
Research Article
A Novel Path Planning and Node Selection Method Using
Reinforcement Learning in NTN IoT Networks

Siming Yang ,1 Zheng Shan,1 Jiang Cao,2 Yuan Gao,2 Yang Guo,2 Ping Wang,2 Jing Wang,2

and Xiaonan Wang2

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, Henan 450001, China
2Academy of Military Science of the PLA, 100091, China

Correspondence should be addressed to Siming Yang; 972856350@qq.com

Received 16 May 2022; Accepted 25 August 2022; Published 16 September 2022

Academic Editor: Mingqian Liu

Copyright © 2022 Siming Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid deployment of 5G networks in recent years, the characteristics of high bandwidth, low latency, and low energy
consumption of 5G networks have enabled the rapid development of IoT (Internet of things) technology. However, 5G
networks cannot provide high-quality wireless coverage for many IoT devices in border areas and hotspots with a high signal
density that lack fixed infrastructure. Therefore, this paper uses the UAV (unmanned aerial vehicle) to carry the
communication platform to build the NTN (nonterrestrial network) to provide wireless coverage for terrestrial fixed and
mobile IoT devices. Meanwhile, since the NTN needs to provide wireless coverage for many IoT devices, we use deep
reinforcement learning to provide path planning for the UAV communication platform to improve the efficiency of wireless
coverage. We build a simulation environment to evaluate the performance of the NTN network for wireless coverage of IoT
devices in urban hotspot areas. Experimental results show that the method proposed in this paper can provide higher
downlink rates for more IoT devices than NB-IoT (narrowband Internet of things).

1. Introduction

In recent years, IoT technology has made great progress
with the advent of 5G networks. Stable, high-quality, and
wide wireless coverage are necessary prerequisite for the
development and application of IoT technology. The widely
used NB-IoT (narrowband Internet of things) [1] technol-
ogy is mainly used in applications with small data volumes
and low rates. The advantage of NB-IoT is lower power con-
sumption and cost. At present, with the rise of video and
audio applications, the low rate of NB-IoT technology limits
the development of the IoT. The high-speed and low-latency
characteristics of the 5G network make up for the low trans-
mission rate. On the other hand, the massive MIMO (mul-
tiple input multiple output) technology proposed by the
5G network utilizes the spatial independence of users to pro-
vide independent narrow-beam coverage for different users
in space and simultaneously transmit data of different users
to improve system throughput [2]. The generation of this

technology makes it possible to increase the capacity of the
system while ensuring a high transmission rate. However,
5G networks cannot provide high-quality wireless coverage
in border areas and hotspots with a high signal density
and that lack fixed infrastructure. The IoT has two charac-
teristics. One is that the number of connected devices is
large, and the other is that the services of IoT devices are
mainly burst services. Therefore, how to reasonably provide
high-quality wireless coverage for a large number of IoT
devices is a crucial problem to be solved at present. In order
to promote the development and application of IoT in bor-
der areas and hotspot areas, many countries are now dis-
cussing the realization of high-quality signal coverage for
IoT through NTN (nonterrestrial networks) [3] under the
6G standard.

Compared with traditional terrestrial base station net-
working, NTN uses HAP (high-altitude platform) for net-
working. Taking advantage of the maneuverability of HAP
and the characteristics of line-of-sight communication,

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5265038, 14 pages
https://doi.org/10.1155/2022/5265038

https://orcid.org/0000-0001-6718-3532
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5265038


NTN can provide high-quality signal coverage for border
areas without ground base station coverage and disaster
areas where ground base stations are damaged due to disas-
ters. At the same time, in urban hot spots, NTN can assist
ground base stations in solving the problem of wireless net-
work congestion. The current challenge is that the NTN
communication platform needs to serve many IoT devices
and the distance from the NTN platform to the terminal is
significantly larger than that of the ground base station. In
addition, the Doppler frequency shift caused by the relative
motion between the NTN platform and the IoT device can
lead to fast fading. Therefore, avoiding fast fading while
enabling the NTN platform to efficiently provide wireless
coverage for terrestrial fixed and mobile IoT devices is an
urgent problem to be solved.

This paper adopts a UAV (unmanned aerial vehicle)
equipped with a base station called UAV-AP (unmanned
aerial vehicle-aerial platform) as the NTN high-altitude
platform to provide wireless coverage for urban IoT devices.
We design a path planning algorithm based on deep rein-
forcement learning for the NTN communication platform.
The algorithm enables the NTN platform to adjust its flight
trajectory in real time according to the terrain characteris-
tics and the IoT device’s location information. With the
support of algorithms, the NTN platform can provide ser-
vices for as many IoT devices as possible and maximize
the sum of the downlink rates of ground IoT devices while
avoiding rapid fading.

The path planning method based on deep reinforcement
learning has been widely used in scenarios where a UAV is
used as a base station platform. Guo et al. and Bayerlein
et al. [4, 5] used DQN [6] to solve the trajectory optimization
problem to maximize the communication rate of transmis-
sion. However, DQN can only be applied to tasks in discrete
action spaces and have a defect of overestimating the value
function. Wang et al. [7] studied the optimal deployment
of UAVs to maximize the real-time downlink capacity by
using the double DQN algorithm [8]. Double DQN revises
the defect of overestimation, but it is still unable to control
the agent’s actions in the continuous action space task. Liu
et al. and Qi et al. [9, 10] adopted the DDPG algorithm
[11] to maximize the geographical fairness of all considered
points of interest (PoIs) and minimized the total energy con-
sumptions. The DDPG (deep deterministic policy gradient)
algorithm has successfully applied the algorithm to continu-
ous action space tasks. However, the DDPG algorithm has
too many hyperparameters that need to be adjusted, leading
to slow and unstable agent training.

