of the direct
method is that it is highly sensitive to the light of environ-
ment. When the illumination changes dramatically, it is
often impossible to track the correct points. Further, it might
lead to a failure of body pose calculation, that is still a chal-
lenge for poor lighting conditions, although the indirect
method overcomes this limitation. The intensity of image
texture will be diminished in dimly lit scenes. In other
words, the indirect methods need to select features based
upon the difference of intensity between pixels. Therefore,
the darker the image brightness, the smaller the overall
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difference in intensity, which is not conducive to feature
extraction. This may result in the collapse of tracking even-
tually. Consequently, this paper has made a number of
improvements to a visual odometry system for low-light
environments to solve the described problems. Our target
is to recover as much content as possible from a dark image.
Then, robust features are extracted from the images. Ulti-
mately, accurate pose is available.

There are two key components in our work: firstly,
recovering detailed information of objects in low-light
scenes; and secondly, improving the robustness of features
as much as possible. To solve these two challenges, we first
make use of the retinex theory [4] in the field of image.
We add more realistic content to the recovered reflectance
image. This enables us to obtain an enhanced image under
low illumination situation. Then, a simple but effective
detection scheme is used to extract features from the
enhanced image. The feature computation time is cut down
as far as possible while maintaining the matching accuracy.
Furthermore, we chose the novel 4Seasons dataset [5] to
evaluate our method, which contains a wide range of real-
world conditions (see Figure 1). It is sufficient to verify the
practicality of our approach. In addition, we have compared
our method with ORB-SLAM2 [6] which has comparatively
good performance at present. The results validate the effec-
tiveness of our method.

The rest of this paper is organized as follows. We intro-
duce the related work on visual odometry in Section 2. The
main part of the article is given in Section 3, containing
the low-light image enhancement scheme as well as the
boosted feature detection method. Experiments and evalua-
tion are illustrated in Section 4, comparing our proposed
system in detail from various aspects. Finally, a summary
of our work is given in Section 5.

2. Related Work

On the one hand, for feature-based VO/VSLAM systems,
the abundant texture is a prerequisite for both accurate
and robust tracking. However, the image may be blurred in
low illumination scenes. We are unable to extract high-
quality features in such cases, which will cause the failure
of tracking. Thus, obtaining rich and realistic content from
low-light conditions is an urgent challenge. Fortunately,
there is a lot of research that addresses this problem. Histo-
gram equalization (HE) and gamma correction (GC) are two
widely used approaches at present. Through changing the
histogram of an image to alter the distribution of pixel inten-
sity, HE can enhance the low-light images to a certain extent.
However, overenhancement is a potential risk in some parts
of the image [7] as HE is a global process. In addition, for
GC, the local area is not naturalized due to the uniform
gamma coefficient used for the global image. A sea of work
has patched the weakness of HE and GC, such as [8–12].
But there are still a few remaining problems. In recent years,
image enhancement schemes based on retinex theory have
been attracting the focus. Its core idea is to decompose the
captured image into an illumination image and a reflectance
image. An advanced low-light image enhancement algo-

rithm (LIME) was proposed [13] based on this theory. Dif-
ferent from the previous method [14], LIME only estimates
the illumination image. The complexity of the computation
process is significantly reduced by using the Augmented
Lagrangian Multiplier (ALM).

At present, most of VO/VSLAM utilize HE or GC when
dealing with low-light scenes, like [15–18]. As mentioned
before, they are not up to our requirements. Thanks to the
retinex theory, which provides a new perspective for image
enhancement, our demands are satisfied. We use the LIME
image enhancement method to get the result.

On the other hand, one of the keys to achieving accurate
localization for VO and VSLAM lies in selecting a series of
features. They are tracked in the continuous frames. Then,
the body pose is computed [19]. Although the Scale Invari-
ant Feature Transform (SIFT) [20] has been proposed for
almost twenty years, it remains of substantial interest due
to its excellent performance in a variety of domains. How-
ever, an important drawback of SIFT features is that it
imposes a large computational burden. This makes it diffi-
cult to employ for VO/VSLAM, which need to be processed
in real-time. For this reason, a series of outstanding
improvements have followed. In 2006, the notable Speeded
Up Robust Features (SURF) was presented [21]. Compared
to a previous work, SURF significantly cuts down on the
time for feature extraction. Unfortunately, this comes at
the cost of retaining the support of GPU devices [22].

