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Granular computing is to represent, construct, and process information granules formalized in many different approaches, and
different formal approaches emphasize the same fundamental facet in different ways. In this paper, we present the
multigranulation rough set models in the intuitionistic fuzzy neighborhood information system generated by Internet of
Things (IoT) data with weighted features and develop the basic properties of the proposed models. Moreover, the
multigranulation-based optimal granularity selection approach is established by introducing the concept of granularity
significance. The experimental results on eight IoT datasets demonstrate that the proposed methods exhibit better efficiency by
comparing three classical methods under the intuitionistic fuzzy weighted neighborhood information system.

1. Introduction

The Internet of Things (IoT) [1–4] refers to the real-time
collection of important information or processes that need
monitoring, connection, and interaction through various
information sensors, laser scanners, and other devices and
technologies, so as to form the IoT datasets. Granular com-
puting [5–8] is an area of study that explores different levels
of granularity in human-centered perception, problem solv-
ing, and information processing, as well as their applications
in the design and implementation of knowledge-intensive
intelligent systems. Granular computing as an emerging area
brings a great deal of original and practically relevant ideas.
Granular computing brings and unifies fundamental ideas of
interval analysis, fuzzy sets, and rough sets and facilitates
building a coherent view at all of them with an overarching
concept of granularity of information. It helps identify main
problems of processing and the key features of such process-
ing, which are common to all the formalisms being consid-
ered. Granular computing forms a coherent conceptual
and algorithmic platform. It directly benefits from the
already existing and well-established concepts of informa-

tion granules formed in the setting of set theory, rough sets,
fuzzy sets, and others.

Since Zadeh introduced fuzzy set theory [9], several gen-
eralizations have been proposed [10–13]. Among them,
intuitionistic fuzzy set proposed by Atanassov [10] provides
a flexible mathematical framework to cope, besides the pres-
ence of vagueness, with the hesitance orienting from impre-
cise information. The intuitionistic fuzzy set is an extension
of the fuzzy set and considers both membership degree and
nonmembership degree which are functions valued in inter-
val ½0, 1�, while the fuzzy set gives a membership degree only.
Intuitionistic fuzzy sets are described using two membership
functions expressing the degree of membership (belonging-
ness) and the degree of nonmembership (nonbelongingness)
of elements of the universe to the intuitionistic fuzzy set.
Intuitionistic fuzzy set can be used to improve the accuracy
of the results to compare with fuzzy set, even though the
intuitionistic index is “0.” The intuitionistic fuzzy set can
be used to describe the fuzziness of the objective world more
accurately, and it has attracted the attention of many
scholars [14–19]. Different aspects of intuitionistic fuzzy sets
have been used for pattern recognition and decision-making,
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where imperfect facts coexist with imprecise knowledge.
Numerous scholars have put forward many theories on the
foundation of intuitionistic fuzzy set theory: intuitionistic
fuzzy ordered decision table, intuitionistic fuzzy neighbor-
hood rough set model, etc. The intuitionistic fuzzy set theory
has been extensively used in data classification [20, 21],
decision-making [22, 23], attribute reduction [24], predic-
tion [25, 26], risk evaluation [27], and so on.

Rough set theory proposed by Pawlak [28–31] is an
extension of the classical set theory and could be regarded
as a mathematical and soft computing tool to handle impre-
cision, vagueness, and uncertainty in data analysis. This rel-
atively new soft computing methodology has received great
attention in recent years, and its effectiveness has been con-
firmed successful applications in many science and engi-
neering fields, such as pattern recognition, data mining,
imaging processing, and medical diagnosis. Rough set theory
is built on the basis of the classification mechanism, it is clas-
sified as the equivalence relation in a specific universe, and
the equivalence relation constitutes a partition of the uni-
verse. Due to the existence of uncertainty and complexity
of particular problems, several extensions of the rough set
model have been proposed in terms of various requirements,
such as the variable precision rough set model and rough set
model based on neighborhood relation. These extended
rough set models can be roughly cast into two perspectives:
(1) extending the data type, including incomplete data, set-
valued data, interval-valued data, fuzzy data, and intuitionis-
tic fuzzy data and (2) extending the binary relation, includ-
ing similarity relation, tolerance relation, dominance
relation, and neighborhood relation. From the perspective
of granular computing, a binary relation used can be
regarded as a granulation. Hence, the classical rough sets
are based on a single granulation (only one equivalence rela-
tion). However, rough sets may be associated with many
granulations. Qian et al. extended Pawlak’s single-
granulation rough set model to a multiple granulation rough
set model [32]. Since the multigranulation rough set was ini-
tially proposed by Qian et al., many researchers have
extended the multigranulation rough sets [33–38]. From
the thought of multigranulation, optimistic multigranulation
and pessimistic multigranulation are two of the most basic
ways of research.

For an IoT dataset, sometimes, the attributes or fea-
tures of the dataset do not have the same weight [39]. In
other words, some weight factors are large, and some
weight factors are small. Sometimes, the attribute is not
equally important, for example, when judging a person’s
gender by certain characteristics, the features of hair
length are considered more important than the age. So,
rendering a different weight for each attribute is extremely
important. However, these studies are carried out under
the single granulation. With the advent of the era of mas-
sive data, it is necessary to study the granularity under the
condition of multigranulation. In this case, if we still use
the traditional rough set to do the data analysis, it is obvi-
ously inappropriate. We need to discover new data analy-
sis methods that can deal with the characteristics of
weight. For the intuitionistic fuzzy weighted neighborhood

information formed by IoT data, the purpose of this paper
is to propose several multigranulation intuitionistic fuzzy
weighted neighborhood rough set models, study their
important properties, and then make the optimal granular-
ity selection. The main contents and innovation of this
article could be summarized in the following aspects.