The main contributions of this paper are as follows:

(1) This paper proposes a UAV-AP air-to-ground urban
propagation model. Meanwhile, we summarize the
task as an optimization problem by combining the
air-to-ground channel model and requirements of
the UAV-AP communication support task

(2) We built a simulation environment that meets the
task requirements based on the OpenAI Gym envi-
ronment. The simulation environment reserves an

interface for the interaction of reinforcement learn-
ing algorithms, which can efficiently train the agent

(3) This paper proposes an intrinsic reward reinforce-
ment learning algorithm based on a parallel architec-
ture. The algorithm can not only be used for policy
optimization in continuous action space but also
has a higher learning speed and better performance
than previous reinforcement learning algorithms.
The algorithm enables the NTN platform to perform
real-time path planning based on multiple static and
mobile IoT devices in a simulated environment, effi-
ciently providing wireless coverage for IoT devices

The rest of this paper is organized as follows. Section 2
describes the NTN IoT network and generalizes the wireless
coverage task as an optimization problem. In Section 3, we
give a brief introduction to deep reinforcement learning and
provide an analysis of our proposed algorithm. Then, we built
a simulation environment, carried out related experiments,
and analyzed the experimental results. Finally, Section 5 con-
cludes the paper and looks forward to future work.

2. Problem Formulation

In this chapter, we will analyze the task of the NTN commu-
nication platform to provide wireless coverage for terrestrial
IoT devices. Then, we introduce an air-to-ground channel
model to estimate the path loss between NTN platforms
and mobile IoT devices in urban environments. At the same
time, we define the symbols used in subsequent articles and
obtain the mathematical expression of the NTN platform
signal coverage task.

The use of the NTN communication platform efficiently
protects the burst services of a large number of static or
mobile IoT devices on the ground. For example, in the res-
cue operation of the Henan flood in 2021, the NTN commu-
nication platform has achieved long-term stable continuous
mobile signal coverage in the disaster area of about 50
square kilometers. The NTN communication platform has
connected 2,572 users, generating 1,089.89M of traffic, with
a maximum of 648 users accessing a single time. The NTN
communication platform restored the mobile public net-
work signal for residents in the disaster area to promptly
report the disaster situation and location information and
also provided communication support for the rescue team.

As shown in Figure 1, the NTN communication plat-
form can rely on its mobility to efficiently provide wireless
connections for burst communications in multiple areas.

When providing wireless coverage for IoT devices in the
target area, the NTN platform needs to comprehensively
consider the signal attenuation caused by the building and
the location information of the IoT device to adjust its flight
trajectory in real time. The NTN platform needs to ensure
that the downlink rate of all IoT devices is higher than the
minimum threshold rate and avoid fast fading caused by rel-
ative motion.

2.1. Modeling of the Air-to-Ground Channel. We introduce
an air-to-ground channel path loss model based on the

2 Wireless Communications and Mobile Computing



urban environment, mainly considering the path loss caused
by the signal blocking by urban buildings. The International
Telecommunication Union (ITU) proposes a general model
based on the loss of radio signal transmission caused by the
occlusion of buildings in its official standard. The model can
be applied to a variety of urban environments. The transmis-
sion probability of line-of-sight communication and non-
line-of-sight communication between the transmitter and
the receiver is defined as a function of elevation angle and
environmental parameters. Through mathematical deriva-
tion, the formula is achieved, which is gradually evolved
and simplified by SIGMOD.

The International Telecommunication Union (ITU) [12]
proposed an air-to-ground channel model that can be used
in a variety of urban environments to measure the geometric
probability of LoS transmission between the transmitter and
the receiver. This model summarizes the probability of LoS
(line of sight) and NLoS (nonline of sight) as a function of
elevation angle and several environmental parameters. The
formula can be fitted by the SIGMOD function which can
be written as follows:

P LoS, θð Þ = 1
1 + a exp −b θ − a½ �ð Þ : ð1Þ

Parameters “a” and “b” are called S-curve parameters,
which can be queried in literature [12] according to the cor-
responding city type.

According to the obtained LoS probability, the NLoS
probability is written as follows:

P NLoS, θð Þ = 1 − P LoS, θð Þ: ð2Þ

Therefore, the path loss of the propagation can be mod-
eled as follows:

PLξ = FSPL + ηξ, ð3Þ

where FSPL represents the free space pathloss [13] between
the NTN platform and an IoT device. ηξ is the excessive

path loss which is determined by the environment, and ξ
refers to the propagation group. In this paper, we divide
the propagation model into LoS and NLoS, which means
that ξ ∈ fLoS, NLoSg, and the total path loss can be mod-
eled as the following:

PL = P LoS, θð Þ × PLLoS + P NLoS, θð Þ × PLNLoS, ð4Þ

where PL is the total path loss of the channel model and
the downlink rate of each device can be calculated according
to the path fading formula. Using the general model, we can
obtain the path loss values of the UAV and the ground target
at different elevation angles under the premise of free space
loss. The general path loss calculation method for air-to-
ground channels is the basis for generalizing the UAV-AP
communication coverage task as an optimization problem.

2.2. Mathematical Expression of the Problem. We define the
signal path loss from the NTN platform to an IoT device
mðm ∈MÞ as PLm, speed of light as c, signal frequency as f
, NTN platform’s base station transmit power as Ps, the
bandwidth as W, and the position vector from the NTN

platform to the IoT device m as d
!

m. Besides that, we set
the velocity vectors of the NTN platform and an IoT device
to be v!f and v!m, respectively. The Gaussian white noise
power on the bandwidth is set to N , and the minimum
threshold rate of IoT device m is Dm. Figure 2 is a schematic
diagram of the relationship between the NTN platform and
a mobile IoT device.