Instead of focusing attention on features exclusively,
some concentrate on key points or descriptors separately.
For key points, the popular one is the Features from Accel-
erated Segment Test (FAST) detector [23]. This determines
whether a pixel is a key point by comparing its intensity with
the surrounding pixels. Contrast with other key points such
as [24], the FAST key points only need to compare the dif-
ference in intensity. Therefore, it is quite fast to compute
and holds promise for applications in scenarios in which
real-time performance is required. Despite the fast computa-
tion speed of FAST, it also has shortcomings. Unlike [20,
21], there is no orientation information for FAST key points.
And in a few cases, we want the change of the orientation
not to affect the expression of the same key point when the
observation angle undergoes a shift. So, FAST may encoun-
ter certain difficulties in this situation. For descriptors, the
Binary Robust Independent Elementary Feature (BRIEF)
[25] has received a lot of attention since it was proposed.
The authors use a specific procedure to select multipaired
image blocks (usually 9 ∗ 9 and Gaussian smoothed) cen-
tered on a key point. A string of binary is generated accord-
ing to the discrepancy of the intensity between the image
blocks. This is the main thought behind the BRIEF descrip-
tor, which has the strength of being a binary descriptor. We
can calculate the hamming distance between descriptors
when matching features. It is a simple task for a computer.
Unfortunately, as with FAST, BRIEF is also sensitive to
rotation.

Considering the strength and weakness of FAST key
points as well as BRIEF descriptors, the Oriented FAST
and Rotated BRIEF (ORB) features was presented [26]. It
keeps the speed merit of them. For their downsides, the
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intensity centroid method [27] was applied. Orientation
information is added to the FAST key points so that when
the camera rotates, it still corresponds to the same place.
Additionally, the descriptors depend on the key points.
Therefore, when the key points are rotation invariant, the
descriptors will naturally have orientation information as
well. It is far less prone to features tracking loss when the
image is spun.

Our feature detection scheme is similar to ORB. The dif-
ference is that we have chosen the Boosted Efficient Binary
Local Image Descriptor (BEBLID) [28] as an alternative
instead of BRIEF. The representative intensity pairwise tests
were selected within local image regions via a Boosting
scheme. Experimentally, our feature detection scheme has
proven to reduce the computation time by more than 80%
while guaranteeing matching accuracy.

3. Methodology

In this section, we will introduce the theoretical part of our
proposed visual odometry system. The experimental part
will be given in the next section. The framework of our pro-
posed system is shown in Figure 2. Four main blocks are
included: (1) an input data processing component focusing
on low-light image enhancement, (2) a tracking component
for features reprojection and matching (this is the core body
of the system), (3) the initialization stage of the system (the
principal function is to initialize the visual odometry system
and generate map points), and (4) a map segment contain-
ing local map. Here, the map points for the body pose calcu-
lation and the candidates of unknown tracking quality are
maintained primarily.

In the rest of this section, we will discuss the details of
each individual part in more depth.

3.1. Low-Light Image Enhancement. In this paper, images are
preprocessed using the LIME algorithm and the Fast Global
Image Smoothing algorithm (FGS) [29]. Firstly, FGS is
employed to process the low-light image in order to obtain
the temporary one. Then, we used LIME to get the enhanced
result. The method has been experimentally proven to be
able to recover the information of low-light images success-
fully. It is beneficial to the feature extraction and matching.

The core idea of retinex theory is to decompose the cap-
tured image (L) into an illumination image (T) and a reflec-
tance image (R), as shown in Figure 3. According to this, the
relationship between these three is as follows:

L = R ∗ T, ð1Þ

where ∗ stands for element-by-element multiplication.
Let us do a simple transformation of Equation (1) to get

R = L
T
: ð2Þ

The notation '-' in Equation (2) stands for the element-
by-element division. By a simple transformation, we change
the objective of the solution from R toT. Thus, estimating T
is the key to solving for R.

We define the problem of solving the illumination image
as an optimization problem by minimizing the following

Figure 1: The 4Seasons dataset. We have selected several sequences, containing different environments and weather. The common trait of
these sequences is that all of them are low-light scenes.
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weighted least squares (WLS) function [29].

