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The purpose is to solve the problems of cumbersome calculation, low accuracy, poor timeliness, rigid data acquisition, high cost,
large volume, and insufficient signal processing capacity of traditional vision sensor (VS) in Ningxia companies. Firstly, this paper
designs an embedded smart VS based on advanced RISC machines (ARM) processor. Secondly, it proposes a cost estimation
algorithm for power transmission and transformation project (PTTP) based on particle swarm optimization-least squares
support vector regression (PSO–LSSVR). Afterward, a cost estimation model of PTTP based on building information modeling
(BIM) is proposed. Thirdly, historical cost data of PTTP of a Ningxia company within five years are selected as data samples
to verify the accuracy of the PSO-LSSVR estimation algorithm and BIM model. The results show the following: (I) The
measurement error of the designed smart VS is less than 4%, with high accuracy, which is suitable for large-scale measurement
in the construction site. (II) The error of the PSO-LSSVR algorithm in engineering cost prediction is less than 20%, and the
accuracy is higher than that of traditional support vector machine (SVM) and LSSVR algorithms. The optimization effect is
remarkable and can be used for the feasibility analysis of PTTPs. (III) The proposed BIM-based PTTP cost estimation model
error in the project cost estimation is controlled within 10%. With high accuracy, it can be applied to the PTTP management
of Ningxia company. The purpose is to provide important technical support for the upgradation of traditional VS technology
and the realization of visual management and rapid cost estimation of PTTP of Ningxia companies.

1. Introduction

The whole process cost of the power transmission and trans-
formation project (PTTP) refers to reasonable cost control
without affecting the overall project quality and in-time
deviation correction during the construction process to
manage the project costs [1]. With the rapid progress and
development of society, computer and Internet technology
have been popularized, making qualitative changes in
people’s lives and the development and management of
enterprises [2]. Lv et al. constructed a cognitive computing
model based on context-aware data flow, which was signifi-
cant for operators to analyze user behavior and develop
personalized services [3]. At present, some developed coun-
tries have made full use of computer and networking

technology (CNT) in the cost management of enterprise
PTTP projects. Various project cost-oriented software is also
being developed and used [4]. PTTPs involve various fields,
a wide range, many influencing factors, large investment,
and long operation period, making the cost management
and monitoring of PTTPs a complicated and difficult prob-
lem [5]. At present, most companies in Ningxia still use the
traditional cost method for PTTPs, which has shown some
shortcomings: (1) The quantities are usually calculated man-
ually using two-dimensional (2D) drawings, and there are
many kinds of quantities and changeable rules, so it is easy
to miss items in the calculation; (2) quota is often applied
when quantity is calculated manually, which is highly depen-
dent on personal experience; (3) data, such as material and
equipment prices and personnel costs, need to be collected
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manually, with poor timeliness; and (4) some expenses need
to be adjusted manually. There are many projects, and it is
not easy to update data [6]. The birth of support vector
machine (SVM) and building information modeling (BIM)
tools offers a new solution to solve the above problems.
SVM has an excellent ability to learn and process small sam-
ple data and estimate the cost of PTTP rapidly. BIM can
model PTTP into a virtual three-dimensional (3D) model
and provide a close-to-actual engineering information base
for cost estimation to obtain the engineering quantity infor-
mation. At the same time, it also provides a platform for all
project parties to work together [7]. 3D BIM needs to input
the spatial information of the construction site, which the
vision sensor (VS) can facilitate.

Juszczyk proposed a cost estimation model of bridge
construction projects based on SVM and verified the model
performance over data from several bridge construction pro-
jects completed in Poland. The outcome showed that the
model could provide an early estimation of bridge construc-
tion cost with high accuracy [8]. Lan et al. believed that BIM
had a strong 3D-aided design ability to help designers
quickly generate 3D models for PTTPs, thus providing the
overall image and visual effect of the project for investors
in the design bidding stage and reference for the design of
relevant drawings in the later stage [9]. Zhang thought
BIM software could realize the construction units’ 3D
visualization and control the on-site construction process.
Through intelligent components, the construction unit
could solve the construction management problems of com-
plex grid structure engineering. Then, the construction
schedule and cost optimization model was constructed based
on the genetic algorithm (GA) to optimize costs [10]. Xu and
Yang adopted the deep learning (DL) method to identify
tunnel cracks based on image sensors intelligently. The
experiment was set against a several-kilometer-long subway
tunnel structure and built a 3D model. Then, the cracks were
automatically identified by image data. Thus, it solved the
problem that the traditional tunnel detection methods were
time-consuming, cost high, and highly dependent on
people’s subjective initiative [11].