The frequency of the signal received by the device m at
time t can be written as follows:

f mt = f ×
c − v!m · d

!
/ d
!��� ���

c − v!f · d
!
/ dj j

0
B@

1
CA: ð5Þ

The IoT device m that received power at time t is shown
as follows:

Prmt = 10 lg 1000 × Psð Þ − PL: ð6Þ

We can get the theoretical maximum downlink rate from
Shannon’s formula [13], which can be written in the follow-
ing form:

Cmt =Wlog2 1 + Prmt
N

� �
, ð7Þ

where Cmt is the downlink rate of the device m at time t. The
NTN communication platform continues to provide wireless
coverage for terrestrial IoT devices during time T . During
this period, the time for device m to perform burst service
is Tm. Under the condition that each IoT device does not
produce fast fading and the downlink rate is higher than
the threshold rate, our goal is to maximize the average
downlink rate of M devices under the effective communica-
tion time in a period T . In time T , we set the time set of user

Figure 1: Schematic diagram of the NTN network wireless
coverage task.

3Wireless Communications and Mobile Computing



m to perform burst service as Gm. In order to avoid the fast
fading of IoT devices, it is necessary to ensure that the sym-
bol time is longer than the coherence time when the device
performs burst communication, which means that when t
∈Gm, Cmt f mt . So, our problem can be summarized as the
following optimization problem:

maximum 1
M

× 〠
M

m

1
Tm

× 〠
T

t=0
Cmt

 !

subject toCmt f mt , when t ∈Gm,
Cmt ≥Dm, when t ∈Gm:

ð8Þ

It can be seen that the UAV-AP wireless coverage task is
an optimization problem with many unknowns. Such prob-
lems are difficult to solve using optimization theory, so we
use deep reinforcement learning to optimize the policy in
the interaction between the agent and the environment.
The optimization objective in equation (8) is the expected
return of the DRL algorithm, and the constraints limit the
form of the algorithm’s reward function.

3. Algorithm Analysis

From the conclusions of Section 2, we can see that the task of
an NTN communication platform to provide wireless cover-
age for terrestrial multi-IoT devices involves many variables.
It is difficult to find the optimal solution with traditional opti-
mization methods for this problem. Therefore, we intend to
use reinforcement learning methods to improve the policy
using the experience generated by the agent (i.e., the NTN
communication platform) interacting with the environment.
Eventually, the agent can learn a near-optimal policy that sat-
isfies our goal.

In this section, we first introduce deep reinforcement
learning and then propose our improved method for the
slow learning speed of the current algorithms.

3.1. Introduction of DRL. RL (reinforcement learning) [14]
originated from the optimal control theory in cybernetics.

It is mainly used to solve sequential decision-making prob-
lems. Through continuous interaction and trial and error
with the environment, the agent finally learns a near-
optimal strategy and maximizes the expected revenue. DRL
(deep reinforcement learning) is a combination of DL (deep
learning) [15] and reinforcement learning. With the help of
deep neural networks’ powerful feature representation capa-
bilities, it can fit various functions in reinforcement learning
well, enhance the fitting ability of reinforcement learning,
and expand the RL application scenarios.

Our research sets the NTN communication platform as
the agent and sets up a simulated environment to interact
with the agent. Using the empirical data generated by the
interaction between the agent and the environment, the
agent can finally learn a near-optimal path planning strat-
egy. The NTN communication platform makes real-time
decisions according to the strategy obtained by training,
maximizing the average downlink rate of the ground IoT
devices under adequate communication time.

A drawback of the current DRL is that the algorithm
learns slowly, especially when dealing with tasks with ample
state space and action space. Therefore, we need to design an
algorithm that can efficiently process a large amount of
empirical data and rapidly improve the strategy’s perfor-
mance. The training process of reinforcement learning can
be divided into the empirical data collection stage and the
agent training stage. The former is responsible for collecting
interaction data between the agent and the environment,
and the latter is responsible for training strategies using the
collected data. When we discuss the acceleration of the algo-
rithm, both stages need to be considered in detail. Methods
to improve the learning speed of the agent refer to Figure 3.

In the empirical data collection stage, the primary
methods to accelerate the learning rate are to improve the
quality of empirical data or improve the efficiency of data
collection. In order to improve the sample quality, we can
use the algorithms which can guide the agent to explore
the unknown environment efficiently, thereby increasing
the diversity of the collected data. In order to improve the
efficiency of data collection, the current mainstream method
is to combine reinforcement learning algorithms with paral-
lel architectures.

The main methods to improve the learning speed in the
strategy training phase can be summarized as follows. The
first type of method balances the deviation and variance of
the value function estimation. The second type of method
is to utilize the information of value distribution. The third
type of method is to stabilize the training process of the
agent and avoid excessive fluctuations that affect the conver-
gence speed and results. The fourth method is to improve
data utilization efficiency, which can replay critical empirical
data to accelerate algorithm convergence.

3.2. Algorithm. In order to improve the learning speed of the
algorithm, we refer to the RND algorithm [17] and intro-
duce intrinsic rewards in order that the agent can make
the training process stable and improve exploration effi-
ciency to obtain high-quality data. RND innovatively uses
intrinsic reward to measure the novelty of the current state,

O

h

Vf

Vm

d

𝜃L

Figure 2: Relative position relationship between an NTN platform
and a ground mobile IoT device in a certain time slot.

4 Wireless Communications and Mobile Computing



which encourages the agent to explore the strange state
action combination of the simulation environment. In addi-
tion, the RND algorithm incorporates the idea of the PPO
[16] algorithm and achieves a monotonous increase in agent
performance during the training process, which improves
the stability of the training process. Based on the RND algo-
rithm, our proposed algorithm integrates it into a parallel
architecture to accelerate the learning rate of the algorithm
by improving the efficiency of data collection.