J Tð Þ =〠
p

Tp −Qp

À Á2 + λ 〠
q∈N pð Þ

ωp,q Lð Þ Tp − Tq

À Á2 !
, ð3Þ

where Q = kLk; Tp represents the intensity of pixel p, p = ð
x, yÞ, 0 ≤ x <W, 0 ≤ y <H; W, H are the width and height
of the image, respectively; λ is a control parameter to balance
the terms on both sides of the plus sign; ΝðpÞ represents the
neighbourhood pixels of p; and ωp,qðLÞ is a weighting func-
tion defined on L.

ωp,q Lð Þ = exp
− Lp − Lq
À Á2

σ

 !
, ð4Þ

where σ is a range parameter. The effect of Equation (4) is to

smooth the image texture at the rest of the location while
preserving the object edge features.

To minimize the problem (1), let the derivative of JðTÞ
be zero. The following system of linear equations is derived:

I + λAð ÞT =Q, ð5Þ

where I represents the identity matrix; T and Q are S × 1
-dimensional column vectors containing elements T and Q
, S =W ×H; and A is a spatially varying Laplacian matrix
of size S × S similar to the one defined in [30].

However, for a two-dimensional image, Equation (3) is a
weighted L2 norm objective function that is very difficult to
solve directly. In order to satisfy the requirement of visual
odometry, problem (3) can be decomposed into two sub-
problems (the vertical direction and the horizontal direc-
tion). As each subproblem is a one-dimensional linear
system, the solution method is mature. Therefore, a fast
and accurate calculation can be achieved.
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Figure 2: The framework of our proposed system. Our method consists of four parts: preprocessing, tracking, triangulation, and maps. We
mainly did some work in the first part so as to improve the quality of the input data. For the other three parts, we implemented simple but
useful strategies to realize decent performance.

L(x,y): the captured image
L(x,y)

R(x,y)

R(x,y) L(x,y)T(x,y)

T(x,y) R(x,y): the captured image
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Figure 3: The retinex theory. This theory divides the pictures we observed into illuminated and reflected pictures. It gives us a fresh
perspective to understand the recovery of low-light images.
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Figure 4 shows the results of the low-light image pro-
cessing, from which it can be indicated that our method
can recover the image detail information. More comparative
experiments can be found in Section 4.1.

3.2. Key Point Extraction and Descriptor Calculation. After
the low-light image is enhanced, the next important step is
to extract features from the enhanced one. We use a fusion
of ORB key points and BEBLID descriptors. ORB key points
are built on the famous FAST corners, and it performs the
following detection procedure.

As shown in Figure 5, the central pixel is set to be p in a
small adjacent area and its intensity is noted as Ip. Firstly, a
circle with a radius of three is constructed by taking the pixel
p as the center. Secondly, the sixteen pixels located on the
circumference of the circle are selected, and their serial num-
bers i ði = 1,⋯, 16Þ are recorded in clockwise direction.
Thirdly, a threshold T is set for comparing the discrepancy
between the intensity of the central pixel and the individual
circumference points. Fourthly, the absolute value of the dif-
ference in intensity between p and the sixteen points is cal-
culated in turn Si = jIp − Iij, and compare Si with T .
Finally, if there are N consecutive pixels with Si greater than
T , the central one is considered to be the key point.

For the descriptors, we use the BEBLID descriptor which
was published recently. By choosing a series of specific weak
learners (WLs) and using the integral image, it can outper-
form the fastest ORB descriptor in terms of speed. It is also
comparable to SIFT in accuracy. The BEBLID descriptor is
based on the work of the Boosted Efficient Local Image
Descriptor (BELID) [31]. The major change between these
is that the former converts the real-type descriptor into a
binary one. Apart from this, it also uses the AdaBoost algo-
rithm for WL selection and then combines all WLs to form a
stronger message.

LBEBLID = 〠
N

i=1
exp −γli 〠

K

k=1
hk xð Þhk yð Þ

 !
: ð6Þ

Equation (6) is the loss function for BEBLID, where γ is
the weight of WLs, li is the training sample label, fx, yg is a
training set consisting of image block pairs, and hkðzÞ ≡ hkð
z ; f , TÞ represents the kth WLs, which depends on the fea-

ture extraction function f : X ⟶ℝ and the threshold T .
By giving these two parameters, we derive

h x ; f , Tð Þ =
1,  if f xð Þ ≤ T ,
0,  if f xð Þ > T:

(
ð7Þ

In particular, the key for the BEBLID descriptor is the
choice of f ðxÞ in Equation (7). The authors define it as the
difference in the average intensity of the pixels between the
two image blocks.

f x ; p1, p2, sð Þ = 1
s2

〠
q∈R p1,sð Þ

I qð Þ − 〠
r∈R p2,sð Þ

I rð Þ
 !