Traditional VSs have problems, such as high price, large
volume, and insufficient signal processing capacity [12].
SVM is an optimization algorithm with high computational
complexity to solve inequality-constrained convex quadratic
programming. Therefore, this paper selects the improved
SVM algorithm for cost estimation: least squares support
vector regression (LSSVR). The proposed algorithm
replaces inequality constraints with equality constraints to
greatly simplify the calculation. Still, its robustness has
somewhat been affected, and thus, the estimation accuracy
is reduced to some extent. Based on this, this paper crea-
tively designs a low-cost and small-volume embedded
smart sensor to integrate image acquisition, self-process-
ing, and communication transmission functions. Then, an
algorithm with excellent problem solution optimization
ability, particle swarm optimization (PSO), is used to opti-
mize the LSSVR parameters to improve its calculation
accuracy. Finally, the PSO-LSSVR optimization algorithm
is combined with BIM to build the PTTP cost estimation

model. The purpose is to provide important technical sup-
port for upgrading traditional VS technology and realizing
visual management and rapid cost estimation of PTTP of
Ningxia company.

2. Construction of Project Cost
Estimation Model

2.1. Measurement Principle and Calibration of VS. Combin-
ing the real-time data of the construction site collected by
the VS with the BIM model can realize the construction
progress real-time monitoring to find and correct the
deviation in time and update the BIM model information
in real-time. Thus, it can achieve the goal of accurately
managing project costs. VS data acquisition’s principle and
calibration method will be described next.

2.1.1. Measurement Principle of VS

(1) Principle of Line-Structured Light 3D Vision. The line-
structured light mode is to project a light beam to the object.
The light bar is modulated per the change of the depth of the
object’s surface and the possible gap. In the image, the light
bar is distorted and discontinuous, the degree of distortion is
directly proportional to the depth, and the discontinuity
shows the physical gap of the object’s surface. The 3D infor-
mation of the object surface is obtained through the dis-
torted light bar image information [13]. The schematic
diagram of line-structured light vision measurement is
shown in Figure 1.

(2) Conversion from Image Coordinate System to Camera
Coordinate System. The coordinates of any point P(xc, yc,
zc) projected onto the camera imaging plane in space can
be expressed as (x, y), and Eq. (1) can be obtained:

x
f
= xc
zc
,

y
f
= yc
zc
:

8>><
>>: ð1Þ

In Eq. (1), f is the focal length of the camera.

Equation (1) is converted into matrix form, as shown in
Eq. (2):
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In Eq. (2), ½xc, yc, zc, 1�T is the homogeneous coordinate
of point P in the camera coordinate system.

The conversion equation from the image coordinate
system to the camera coordinate system can be obtained
by combining Eqs. (1) and (2), as follows:

2 Wireless Communications and Mobile Computing



zc

u

v

1

2
6664

3
7775 =

1
dx

0 u0

0 1
dy

v0

0 0 1

2
6666664

3
7777775

f 0 0 0

0 f 0 0

0 0 1 0

2
6664

3
7775

xc

yc

zc

1

2
6666664

3
7777775

=

kx 0 u0 0

0 ky v0 0

0 0 1 0

2
6664

3
7775

xc

yc

zc

1

2
6666664

3
7777775

=Min′

xc

yc

zc

1

2
6666664

3
7777775

ð3Þ

Eq. (4) is obtained:
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where (u, v) is the image coordinate system, as shown in
Figure 2;

(u0, v0) is the image coordinate of the intersection of the
optical axis centerline of the camera and the imaging plane;
and kx and ky denote the magnification factor in the x-axis

and y-axis, respectively; Min′ is a 3 ∗ 4 matrix.

(3) Conversion from Camera Coordinate System to World
Coordinate System. For any point P in space, the homoge-
neous coordinates between the camera coordinate system

and the world coordinate system have the following corre-
sponding relationship:
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(xw, yw, zw) represents the coordinates of the measuring
point in the world coordinate system OwXwYwZw.

In the camera coordinate systemOcXcYcZc,n = ½nx ny nz�T ,
o = ½ox oy oz�T , and a = ½ax ay az�T represent the Xw direction
vector, Yw direction vector, and Zw direction vector, respec-
tively. The origin coordinate position of OwXwYwZw is
denoted by p = ½px py pz�T .