Next, we briefly introduce the adopted architecture and
then propose solutions for the problem of bias caused by
strategy learning.

3.2.1. Architecture Introduction. The architecture of the
RND algorithm is summarized in Figure 4. The problem of
the algorithm is that the data collection efficiency is too low.

In order to further improve the data sampling efficiency,
we refer to the idea of Impala architecture. The Impala
architecture contains multiple workers and one or more
learners. The worker is responsible for interacting with the
independent environment and collecting experience data.
The learner is responsible for updating the strategy with
aggregated data. Figure 5 shows the architecture diagram
with multiple workers and one learner.

Each worker is independent. In Figure 5, worker i com-
pletes an episode of data interaction, stores the collected
experience data in the cache, then synchronizes the current
latest strategy from the learner, and starts a new round of
interaction. The learner will use the collected data from mul-
tiepisode to update the strategy. After completing an episode
of interaction and the experience data is saved in the cache,
worker i will synchronize the latest strategy of the learner
instead of waiting for the strategy update of the learner. This
architecture completely decouples the learner and the
worker, saves the worker’s waiting time, and dramatically

accelerates the speed of data collection. Figure 6 shows the
timeline comparison between the learner and the worker in
Impala, A3C, and A2C algorithms.

It is shown that each worker of the A3C architecture
needs to wait for the strategy update of the learner to syn-
chronize its latest strategy and uses the new policy to start
the next episode of interaction. In A2C architecture, the
learner needs to wait for all workers to complete the interac-
tion task and uses data to update policy and then synchronize
policy to all workers. Compared to the above architectures,
workers and learners of the Impala architecture are entirely
decoupled. With the simple architecture, the learner can con-
veniently use the GPU for acceleration and the workers can
be easily distributed on many machines.

3.2.2. Intrinsic Reward RL Algorithm Based on Parallel
Architecture. Because the behavior strategy is inconsistent
with the target strategy, which makes the algorithm become
an off-policy algorithm. Therefore, the collected data needs
to be processed before learning; otherwise, the training pro-
cess will generate a large deviation resulting in performance
degradation. In order to solve this problem, we use the V-
trace method to process the sampled intrinsic rewards and
extrinsic rewards and obtain the estimated value function
that the learner can utilize to update policy.

According to behavior policy μ, a worker interacts with
the environment and collects an episode of data. We define
the n-step V-trace value of state xs as follows:

vs = V xsð Þ + 〠
s+n−1

t=s
γt−s

Yt−1
i=s

ci

 !
σtV , ð9Þ

where σtV = ρðrt + γVðxt+1Þ −VðxtÞÞ is the temporal differ-
ence value of V estimated from data sampled by the worker.

Methods to improve
algorithm learning rate

Empirical data
collection stage Agent training stage

Improve data
quality

Improve data
collection
efficiency

Balance value
function estimates
bias and variance

Learn from value
distribution
information

Monotonously
improve strategy

performance

Improve data
utilization
efficiency

VIME (17)
ICM (18)

…… …… …… …… …… ……
Pseudo count (19)

Hash-based counts (20)

A3C (21)
A2C (22)

Impala (23)
APE-X (24)

Double DQN (25)
Dueling DQN (26)

GAE (27)

C51 (28)
QR-DQN (29)

IQN (30)

TRPO (31)
PPO (32)

ACKTR (33)

Priority sampling
metod (34) 

Figure 3: Methods to improve algorithm learning speed.

5Wireless Communications and Mobile Computing



Parameter ρt =min ðρ, ðπðatjxtÞ/μðatjxtÞÞÞ and parameter
ci =min ðc, ðπðatjxtÞ/μðatjxtÞÞÞ. ρt and ci have different roles
in the equation. The former is used in the definition of σtV
and according to the fixed point theory, the estimated value
function of the above formula is the value function Vπρ under
the strategy πρ. The policy πρ can be written as follows:

πρ a xjð Þ = min ρμ a xjð Þ, π a xjð Þð Þ
∑b∈A min ρμ b xjð Þ, π b xjð Þð Þ : ð10Þ

The above formula shows that when ρ is infinite, policy πρ

is the target policy and Vπρ is the value function of the target
policy π. If ρ is close to zero, we obtain the value function of
the behavior policy Vπμ . When we choose a truncation level
ρ <∞, our fixed point is the value function Vπρ which is
somewhere between μ and π. The weights cs ⋯ ct−1 quantita-
tively assess the impact of temporal difference σtV observed at
time t on the update of the value function at a previous time s.
Thus, in the formula, ρ impacts the convergence fixed point of
the value function and c impacts the coverage speed.

Env

Agent

Policy

Target

Predict

at + 1

St, at, et, done

St

……

(St – 1, at – 1, et – 1, it – 1,
done)

Buffer
(S0, a0, e0, i0, done)

(St, at,
et, it,

done)

it

Use PPO to update the policy
network after collecting the

data for a episode

Use PPO to update the
prediction network after
collecting the data for a

episode

Figure 4: Architecture diagram of the reinforcement learning algorithm based on intrinsic reward.

Worker 1 Worker 2 Worker i Worker n…… ……

Env 1 Env 2 Env i Env n…………

Data
collection 

Data
collection 

Data

Buffer

 Learner

Collect data from
multiple episodes 

Synchronize the strategy

Policy
update 

Data
collection 

Figure 5: Architecture diagram of Impala.