, ð8Þ

where IðtÞ denotes the intensity of pixel t and Rðp, sÞ repre-
sents a square adjacent area with pixel p as the center and
side length s.

In summary, we are able to access the BEBLID descrip-
tor. It is worth mentioning that, unlike the previous work,
the weights of all WLs are set to the same value.

3.3. Feature Matching and Map Point Tracking. In this part,
we will illustrate the step of features matching and map
points tracking. The performance of features matching is
closely related to the accuracy of the camera pose. Therefore,
we adopt a coarse-to-fine approach. Firstly, the features in
two images are matched roughly. Then, a ratio test is used
to select the best descriptor among them. A typical feature
matching result is shown in Figure 6, where it is clear that
most of the initial matches are correct. This proves the effec-
tiveness of our method. Also note that there are two parts of
this system that use the features matching algorithm. One is
that the system is not initialized. Stereo matching is
employed for the first frame to initialize the entire visual
odometry system. It is at this stage that the map points are
generated. The second is after initialization. In the tracking
phase, the map points are tracked between the two frames.
These two parts will be described in detail below.

When the visual odometry is started, the first frame is
used for initialization. First of all, we follow the method in
the previous two parts (see Sections 3.1 and 3.2) to enhance
the low-light image and extract the features. Subsequently,

(a) (b)

Figure 4: The low-light scene enhancement method. (a) The original image. (b) The enhanced image.
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we find the initial matching points in the left and right
images with the function from the OpenCV library. Next,
we use the ratio test to pick out the best match. In particular,
we used the local domain search method to reduce the load
during searching. Once the features have been matched in
the first frame, we should compute the corresponding map
points according to the matched features and track them
in the subsequent frames.

As soon as the second frame is available, there are
already map points at this stage. Therefore, we employ a

reprojection model πð·Þ to reproject the map points from
the previous frame into the left image of the current frame,
as shown in Figure 7. The red solid point indicates reprojec-
tion point, which is converted from a map point (red penta-
gon) using the reprojection model. Afterwards, the
reprojection points are matched with features. Similar to
the previous paragraph, we continue to reduce the search
load as well as improve the matching accuracy by using local
domain search and ratio test. If the amount of map points
tracked successfully for the first time is inadequate, we also

Key points extraction

Figure 5: The FAST corner. We determine whether a central pixel p is a key point based on the difference between the intensity of that it
and the sixteen circumference points in the adjacent domain.

Figure 6: The result of image features matching. Green lines indicate correctly matched features. Conversely, wrong match relationships are
represented using red lines.

Last frame
Current frame

p1

p2

p4
p3

r2

r1
r3

r4e

New frame

Old map point
New map point
Current map point

Map

Figure 7: The reprojection model and local map. The spatial point, which is represented as a red pentagram, is reprojected into the current
frame. The letter e denotes the reprojection error, which is also the variable to be optimized (see Section 3.4).
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extend the search radius to twice the original size. The repro-
jection and matching of map points is performed again in
the enlarged area. This is done in the hope that a sufficient
number of correct matches can be found. Ultimately, the
possibility of successful tracking is boosted.

3.4. Pose Estimation and Optimization. The prediction and
optimization of camera pose is another central part of visual
odometry. It receives matching information from the fea-
tures and recovers the pose based on these matches. We
set the camera pose to Tk for the kth frame with consist of
a quaternion qk ∈ SOð3Þ as rotation and a position tk ∈ℝ3

as translation. We rely on the algorithm in [32] to predict
the pose of the current frame.

Once the pose is estimated, the map points from the pre-
vious frame are reprojected into the current frame using the
reprojection method (see Section 3.3). Then, we track
between the reprojected points and the features in the cur-
rent frame. Finally, the predicted poses are jointly optimized
using the updated map points and the matched points. The
cost function of the poses is defined as follows:

R, tf g = argmin
R,t

〠
i∈S
ρ pi − π RPi + t

À Á 2� �
: ð9Þ

In Equation (9), R, t refers to the camera pose, which we
split into a rotation matrix and a translation vector. S
denotes the set of all matched points. ρ is the Cauchy cost
function. pi indicates the ith features. πð·Þ stands for the
reprojection model. As mentioned earlier, we use this model
to compute the reprojection points of the previous map
points. Pi represents the ith spatial map point.