Mw indicates the camera external parameter matrix.
R and p stand for translation and rotation matrices,

respectively.

2.2. Calibration of the Vision System

2.2.1. Camera Calibration. Given the coordinates of the
measuring point in the world coordinate system, the 3D
coordinates and the 2D coordinate mapping relationship of
the corresponding image are calculated as in Eq. (6):

Measured object

Laser Camera

Light plane
Light bar

Figure 1: Schematic diagram of line-structured light visual
measurement.

v y

x

u
O1 (u0, v0)

Figure 2: Image coordinate system.
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2.2.2. Laser Plane Calibration. The laser plane is calibrated
based on the stereo target given the internal and external
parameters of the camera. The schematic diagram of the
target is shown in Figure 3.

The two top-end faces on the target are parallel and rect-
angular. The relative positions of the vertices of the rectangle
and the distance d of the end faces are known. The world
coordinate system (xw, yw, zw) is established at the center
of the upper-end face. The equation of the plane of the
two end faces under the camera sitting system can be
obtained through Eqs. (7) and (8):

axx + ayy + azz − axpx − aypy − azpz = 0, ð7Þ

axx + ayy + azz − axpx − aypy − azpz + d = 0: ð8Þ
The coordinates of any point Pj on the laser stripe on the

normalized imaging plane read as follows:

xcj ycj 1� �T =M−1
in uj v 1� �T

: ð9Þ

Point Pj is on the straight line between the center point
of the camera optical axis and the point ( xcj ycj 1 ), and
Eq. (10) is obtained:

x = xcjt,
y = ycjt,
z = t:

8>><
>>: ð10Þ

Point Pj is on the laser plane. In the camera coordinate
system, the equation of the laser plane reads as follows:

ax + by + cz + 1 = 0: ð11Þ

where a, b, and c are the parameters of the laser plane
equation in the camera coordinate system.

The 3D coordinates of the object can be obtained by
combining Eqs. (12) - (14):

x =
−xcj

axcj + bycj + c
, ð12Þ

y =
−ycj

axcj + bycj + c
, ð13Þ

z = −1
axcj + bycj + c ð14Þ

For the feature points on the laser stripe on the high-end
surface, Eqs. (12), (13), and (14) are introduced into Eq. (7),
and Eq. (15) is obtained:

xcjd1a + ycjd1b + d1c + axxcj + ayycj + az = 0,
d1 = axpx + aypy + azpz:

ð15Þ

For the feature points on the laser stripe on the low-end
face, Eqs. (12), (13), and (14) are introduced into Eq. (8) to
obtain Eq. (16):

xcj d1 − dð Þa + ycj d1 − dð Þb + d1 − dð Þc + axxcj + ayycj + az = 0
ð16Þ

2.3. Design of the Embedded Smart VS. Embedded VS is
mainly composed of embedded hardware platform, embed-
ded processing software, image sensor, line structure light
source, and data output interface. The structure of the smart
VS is shown in Figure 4.

2.3.1. Hardware Design of Smart VS. Functions of a smart
VS include image collection, lighting, laser control, and
communication, as well as good scalability. Therefore, in
the design of a smart VS, the hardware platform must have
high data processing speed and good flexibility. Hardware
platforms can be divided into several types, such as Micro
Control Unit + Complex Programmable Logic Device

xw

yw

zw

ow

Figure 3: Schematic diagram of the structured light plane
calibration target.
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(MCU + CPLD), Field Programmable Gate Array (FPGA),
Digital Signal Processor (DSP), and Advanced RISC
Machines (ARM) 11. The performance comparison is shown
in Table 1.

Table 1 illustrates that the ARM11 processor is superior
to other processors in processing speed, processing capabil-
ity, design complexity, and scalability. This paper selects
the S3C6410 ARM11 processor of Samsung, which is a pro-
cessor with strong data processing capability, perfect func-
tion, and strong scalability; it is suitable for the design of
the embedded smart VS.

Comprehensive metal oxide semiconductor (CMOS)
image sensor is used for image acquisition, with high inte-
gration and low power consumption, meeting the needs of
balancing image quality and device cost. Accordingly, this
section selects the CMOS image sensor OV9650 of OmniVi-
sion company as the image acquisition camera to directly
convert the collected visual signal into a digital signal and
output it.