6 Wireless Communications and Mobile Computing



Finally, we propose the intrinsic reward RL algorithm
under the parallel framework and the flow chart is shown
in Figure 7. It is shown that each worker independently
interacts with its environment to collect data and store it
in the buffer. Then, the worker synchronizes the current lat-
est policy from the learner and starts the next round of inter-
action. The learner will periodically fetch data from the
buffer for policy updates. The data collected by different
behavior strategies will be processed through the V-trace
method. Then, the value function of the intrinsic reward
and the value function of the extrinsic reward will be calcu-
lated. Finally, the policy network and the value function
evaluation network are updated by using the PPO algorithm.
Our proposed algorithm can be divided into two parts,
worker and learner. The worker is mainly responsible for
the data acquisition function, and its pseudocode can be
found in Algorithm 1. Learner is mainly used for policy
training, and its pseudocode can be used in Algorithm 2.

4. Experiments

In this section, we will set the parameters used in the
experiments and define the agent’s action space, state
space, and reward function. We will then analyze the
experimental results.

4.1. Parameter Settings. We use OpenAI Gym [18] to build
the simulation environment. We assume a communication

assurance task, and the task is set as follows. In a three-
dimensional map with the size of 50 km × 50 km × 5 km,
there are randomly distributed buildings with the height of
50m ~ 150m. The NTN platform provides wireless coverage
for ten moving IoT devices and ten static IoT devices ran-
domly distributed on the ground. We set all IoT devices to
perform burst traffic with a probability of 0.01 every time
slot. It can also be regarded as a Poisson distribution with
a λ of 1 in 100 seconds. The NTN platform can adjust the
flight direction within the range of 0–360Â°, the flight eleva-
tion angle within the range of 0–180Â°, and the flying speed
within the range of 180 ~ 300 km/h. Then, we will define the
state space, action space, and reward function in the rein-
forcement learning process.

4.1.1. The State Space. The agent’s state space is the combi-
nation of the NTN platform and 20 IoT devices’ states.
The reason why we only set up 20 devices in the experiment
is because it is limited by the performance of individual
experimental devices. More users means that UAV-APs
need to cover more locations and actively adjust their flight
status to provide users with high-quality services. In this
experiment, since the starting positions and flight trajecto-
ries of each user are random, the positions are scattered
and the trajectories are uncertain, which ensures the validity
of the experimental results to a certain extent. In the future,
we will add more users to test the performance of the algo-
rithm. The NTN platform state can be defined as a 7-

Time0

Worker 0

Worker 1

Worker 2

Worker 3

Policy update steps
Data collection steps

Time0

Worker 0

Worker 1

Worker 2

Worker 3

A3C

A2C

Time0

Worker 0

Worker 1

Worker 2

Worker 3

Impala

Learner

Worker 4

Worker 5

Worker 6

Worker 7

………

Extract data from cache
Cache data and synchronize strategy 

Figure 6: Timeline comparison chart.

7Wireless Communications and Mobile Computing



element vector that includes the NTN platform’s location
coordinates in the map, the flight angle, flight elevation
angle, speed of NTN platform, and base station transmit
power. The IoT device state is a 4-dimensional vector
including the device’s coordinates on the map, moving
angle, and speed of IoT device. In order to ensure the consis-
tency of the matrix form, the remaining elements are set to
0. So, the state space of the agent is the 21 × 7 matrix.

4.1.2. The Action Space. The action space of the agent is a
vector containing four continuous elements, including
speed, flight angle, flight elevation angle of the NTN plat-
form, and base station transmit power. We need to stan-
dardize these variables, and then, the agent will execute
these actions in a simulated environment and get the reward
at this time slot.

4.1.3. The Reward. The NTN platform needs to ensure that
the downlink rate of each IoT device is greater than the
threshold rate while preventing fast fading caused by the
Doppler frequency shift. Under this premise, the goal of
the task is to maximize the average downlink rate of the
device under adequate communication time. We set the
reward value for each time slot as the average downlink rates
of IoT devices performing bursty services in that time slot.

However, if a device is affected by fast fading or the down-
link rate is lower than a threshold, the downlink speed of
that device is considered to be is 0. Besides, if the NTN plat-
form hits the building, we terminate the experiment and
return −100 as the reward value for this round. If the prob-
lems mentioned above do not occur during the communica-
tion guarantee task, the reward value of 100 is returned. If
the experiment termination condition has not been triggered
within time t, we terminate the experiment and return the
reward value 100.

The algorithm code is written in Python 3.8, mainly
using libraries such as PyTorch, Gym, and NumPy. The
training environment is the simulation environment intro-
duced in Section 3, built on the Windows 10 system with 2
NVIDIA 3090 graphic cards and 64 g RAM. In the experi-
ments, we tested the proposed algorithm with the current
mainstream reinforcement learning algorithms and algo-
rithms under different parallel architectures in a simulation
environment. Each experiment ran on 2K rollouts with 32
parallel environments, and the hyperparameters used in
the algorithm are shown in Table 1. The parameters of the
communication metrics have been introduced in Section 2
and the introduction of algorithm hyperparameters in Sec-
tion 3. We utilize 32 parallel environments for data collec-
tion to improve the training speed. At the same time, we

Worker 1 Worker 2 Worker i Worker n…… ……

Env 1 Env 2 Env i Env n…………

(……St, at, ri, re, done, st + 1)

Buffer

Strategy
synchronization 

Update

Learner

V-trace

V𝜃i (St) V𝜃e (St)

Vi (St)

v Update

Intrinsic value
function

estimation
network

at
Policy

Network
Policy

update 

Extrinsic value
function

estimation
network 

Date
collection

Date
collection

Date
collection

𝜋

Ve (St)
V (St + 1)

Figure 7: Algorithm flow chart.

8 Wireless Communications and Mobile Computing



set the initial rollout length to 2,500 and the initial optimiza-
tion step to 4 to pretrain the parameters of the model. We set
the learning rate to 0.0003 to avoid overfitting and set the
discount values for internal and external rewards to 0.99
and 0.999 to ensure that the agent is not affected by reward
values that are too old. The design of GAE and PPO param-
eters is to avoid that the optimization step size is too large,
resulting in failure to converge to a better result.