Lastly, we use the g2o optimization library [33] to solve
problem (9). The objective is to obtain the rotation matrix
and translation vector corresponding to minimize the cost
function and use them as the optimized camera pose.

3.5. Local Map. To improve the performance of the pro-
posed system, we also maintain a local map. In the local
map, the map points for pose optimization are included. In
other words, not all map points are in this space. We refer
to map points that are not in the local map as “candidates”.
They are always ready to be added to local map. All map
points calculated by features matching are considered candi-
dates initially. None of them belong to the local map. The
map points are only added to the local map when they can
be successfully tracked in a certain number of consecutive
frames. We believe that the tracking quality of these map
points is better. The new map point is a transformation from
the candidates, which is represented by the orange penta-
gram in Figure 7. However, there is a special case. That is
to say, if the number of map points in the local map falls
below a threshold, we consider that there is a risk of tracking
failure. Therefore, candidates should be joined to the local
map immediately regardless of the quality of tracking to pre-
vent failure. In particular, we directly add the map points
generated in the first frame to the local map during the ini-
tialization phase. There are no map points in the local map
at this time. In the subsequent step, the new map points

are treated as candidates using the method described above.
Tracking quality is used to judge whether or not it should be
inserted into the local map.

4. Experiments

To evaluate our proposed method, the 4Seasons dataset is
used and compared with the current superior performance
of ORB-SLAM2. As a novel dataset, it has a wide range of
abundant scenarios, from urban to rural and from parking
to motorway. Unlike some previous datasets [34], the 4Sea-
sons dataset also includes a variety of weather and lighting
conditions. Meanwhile, the 4Seasons dataset utilizes a simple
data acquisition system consisting of a stereo camera vision
system (Basler acA2040-35gm), an inertial measurement
unit system (Analog Devices ADIS16465), and an RTK-
GNSS system (mosaic-X5). Finally, the fusion of the visual
system with the RTK-GNSS data provides centimetre-level
positioning accuracy, which will greatly contribute to the
performance evaluation of the algorithm. More details on
the 4Seasons dataset can be found in [5]. In addition,
ORB-SLAM2, one of the more outstanding SLAM algo-
rithms, has received considerable attention from a broad
mass of researchers since it was proposed. Different from
our proposed algorithm, ORB-SLAM2 is a complete SLAM
system that supports multiple functions, including loop clos-
ing, place recognition, and so on. However, it is the power of
its features that brings a heavy computation burden. In the
experimental section, qualitative and quantitative results will
be given in order to demonstrate the merits of our proposed
system.

4.1. Dark Image Recovery. We investigate the capabilities of
our low-light image enhancement algorithm. To demon-
strate the superiority, we compare other low-light image res-
toration schemes commonly used today, including
histogram equalization and adaptive gamma correction.
We selected a number of representative raw images from
the 4Seasons dataset, containing various scenes, weather,
etc., as shown in Figure 8. The strengths of ours can be
clearly observed by doing different processing methods on
the same image. We are able to maintain both the detail
information and the global quality of the image in compari-
son to the other two methods. In particular, there is hardly
any illumination in the first row of images. Although our
result is not as bright as the other two, we succeed in recov-
ering the full content of the image. For the other two
methods it fails, as shown at the top of the image. There
are a few completely dark areas that indicate the recovery
was not successful. For the rest of low-light environments,
our method takes into account the local details while keep-
ing the whole content consistent. This will be analysed in
the following.

With histogram equalization, the inherent drawbacks
lead to a situation where the image appears exposed unnat-
urally. This is shown by the snow in the bottom right corner
of the third row of images and the edge of the road on the
left in the fourth row of images. The details are also not han-
dled well enough. Examples include the tree branches in the
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(a) (b)

Figure 8: Continued.
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second row and the road in front of the vehicle in the sev-
enth row. The histogram equalization comes closest to the
performance of our method in the sixth row of images, but
the image contrast is still inadequate for minor information
such as roads and bushes.

For adaptive gamma correction, it can automatically
adjust the gamma parameter according to the image content,
avoiding the shortcomings of fixed parameter. However,
there are still challenges. The most noticeable of these can
be identified in all images. The results are not sharp suffi-
ciently and look like a haze image. This causes a deteriora-
tion in the general quality and is not conducive to the
feature extraction and matching.