Then, the line structured light projector is used to obtain
the object’s 3D information, which is rigidly connected with
the whole hardware system to fix the relative position of the
structured light source and the image sensor. It ensures that
the structured light plane based on the coordinate system of
the image sensor is fixed in the actual measurement.

The hardware system is designed with several interfaces,
including a 100M Ethernet interface, Controller Area Net-
work (CAN) bus interface, and 8G Secure Digital (SD)
Memory card. The data information obtained by image
acquisition and processing can be directly stored in an SD card
or transmitted to other terminals through the CAN bus to
realize the high interaction and scalability of the system.

The embedded vision measurement unit is designed with
the ARM11 core processor and the CMOS image sensor,
which has the advantage of low cost, easy implementation,
strong interaction, and convenient use.

2.3.2. Software Design of Smart VS. The embedded visual
measurement unit is run on a Linux operating system
(OS), which is an open-source code system, supports multi-
file systems and multitask operations, and has a small kernel
and high efficiency [14]. The smart VS is designed with a
trimmed Linux-3.0.1 as the kernel. The Linux kernel pro-

vides a unified application interface to access the audio and
video drivers, namely, Video For Linux Two (V4L2), and
the relevant interfaces of V4L2 are defined in include/
Linux/videodev2.h. The collected images and processed
results can be transmitted through the network interface.
The program design flow is shown in Figure 5.

2.4. Design of Cost Estimation Model of PTTP Based on BIM.
Next, a fast project cost estimation method based on particle
swarm optimization (PSO) [15] and least squares support
vector regression (LSSVR) [16] is proposed. PSO algorithm
is used to classify the data and eliminate abnormal data sam-
ple points accurately, and then LSSVR is used to design the
cost estimation method of PTTP. Further, the PSO-LSSVR
algorithm is applied in BIM, thereby realizing 3D visual
monitoring of PTTPs and rapid project cost estimation.

2.4.1. PSO Algorithm. PSO is initialized as a group of ran-
dom particles (random solutions), and the optimal solution
is found through iteration. In each iteration, the particles
update themselves by tracking two “extreme values”
(pbest and gbest). After obtaining these two optima, the
particle updates its speed and position through the fol-
lowing equations.

vij t + 1ð Þ = vij tð Þ + c1r1 pbestij tð Þ − xij tð Þ
� �

+ c2r2 gbestj tð Þ − xij tð Þ
� �

,

xij t + 1ð Þ = xij tð Þ + vij t + 1ð Þ: ð17Þ

i and j represent the j-dimensional variable of the ith
particle;vijðtÞ and xijðtÞ stand for the j-dimensional velocity
component and position component of the ith particle at time
t;pbestijðtÞ denotes the optimal position of the j-dimensional
individual of the ith particle at time t; gbestjðÞmeans the opti-
mal position of the j-dimensional component of the whole
particle swarm at time t; c1 and c2 refer to the self-learning
ability of particles and the ability to learn from excellent parti-
cles in the group, respectively; r1 and r2 are random number
between [0, 1].

CMOS camera
OV9650

Embedded operating system
Linux

ARM11 processor

Ethernet interface
Personal
computer

SD CAN bus

Figure 4: Structure block diagram of smart VS.
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2.4.2. Classification and Regression Analysis Method of
Project Cost Data.

(1) Classification Analysis. The Gaussian radial basis func-
tion (RBF) kernel is commonly used, as shown in Eq. (18).

K x, yð Þ = exp − x − xið Þ2
σ2

( )
ð18Þ

K ðx, yÞ represents the inner product of a transformation
space; xi stands for training data set input samples; and σ
refers to function parameters.

(2) LSSVR Analysis. Support vector machine (SVM) is a
generalized linear classifier for binary data classification
according to supervised learning. Its decision boundary is
the maximum margin hyperplane for learning samples. At
present, it has been widely used. Wan et al. constructed a
brain image fusion Digital Twin diagnosis and prediction
model based on a semisupervised support vector machine
and improved AlexNet [17]. The optimization index of

LSSVR adopts the square term to convert inequality con-
straints into equality constraints. The solution relationship
reads as follows:

min φ ωð Þ = 1
2 ω∙ωð Þ + 1

2C〠
l

i=1
η2i ,

s:t: ω∙φ ωð Þð Þ + bð Þ = 1 − ηi, ηi ≥ 0, i = 1, 2,⋯, l: ð19Þ

ω and b: a vector perpendicular to a hyperplane that is
defined by a parameter (ω, b); C: penalty coefficient; and ηi:
Relaxation term;