Figure 8 shows the number of IoT devices that can oper-
ate normally after adopting the NB-IoT method or the
method based on the NTN communication platform. Since
an IoT device obeys a Poisson distribution with a λ of 1
within 100 seconds, the data are counted in units of 100 sec-
onds and all are rounded.

The blue bar in represents the number of mobile IoT
devices that successfully performed burst services within

T←numbers of parallel environments; K←⇀initial length of rollout;
D←number of initial steps for initializing observation;
t=0
Sample state s0 ~ P0ðs0Þ
For d=1 to D do

Sample at ~NormalizedðatÞ
Sample st+1 ~ pðst+1jst , atÞ
Update observation normalization parameters using st+1
t += 1

End for
While true
t=0

For j=1 to K do
For h=1 to T do

Sample at ~Normalized πðat jstÞ
Sample st+1, et ~ pðst+1, et jst , atÞ
Caculate intrinsic reward it = k f ∧ðst+1Þ − f ðst+1Þk2
Add st , st+1, at , et , it to optimization batch Bh
Update reward normalization parameters using it
t +=1

End for
Collect data,put Bh into the global buffer B

End for
Synchronize the strategy from the learner

Algorithm 1:Data acquisition module pseudocode.

L←the length of the data extracted; Nopt←⇀initial number of optimization steps;
K←initial length of rollout; N∧

opt←⇀number of optimization steps in later stages;
K∧ ←⇀new length of rollout in later stages;
While true
Extract data from the buffer
Normalize the intrinsic rewards contained in B
For j=1 to L do

Caculate returns RI,i and advantages AI,i for intrinsic reward
Caculate returns RE,i and advantages AE,i for extrinsic reward
Utilize AI,i and AE,i by using V-trace and obtain value function A∧

I,i and A∧
E,i of πρ

Caculate combined advantages Ai = A∧
I,i + A∧

E,i
Update observation normalization parameters

End for
For j=1 to Nopt do

Optimize θπ wrt PPO loss on batch B, Ai using AdamW
Optimize θf wrt distillation loss on B using AdamW

End for
Check recent data if meet the conditions of adjusting parameters

Then set K = K∧,Nopt =N∧
opt

Algorithm 2: Policy training module pseudo code.

9Wireless Communications and Mobile Computing



100 s. The orange bar represents the number of static IoT
devices that successfully performed burst services within
100 s. According to the probability calculation, both static
IoT devices and dynamic IoT devices will perform an aver-
age of 10 burst services within 100 s. It shows the results
using the NB-IoT method. It can be seen that the static
IoT device and the mobile device can successfully execute
the burst service six times and three times, respectively,
every 100 seconds, which is far less than the estimated exe-
cution times. The reason is that NB-IoT relies on fixed base
stations, the signal strength will attenuate as the distance
increases, and buildings will also block the signal. Attenua-
tion of the signal makes the downlink rate of static and
mobile IoT devices far away from the base station too low
to perform services typically. At the same time, the fixed
base station cannot effectively handle the fast fading caused
by the Doppler effect, so the support for mobile IoT devices
is even worse.

The lower diagram in Figure 8 represents the use of the
NTN communication platform to provide wireless coverage
for IoT devices. It can be seen that the static IoT device and
the mobile device can successfully execute 10 and 8 burst
services, respectively, every 100 seconds, which is relatively
close to the estimated execution times. This is because the
NTN platform can adjust its flight status according to the
learned strategy based on the current status information
and IoT devices. Learned strategies enable the NTN plat-
form to take into account both static devices and mobile
devices and maximize the average downlink rate of all IoT
devices on the premise of avoiding fast fading. On the other

hand, in the experiment, the method based on the NTN
communication platform can make the average downlink
speed of IoT devices reach 10Mbps. In contrast, the NB-
IoT method can only provide a maximum downlink rate of
250Kbps. Therefore, the method based on the NTN plat-
form can provide services for more IoT devices and signifi-
cantly increase the downlink rate of the device.

Figure 9 shows the performance comparison between
our algorithm and current mainstream reinforcement learn-
ing algorithms in the NTN platform path planning task. The
results show that the algorithm performs poorly in the early
stage. This is because the agent needs to fully explore the
environment under the guidance of internal rewards in the
early stage and accumulate more valuable experience data.
Therefore, in the early stage of training, the agent tends to
explore rather than improve the policy performance. We
can see that after training to nearly 700 scenes of data, the
algorithm’s performance will increase exceptionally quickly.
This is because the agent has conducted a comprehensive
exploration of the environment and has begun to use the
collected experience data to make targeted improvements.
At this stage, the agent is more inclined to improve the pol-
icy performance. It can be seen that compared with the cur-
rent mainstream algorithms, our algorithm has a faster
convergence speed and a higher final score.

On the other hand, the learning rate of the proposed
algorithm is much faster than other algorithms. When the
agent is trained to 1,000 episodes, the algorithm’s perfor-
mance decreases. This may be due to overfitting caused by
the large update step size. Subsequently, the algorithm finally
completed the convergence at 1,200 episodes with the policy
iteration. It can be seen that our algorithm has a higher final
score than several other mainstream algorithms. This is
because the agent collects diverse empirical data in the early
stage, preventing the algorithm from converging to a locally
optimal solution. On the other hand, our proposed algo-
rithm also has the fastest convergence speed. This benefits
from the improved efficiency of agent-environment interac-
tion brought by the decoupled parallel architecture.