In our method, it is possible to restore local details while
taking into account the global content of the image. Espe-
cially for almost dark scenes (as in the first line of
Figure 8), we recovered all parts of the image successfully,
whereas the other two methods failed. In the fifth row, our
method does not seem to work as well as histogram equali-
zation, for example, in the upper part of the image. Never-
theless, our aim is to make the enhanced image more
realistic. It avoids the local distortion of content. Yet histo-
gram equalization has led to a partial overexposure of infor-
mation, as in the case of the garage exit.

Besides, in order to quantify the superiority of ours, we
make use of PSNR and SSIM [35] as evaluation metrics.

(c) (d)

Figure 8: Results of the histogram equalization, adaptive gamma correction, and low-light image enhancement schemes. (a) The original
image. (b) The results of histogram equalization. (c) The outcome of adaptive gamma correction. (d) The results of low-light image
enhancement we used.
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SSIM means structural similarity. It compares the similarity
between the processed result and the original image in three
different aspects. A larger value of SSIM means a higher sim-
ilarity between the two images. PSNR, on the other hand,
represents the peak signal-to-noise ratio. Similar to SSIM,
the higher the value, the better the result.

Table 1 shows the outcome of our PSNR and SSIM com-
pared to the others. From the table, it can be concluded that
our low-light image enhancement algorithm achieves decent
performance on both PSNR and SSIM. Although for the sec-
ond image the adaptive gamma correction is processed opti-
mally, our results are similar to it. Not to mention that we
have pretty good results in all the other images. In
Figure 9, we visualize the performance of three algorithms.
As reflected in the table, neither the adaptive gamma correc-
tion nor the histogram equalization performs as well as ours.

4.2. Stereo Matching. This part compares the benefits of the
fusion methods we used for key points and descriptors. We
still selected images in the dark image recovery part as test

data. Figure 10 depicts the correct matching rate and the
time loss of descriptor computation between our method
and the ORB features with the better performance at present.
We do feature extraction on the low illumination enhanced
images. Then, the right match was found between the stereo
images. In the figure on the right, it can be noticed that our
approach is up to par with the ORB features with respect to
the correct matching rate. In the test data, the average right
match percentage for the ORB features is about 63.27%,
while ours is about 61.25%. The graph on the left represents
the time loss of descriptor computation for both methods.
We can identify the upper hand of our method clearly. In
terms of speed, our method improves by about 84.52%.
Thus, our time loss is substantially reduced at a similar cor-
rect matching rate to the ORB features. It is sufficient to
demonstrate the strengths of our method.

4.3. Accuracy. We have examined the performance of our
system in the recently released 4Seasons dataset. Eleven
sequences were selected to suit our requirements. We have
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Figure 9: Comparing PSNR and SSIM for adaptive gamma correction, histogram equalization, and our method. Ada-GC: adaptive gamma
correction; HE: histogram equalization; Ours: for low-light image recovery method we used. (a) Comparison of SSIM. (b) Comparison of
PSNR.

Table 1: Comparison of PSNR&SSIM for adaptive gamma correction, histogram equalization and our method.

Images
Ada-gamma correction Histogram equalization Ours

PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

1st row 7.8633 0.0837 4.3233 0.0229 16.1813 0.1802

2nd row 10.8508 0.5457 8.7224 0.4692 10.6581 0.5003

3rd row 10.5836 0.5674 8.4229 0.4509 17.4225 0.7377

4th row 9.9263 0.4876 7.8555 0.3623 11.6864 0.5310

5th row 11.6111 0.3531 7.5862 0.2236 17.4387 0.5689

6th row 9.9133 0.4696 7.8530 0.4106 10.0635 0.4492

7th row 11.1430 0.5586 8.5902 0.4063 16.5346 0.6859

Average 10.2702 0.4380 7.6219 0.3351 14.2836 0.5219
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run our method in an Intel(R) Core (TM) i7-10700 desktop
computer with 16.0GB RAM. For accuracy evaluation, we
have chosen the relative pose error (RPE) proposed in [36]
as the indicator. Table 2 shows the results of our method
compared with ORB-SLAM2. From the experiments, our
results are pretty similar to those of ORB-SLAM2. For some
sequences, our method is even better than it which is a com-
plete visual SLAM system. In particular, ORB-SLAM2 does
not work for the second sequence in OLD-TOWN, because
the system is unable to track a sufficient number of features.
In contrary, our method achieves stable tracking. This indi-
cates that our system is robust.