2.4.3. Fast Estimation Method of Project Cost Based on PSO-
LSSVR. First, c1 and c2 parameters in the PSO algorithm are
optimized, and the optimized PSO algorithm is used to opti-
mize the parameters of LSSVR further. The penalty factor C
and the function parameter σ in LSSVR are selected to con-
stitute the particles in the PSO algorithm. And the particles are
coded based on these two parameters. Each particle is a 2D
solution vector. Through iteration, the optimal solution vector

No
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Read

Network threadCanbus thread

Embedded intelligent vision sensor

Video thread

Can initialization

Request

Send image packet

IO output

Save to SD card

Open and initialize 
video device

Capture images

Image processing

Threshold

Image packet

Yes

Yes

Socket

Bind

Listen

Accept

Read

Close

No

Yes

Connect

Socket

Write

No
Read

Close

Figure 5: Program design flow chart.

Table 1: Performance comparison of a smart VS hardware platform.

MCU+CPLD DSP FPGA ARM11

Data processing speed Slower Fast Fast Faster

Multitasking capability Weaker Weaker Weaker Strong

Design complexity Low High Higher Higher

Scalability Weak Weak Stronger Strong
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is found to determine the optimal C and σ. Specifically, C
directly determines the complexity of the model; σ2 deter-
mines the radial action range of the function. To sum up,
the PSO algorithm does not directly obtain the empirical
values of the two parameters but only optimizes them.

2.4.4. BIM Model Architecture Design. The cost estimation
model architecture of PTTPs based on BIM is shown in
Figure 6.

The working steps of the BIM cost estimation model are
as follows: (1) Historical engineering data are selected to
train and verify the accuracy and precision of the model.
(2) Autodesk Revit is used to build a 3D visual model of
the substation, and some project information is obtained.
Some parameters are applied to the standard quota to obtain
the project parameters and cost, and the project data are
determined accordingly. (3) The determined project data
are taken as the verification sample to obtain the estimated
cost of the project finally, and the design should be modified
in time by comparing the actual static investment data.

Based on the designed BIM model, accurate and fast
engineering information can be obtained, and the accuracy
and precision of engineering quantity and cost calculation
are higher. In the process of actual project cost, the collabo-
rative work of all participants should be strengthened, and
work efficiency should be improved. The BIM model can
update the data in real-time, calculate the cost, and save
the change in data for search in case of design change. To
sum up, the introduction of BIM technology has important
practical significance for the cost of PTTPs.

2.5. Experimental Methods

2.5.1. Measurement Accuracy-Test Method of Embedded
Smart Sensor.

(1) Displacement Measurement. Displacement measurement
is usually used to obtain scene depth information, mainly by
adjusting the position relationship between smart VS and

measurement point, and structured light vision measure-
ment is used to calculate depth information. First, the laser
line projected by the VS is placed on the measuring point.
Then, the VS is moved, and the displacement variation is
calculated relative to the measuring point each time, as
shown in Eq. (20).

Δk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − x0ð Þ2 + yi − y0ð Þ2 + zi − z0ð Þ2

q
: ð20Þ

(x0, y0, z0): initial position of smart VS; (xi, yi, zi): posi-
tion of smart VS after each adjustment.

The relative displacement variation obtained by the mea-
surement is calculated as in Eq. (21).

Δw =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiw − x0wð Þ2 + yiw − y0wð Þ2 + ziw − z0wð Þ2

q
: ð21Þ

(xow, yow, zow): 3D coordinates of the measuring point
obtained by the VS at the initial position; (xiw, yiw, ziw): 3D
coordinates of the measuring point obtained by the position
of the VS after displacement.

(2) Dimension Measurement. At present, VS has been
widely used in industrial measurement. It has the advan-
tages of noncontact, nonwear, fastness, and accuracy [18].
Here, different specifications of workpieces are selected to
verify the measurement accuracy of the VS. The workpiece
size information measured by an embedded smart VS is
compared with its actual size, and the measurement error
is calculated.