Figure 10 shows the performance comparison results of
the proposed algorithm. It can be seen that the proposed
algorithm has better performance than the algorithms based
on A2C and A3C architecture. Among them, the perfor-
mance of the A3C algorithm is the worst. Due to the asyn-
chronous update method, each worker uses a different
strategy leading to accumulation of deviations in the update
process. This makes the algorithm based on A3C have poor
performance and significant fluctuation during the training
process. Compared to the algorithm based on the A2C archi-
tecture, the final performance is close but our algorithm
allows the algorithm to reach the target score faster. The rea-
son is that the worker and the learner are wholly decoupled,
which makes the worker not need to wait for the learner to
update the strategy improving the sampling efficiency. Com-
paring the algorithm without V-trace correction, it can be
found that the algorithm without V-trace correction has sig-
nificant fluctuation and hardly learns effect policy. The tar-
get policy will have a significant deviation if the learner
uses data that V-trace has not corrected to update the

Table 1: The value of parameter used in the algorithm.

Hyperparameter Value

Number of users (M) 10

Threshold rate (Cth) 5M/s

Bandwidth (W) 10MHz

Transmit power (Ps) 200W

Path loss parameter (PLLoS/PLNLOS) 0.1/21.0

Environment parameters (a, b) 0.1750

Parallel environments (T) 32

Number of rollouts (N) 2000

Initial rollout length (K) 2500

Initial optimization steps (Nopt) 4

Initial learning rate 0.0003

Initial number of minibatches 8

Intrinsic discount factor 0.99

Extrinsic discount factor 0.999

Optimization algorithm AdamW

GAE factor λ 0.95

PPO clip range [0.9,1.1]

Coefficient of extrinsic reward 1

Coefficient of intrinsic reward 1

ρ 1

c 1

10 Wireless Communications and Mobile Computing



10

8

6

2

4

0
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Episodes

N
um

be
rs

Available number of loT devices, under NB-loT method

Available mobile devices

Available static devices

10

8

6

2

4

0
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Episodes

N
um

be
rs

Available number of loT devices by using NTN communication platform

Figure 8: Comparison of the number of available IoT devices.

11Wireless Communications and Mobile Computing



1.2e + 4

1e + 4

8e + 3

6e + 3

4e + 3

2e + 3

0

0 200 400 600 800 1k 1.2 k 1.4 k 1.6 k 1.8 k 2 k

Episodes

DDPG
PPO
Internal reward algorithm based parallel architecture

TD3
SAC

Sc
or

e

Figure 9: Performance comparison between the proposed algorithm and mainstream reinforcement learning algorithms.

1.2e + 4

1e + 4

8e + 3

6e + 3

4e + 3

2e + 3

0

Sc
or

e

Episodes

0 200 400 600 800 1 k 1.2 k 1.4 k 1.6 k 1.8 k 2 k

Algorithm based on A2C architecture
Algorithm based on A3C architecture

Proposed algorithm

Proposed algorithm (Without V-trace correct)

Figure 10: Performance comparison between the proposed algorithm and algorithms under other parallel architectures.

6.5e + 3
6e + 3

5.5e + 3
5e + 3

4.5e + 3

3e + 3
2.5e + 3

3.5e + 3
4e + 3

N
um

be
r o

f i
nt

er
ac

tio
n

0 200 400 600 800 1 k 1.2 k 1.4 k 1.6 k 1.8 k 2 k

Episodes

Proposed algorithm
A3C architecture
A2C architecture

Figure 11: Comparison of the number of interactions between the agent and the environment per second in one episode.

12 Wireless Communications and Mobile Computing



strategy. The accumulation of deviation will reduce the accu-
racy of the agent’s prediction of the value function, eventu-
ally leading to poor performance. So, the experiment
proves that the V-trace correction is significant for the off-
policy algorithm.

Figure 11 shows the average number of interactions
between the agent and the environment per second in an
episode of data during the training process. Our algorithm
has the most significant number of interactions per second
and has a minor variance during the training process, which
means that the interaction is stable. The difference in the
interaction time of different algorithms mainly depends on
when the worker waits for the learner to update the strategy
and synchronize the strategy. In A3C, each worker needs to
wait for the learner to update its policy using collected data.
Multiple workers queue up so that congestion occurs and the
speed of interaction decreases. In A2C architecture, the
learner needs to wait for all workers to complete the interac-
tion and store the data in the buffer before starting the policy
update. The main reasons for the weak interaction are the
time that the learner waited for the workers and the time
that the worker waited for the learner to process large-scale
data. In our algorithm, the learner and workers are entirely
decoupled and work asynchronously. Therefore, the learning
speed of the learner does not affect the interaction between
the workers and the environment. This is why our algorithm
has the most significant number of interactions per second
and the most stable interaction process.

5. Conclusion

This paper mainly explores the possibility of using a nonter-
restrial IoT network built with the NTN platform to provide
high-quality wireless coverage for terrestrial mobile IoT
devices. The real-time path planning of the NTN platform
is realized by using the reinforcement learning algorithm,
which effectively improves the downlink rate of ground
mobile IoT devices. Experimental results showed that our
algorithm significantly improved the final performance and
learning rate compared to mainstream reinforcement learn-
ing algorithms. Our architecture has higher data collection
efficiency than commonly used parallel architectures. In
summary, the NTN IoT network has the potential to make
up for the shortage of fixed base stations that cannot provide
high-quality signal coverage for ground IoT devices in bor-
der areas and urban hotspots. At the same time, this will fur-
ther promote the development and application of IoT. In
order for the algorithm to be applied in a practical environ-
ment, we need to solve the following problems in the future.
First, the impact of signal interference on the NTN platform
needs to be resolved. Secondly, the NTN platform needs to
find a method that can quickly and accurately locate moving
targets. According to the research, Liu et al. use federated
learning to train a distributed network to identify signal dis-
turbances [19]. Simulation results show that the method
leads to excellent recognition performance with a small data-
set. On the problem of moving target localization, Liu et al.
propose a passive position parameter estimator for estimat-
ing moving aerial targets using multiple satellites [20] and

an intelligent passive detection method based on reservoir
computing networks [21]. The simulation results show that
the method can accurately estimate the position parameters
of moving objects and achieve efficient detection of moving
objects. We will refer to the content of the above articles in
the future and improve the algorithm proposed in this article
to adapt to practical application scenarios.