Furthermore, we have also compared the memory con-
sumption to highlight the lightness of our method. In
Table 2, MEMORY indicates the memory usage during the
algorithm running. We can observe that the minimum
memory requirement for our method is approximately
24.0MiB, while the minimum for ORB-SLAM2 is 1.0GiB.
For all sequences (excluding the untraceable one), our aver-
age memory usage is 46.4MiB, which is an accuracy of
0.055m at this point. Correspondingly, the comparison
algorithm is 2.4GiB, with an average accuracy of 0.059m.
We can claim that we achieved the approximate localization
accuracy with a comparatively minor memory consumption.

Table 2: Comparison of accuracy and memory in the 4Seasons dataset.

Scenes Sequences Number of images
ORB-SLAM2 Ours

RMSE (m) MEMORY (GiB) RMSE (m) MEMORY (MiB)

OLD TOWN

2021-01-07-10-49-45 24629 0.084 4.9 0.079 66.2

2021-05-10-21-32-00 24658 ∗ ∗ 0.605 71.8

2020-10-08-11-53-41 28999 0.053 3.5 0.044 79.1

COUNTRYSIDE 2021-01-07-13-30-07 14729 0.111 3.8 0.115 48.3

OFFICE LOOP 2021-01-07-12-04-03 13746 0.034 2.2 0.034 51.2

BUSINESS CAMPUS 2021-01-07-13-12-23 12023 0.064 1.3 0.064 24.3

NEIGHBORHOOD

2021-05-10-18-02-12 11674 0.036 1.6 0.034 43.4

2021-05-10-18-32-32 10760 0.037 1.6 0.034 44.0

2020-12-22-11-54-24 9775 0.057 2.8 0.056 40.1

PARKING GARAGE
2021-05-10-19-15-19 5257 0.069 1.0 0.063 35.9

2020-12-22-12-04-35 7793 0.050 1.5 0.029 31.1

AVERAGE 1 0.059 2.4 0.055 46.4
∗This symbol means the algorithm failed to work. 1The AVERAGE represents a sequence without trace failure.
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Figure 10: Comparison of ORB features with the method we used. (a) Comparison of descriptor computation time. (b) Comparison of
correct matching rate.
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In order to demonstrate the contrast qualitatively, we
chose the packet 2021-05-10-19-15-19 from the PARKING
GARAGE scenario to compare their trajectories and other
various metrics separately. We present a summary of how
our method compares to ORB-SLAM2 and real trajectories
as shown in Figure 11. The top row indicates the comparison

of our method with ORB-SLAM2 in the roll, pitch, and yaw
dimensions and the x-, y-, and z-axes. The strengths of our
method can be observed by comparing each of the six differ-
ent perspectives. In terms of rotation error, the mistake of
ORB-SLAM2 is larger than ours. The advantage of our
approach is particularly evident in the yaw dimension. The
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comparison of the RPE is shown in the bottom row, where
the left panel illustrates the absolute translation root-mean-
square error (RMSE) of our method against ORB-SLAM2.
The graph reveals that our error is smaller than that of the
comparison method. In the right picture, a contrast of other
metrics such as the mean is included. It can be noted that
our results are approximately the same as ORB-SLAM2. As
stated earlier, it is a complete SLAM system. In other words,
we have achieved a comparable result to the full system for a
lower cost, which shows the excellence of our method.

5. Conclusion

In this paper, we proposed a lightweight stereo visual odo-
metry system based on the indirect methods for low-light
scenes. The image decomposition is applied to our proposed
system according to retinex theory. Specifically, we first uti-
lized the thought of LIME to obtain the enhanced image of a
low-light scene and only estimate the illumination image.
This reduces the computational burden of the proposed sys-
tem to a large extent. Then, we applied an efficient detection
scheme to acquire the high-quality features, which signifi-
cantly reduces the calculation time. Meanwhile, a coarse-
to-fine process was employed to find out the best match in
the points matching phase by sorting the descriptors accord-
ing to their Hamming distance. In addition, an efficient local
map for pose optimization was maintained to keep the
tracking accuracy. Moreover, we defined an optimization
function to minimize the reprojection error for pose estima-
tion. Finally, the experiments using the 4Seasons datasets
showed that our proposed approach is superior to the exist-
ing methods. It should be noted that we will apply the pro-
posed method to intelligent vehicular networks in our
future work [37–39].
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