2.5.2. Test of Cost estimation Model of PTTP Based on BIM.

(1) Selection of Test Indexes. The four main subitems of static
investment are selected as the index of the model test, namely,
construction cost, installation cost, equipment purchase cost,

Data processing

PSO-LSSVR algorithm
cost prediction model

Output the predicted
investment scale and compare
it with the actual investment

scale of the project

Engineering
historical data

BIM project cost
estimation model

Standard quota
applied to some

indicators

Characteristics of
the project itself

Engineering data
information to be predicted

Figure 6: Structure diagram of BIM-based cost estimation model of PTTP.
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and other costs. Static investment refers to the time value of
the cost calculated by collecting the price level at a certain time
according to the regulations. The size of the itemized cost
directly determines the static investment [19, 20].

(2) Model Test Method. Firstly, partial cost data of a 220 kV
PTTP of Ningxia company within five years are selected as
the training and verification samples of the prediction

algorithm. The proposed fast cost estimation algorithm
of the PTTP is used to predict the project cost, and the
predicted cost is compared with the actual settlement
results to verify the accuracy of the PSO–LSSVR predic-
tion algorithm. Then, this section also selects the standard
SVM algorithm and the unoptimized LSSVR algorithm to
make a comparative analysis with the proposed PSO–
LSSVR algorithm.
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Figure 7: Comparison between measured displacement and actual displacement results.
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According to the license, the cost data of 220kV PTTP used
to support the research findings are provided by Ningxia
Electric Power Co., Ltd., so it cannot be provided free of charge.
At the same time, the experimental data set is constructed
based on the technically-treated original data provided by the
company, which has a certain degree of confidentiality.

Secondly, BIM is used to implement the three-
dimensional model of the project. It is necessary to obtain
the project information and cost in combination with the
indexes to determine the project information, such as volt-
age level, number of transformers, and capacity of each
transformer. The information is imported into PSO–LSSVR
prediction algorithm to obtain the cost prediction and com-
pare it with the project’s actual cost. Therefore, the four costs
are analyzed based on the model test experiment.

3. Results of Algorithm and Model Test

3.1. Results of Smart VS Measurement Accuracy Test

3.1.1. Displacement Measurement Results. The displacement
measured by the designed smart VS is compared with the
actual displacement, as shown in Figure 7.

Figure 7 demonstrates that, overall, the measured value
is slightly larger than the actual value. The maximum dif-
ference between the measured and actual values is
16.9mm, the corresponding error is 3.52%, the minimum
difference is 2.6mm, and the corresponding error is
1.30%. The average displacement difference is 9.61mm,
and the average error is about 2.56%. To sum up, under
the designed embedded smart VS, the measurement error
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Figure 9: Comparison between the estimated cost and the actual cost (a. Construction cost; b. Equipment purchase cost; c. Installation cost;
d. Other costs).

9Wireless Communications and Mobile Computing



of the target is controlled within 4%, and the measurement
accuracy is high.

3.1.2. Dimensional Measurement Results. The target dimen-
sion measured by the designed smart VS is compared with
the actual dimension, as shown in Figure 8.

Figure 8 reveals that similar to the displacement
measurement results, and overall, the dimensional mea-
surement value is slightly larger than the actual value.

The maximum difference between the two is 7.9mm, the
corresponding error is 3.94%, the minimum difference is
0.7mm, and the corresponding error is 3.55%. The aver-
age dimension difference is 3.46mm, and the average
error is about 3.72%. To sum up, the error of the target
dimension measurement with an embedded smart VS is
controlled within 4%, and the accuracy is high. It is suit-
able for large-scale measurement on the construction site
of PTTP.
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Figure 10: Comparison of three algorithms’ estimation errors (a. construction cost; b. equipment purchase cost; c. installation cost; d. other costs).
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3.2. Accuracy Test Results of PSO–LSSVR Project Cost
Estimation Algorithm

3.2.1. Estimated Results of Itemized Cost. The itemized cost
prediction value and actual cost comparison results obtained
by PSO -LSSVR project cost prediction algorithm are shown
in Figure 9.

According to the comparison chart of itemized cost
estimation results, there is a certain error between the esti-
mated value and the actual value of the four itemized
costs. Among them, the smallest error is 0.11% of project
4’s equipment purchase cost, and the largest error is
19.93% of project 2’s installation cost. The average errors
of the four itemized costs are 5.13%, 6.55%, 17.43%, and
11.75%, respectively. Hence, the estimation error of item-
ized cost of PTTP based on the PSO–LSSVR algorithm is
generally controlled within 20%, and the accuracy needs
to be improved. Still, the range of itemized costs can be
quickly understood, which is helpful to the feasibility anal-
ysis of PTTP in the early stage.