Data Availability

This article uses the OpenAI Gym framework to build a
reinforcement learning simulation environment. All experi-
mental analysis data were obtained from this platform. The
simulation platform has been applied for the corresponding
software copyright, numbered 2021SR1463151. Since the
research results are supported by the Academy of Military
Science of the PLA, all experimental data and results are kept
by the institution. You can contact Mr. Zhang at lanyan-
gyang_1994@sina.com to apply for the experimental data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study is supported by the National Natural Science
Foundation of China (61971092).

References

[1] M. Chen, Y. Miao, Y. Hao, and K. Hwang, “Narrow band
internet of things,” IEEE Access, vol. 5, pp. 20557–20577, 2017.

[2] H. Han, L. Fang, W. Lu, W. Zhai, Y. Li, and J. Zhao, “A gcica
grant-free random access scheme for m2m communications
in crowded massive mimo systems,” IEEE Internet of Things
Journal, vol. 9, no. 8, pp. 6032–6046, 2022.

[3] “TR 38.821-V0.4.0. “Solutions for NR to support non-
terrestrial networks (NTN)” ,” https://www.3gpp.org/
DynaReport/38821.html, 2019.

[4] J. Guo, Y. Huo, X. Shi et al., “3D aerial vehicle base station
(UAV-BS) position planning based on deep Q-learning for
capacity enhancement of users with different QoS,” Require-
ments[C]// 2019 15th International Wireless Communications
and Mobile Computing Conference (IWCMC), p. 23, 2019.

[5] H. Bayerlein, P. D. Kerret, and D. Gesbert, “Trajectory Optimi-
zation for Autonomous Flying Base Station via Reinforcement
Learning[C],” in 2018 IEEE 19th International Workshop on
Signal Processing Advances in Wireless Communications
(SPAWC), p. 24, IEEE, 2018.

[6] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Playing Atari with
deep reinforcement learning,” Computer Science, vol. 25, 2013.

[7] Q. Wang, W. Zhang, Y. Liu, and Y. Liu, “Multi-UAV dynamic
wireless networking with deep reinforcement learning,” IEEE
Communications Letters, vol. (99), pp. 1–22, 2019.

[8] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” Computer Ence, vol. 26, 2015.

[9] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-
efficient multi-UAV navigation for long-term communication
coverage by deep reinforcement learning,” IEEE Transactions
on Mobile Computing, vol. 19, no. 6, pp. 1274–1285, 2020.

13Wireless Communications and Mobile Computing

https://www.3gpp.org/DynaReport/38821.html
https://www.3gpp.org/DynaReport/38821.html


[10] H. Qi, Z. Hu, H. Huang, X. Wen, and Z. Lu, “Energy efficient
3-D UAV control for persistent communication service and
fairness: a deep reinforcement learning approach,” IEEE
Access, vol. 8, no. 53172-53184, pp. 53172–53184, 2020.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control
with deep reinforcement learning,” Computer Ence, vol. 27,
2015.

[12] ITU-R, Rec. P. 1410-2 Propagation Data and Prediction
Methods for the Design of Terrestrial Broadband Millimetric
Aadio Access Systems, P Series, Radiowave propagation, 2003.

[13] A. Saakian, Radio Wave Propagation Fundamentals, LI Ji-Jun;
CHEN Hai-yan, Propagation properties of metal clad wave-
guide at communication frequency, 2020.

[14] R. S. Sutton and A. G. Barto, “Reinforcement learning,” A
Bradford Book, vol. 15, no. 7, pp. 665–685, 1998.

[15] Y. Li, “Deep reinforcement learning: an overview,” https://
arxiv.org/abs/1701.07274, 2017.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, Proximal Policy Optimization Algorithms, 2017.

[17] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, Exploration
by Random Network Distillation, 2018.

[18] G. Brockman, V. Cheung, L. Pettersson et al., OpenAI Gym,
2016.

[19] M. Liu, Z. Liu, W. Lu, Y. Chen, X. Gao, and N. Zhao, “Distrib-
uted few-shot learning for intelligent recognition of communi-
cation jamming,” IEEE Journal of Selected Topics in Signal
Processing, vol. 16, no. 3, pp. 395–405, 2022.

[20] M. Liu, B. Li, Y. Chen et al., “Location parameter estimation of
moving aerial target in space–air–ground-integrated
networks-based iov,” IEEE Internet of Things Journal, vol. 9,
no. 8, pp. 5696–5707, 2022.

[21] M. Liu, C. Liu, M. Li, Y. Chen, S. Zheng, and N. Zhao, “Intel-
ligent passive detection of aerial target in space-air-ground
integrated networks,” China Communications, vol. 19, no. 1,
pp. 52–63, 2022.

14 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1701.07274

	A Novel Path Planning and Node Selection Method Using Reinforcement Learning in NTN IoT Networks
	1. Introduction
	2. Problem Formulation
	2.1. Modeling of the Air-to-Ground Channel
	2.2. Mathematical Expression of the Problem

	3. Algorithm Analysis
	3.1. Introduction of DRL
	3.2. Algorithm
	3.2.1. Architecture Introduction
	3.2.2. Intrinsic Reward RL Algorithm Based on Parallel Architecture


	4. Experiments
	4.1. Parameter Settings
	4.1.1. The State Space
	4.1.2. The Action Space
	4.1.3. The Reward


	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