Figure 10 compares the itemized cost errors estimated by
SVM, LSSVR, and the proposed PSO–LSSVR.

As plotted in Figure 10, from the overall trend, the pre-
diction errors of the three algorithms for itemized costs are
SVM, LSSVR, and PSO–LSSVR from large to small. The
SVM algorithm and the LSSVR algorithm’s average predic-
tion errors are 15.11, 15.22, 25.60, 23.35, and 9.97, 11.25,
22.33, and 18.17, respectively. By contrast, the proposed
PSO–LSSVR algorithm has presented average prediction
errors of 5.13, 6.55, 17.43, and 11.75, respectively, signifi-
cantly lower than the other two algorithms. Thus, the calcu-
lation accuracy of the improved LSSVR algorithm is better
than that of the traditional SVM algorithm. After LSSVR is
optimized by the PSO algorithm (namely, the proposed

PSO-LSSVR), the accuracy is further improved, and the
optimization effect is remarkable.

3.2.2. Results of Static Investment Cost Estimation. The com-
parison results of estimated static investment based on the
PSO–LSSVR project cost estimation algorithm and actual
cost are shown in Figure 11.

Figure 11 presents that the maximum error between the
static investment estimation cost based on PSO–LSSVR
algorithm and the actual cost is 10.42% of project 1, the
minimum error is 2.16% of project 5, and the average error
is 5.92%. The comparison between Figures 10 and 11
suggests that the error of itemized cost is generally greater
than that of static investment. This is probably because
the itemized cost’s relevant information is more detailed,
the level is lower than the static investment, and the index
correlation and dependency are slightly poor; as a result,
the PSO-LSSVR algorithm shows a low accuracy in estimat-
ing the itemized cost.

3.3. Test Results of BIM-Based PTTP Cost Estimation Model.
The comparison between the estimated itemized cost of the
BIM-based PTTP cost estimation model and the actual item-
ized cost is shown in Figure 12.

Figure 12 signifies that the installation cost error
between the actual value and estimated value of the BIM-
based estimation model is the smallest among the four item-
ized costs, 3.96%, while the largest error is other costs,
9.91%, and the overall average error is 7.86%. Therefore,
the estimation error if the BIM-based PTTP cost estimation
model on the itemized cost is generally controlled within the
allowable range, which can be applied to the PTTP cost
management of Ningxia company.
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4. Conclusions

Traditional VS is generally expensive, bulky, and nonportable,
with low data processing efficiency. The traditional cost man-
agement method of PTTP in Ningxia company is inefficient,
cumbersome, insecure, error-prone, and rigid. To this end,
firstly, the embedded ARM processor with a small volume
and excellent data processing ability is applied to the VS to
design an embedded smart VS. It can provide more accurate
field spatial information for the BIM 3D model. Secondly,
the PSO algorithm is used to optimize the key parameters of
LSSVR to improve its robustness. Thirdly, the optimization
algorithm is combined with BIM to build the cost estimation
model for PTTP. The performance of the algorithm and the
model is verified using real data. The results corroborate that
(I) the designed embedded smart VS error is controlled within
4% and has high measurement accuracy. (II) The error of the
proposed PSO-LSSVR algorithm in engineering cost predic-
tion is held within 20%, and the accuracy needs to be
improved. Still, it can also quickly understand the interval
range of itemized cost. (III) The accuracy of the proposed
algorithm is also higher than that of the traditional algorithm,
and the optimization effect is remarkable. (IV) The error of the
proposed BIM-based PTTP cost estimation model in the pro-
ject cost prediction is controlled within 10%, with high accu-
racy, which can be applied to the PTTP management of
Ningxia company. Lastly, the shortcomings of this paper are
summarized as follows: (1) The function of the embedded
smart VS is relatively simple, and the processing capacity
needs to be improved. (2) The estimation error of the pro-
posed PSO–LSSVR estimation algorithm in itemized costs
and other index is larger than the static investment, and the
accuracy and precision of the model need to be further
improved. The purpose is to provide important technical sup-
port for upgrading traditional VS technology and realizing

visual management and rapid cost estimation of PTTP of
Ningxia companies.
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All relevant data are within the manuscript and its Support-
ing Information files.
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