(1) The multigranulation rough set models in the intui-
tionistic fuzzy weighted neighborhood information
systems and the corresponding basic properties are
discussed.

(2) The granularity selection criterion based on granu-
larity significance is proposed to select the optimal
granularity from the intuitionistic fuzzy weighted
neighborhood information systems.

(3) The experimental evaluation is performed using 8
public available datasets, and the superiority of opti-
mal granularity selection is shown by the analysis of
experimental results.

From the selection of optimal granularity, it can elimi-
nate irrelevant or redundant granularity, so as to reduce
the number of granularity, improve the accuracy of the
model, and reduce the running time. That is, it can reduce
the amount of data processing, save processing time, reduce
the impact of noise in data, and improve the performance of
information processing system. This paper is organized as
follows. In Section 2, related concepts about intuitionistic
fuzzy weighted neighborhood information system and mul-
tigranulation rough set model are reviewed briefly. In Sec-
tion 3, three kinds of multigranulation rough sets for
intuitionistic fuzzy weighted data are constructed, and the
related properties and further relationship are discussed. In
Section 4, the concepts of dependency degree and granular-
ity significance are introduced, and a heuristic algorithm is
presented to select the optimal granularity of the intuitionis-
tic fuzzy weighted neighborhood information system. In
Section 5, the corresponding experimental testing is con-
ducting by IoT related data from public datasets to test the
effectiveness of the proposed method. Finally, Section 6
covers some conclusions.

2. Related Fundamental Works

In this section, we review the basic concepts about the intui-
tionistic fuzzy set and the intuitionistic fuzzy weighted
neighborhood rough sets. The notion of information system
provides a convenient basis for the representation of objects
in terms of their attributes.

Definition 1. An information system is a tuple I = ðU , At, V
, FÞ, where U is a nonempty and finite set of objects, and
U = fx1, x2,⋯,xng; At is a nonempty and finite set of attri-
butes, and At = fa1, a2,⋯,amg; V =S

al∈At
Vl, Vl, is the

domain of al, al ∈ At; F = f f ljU ⟶ Vl, l ≤mg, f l, is the
value of al on x ∈U .
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A decision information system is an information system
ðU , At ∪D, V , f Þ, where At ∩D =∅, and At is the condition
attribute set, while D is called the decision attribute set. In
the decision information system, RAt and RD are equivalence
relations induced by At and D, respectively. The construc-
tions of RAt and RD are expressed as follows: RAt = fðx, yÞ
∈U ×Uj f lðxÞ = f lðyÞ,∀al ∈ Atg and RD = fðx, yÞ ∈U ×U j
f kðxÞ = f kðyÞ,∀dk ∈Dg. It is easy to see that RAt partitions
the universe U into disjoint subsets, the same to RD. Such
a partition of the universe is a quotient set of U and is
denoted by U/RAt = f½x�Atjx ∈Ug, where ½x�At is called
equivalence class containing x with respect to RAt , and
½x�At = fy ∈U jðx, yÞ ∈ RAtg. If RAt ⊆ RD, then we say that ð
U ,At ∪D, V , f Þ is consistent; otherwise, it is inconsistent.
For the sake of simplicity, in the sequel, we set D = fdg,
Vd = f1, 2,⋯,rg, and U/RD = fD1,D2,⋯,Dqg. Dj is the deci-
sion class Dj = fx ∈U jdðxÞ = jg.

Let I = ðU , At, V , FÞ be an information system and A ⊆
At and RA be an equivalence relation. For any X ⊆U , one
can characterize X by a pair of upper and lower approxima-
tions which are

RA Xð Þ = x ∈U x½ �A ⊆ X
��� �

;
�RA Xð Þ = x ∈U x½ �A ∩ X ≠∅

��� �
:

ð1Þ

For a target concept X ⊆U , if RAðXÞ = �RAðXÞ, X is called
definable set, and if RAðXÞ ≠ �RAðXÞ, then X is called Pawlak
rough set. Three regions can be obtained as POSðXÞ = RAð
XÞ, NEGðXÞ = ~ �RAðXÞ, and BNDðXÞ = �RAðXÞ − RAðXÞ
which are called the positive region, negative region, and
boundary region of X, respectively.

In an information system, the equivalence class of an
object with respect to an attribute subset of At is a gran-
ularity from the viewpoint of granular computing. A par-
tition of the universe is a granular structure. An attribute
set or its partition can also be called a granulation. Rough
set proposed by Pawlak is a single-granulation rough set
model, and the granular structure in this model is induced
by the indiscernibility relation of the attribute set. In gen-
eral, the above cases cannot always be satisfied or required
in practical problems. In the three cases referred in refer-
ence [40], there are limitations in single-granulation rough
set for addressing practical problems with multiple parti-
tions, and multigranulation rough set can now be used
to solve these problems better. Under those circumstances,
we must describe a target concept through multiple binary
relations on the universe according to a user’s require-
ments or targets of problems solving. In multigranulation
rough sets, a concept is approximated through multiple
partitions of the universe, which are induced by multiple
equivalence relations.

Definition 2. Let I = ðU , At, V , FÞ be an information system,
RA1

, RA2
,⋯, RAh

are equivalence relations induced by A1,
A2,⋯, Ah ⊆ At. For any X ⊆U , the optimistic multigranula-
tion and pessimistic multigranulation lower and upper

approximations of the target set X are shown below.

OM
〠
h

i=1
RAi

Xð Þ = x ∈U ⋁
h

i=1
x½ �Ai

⊆ X
� �����

� �
,

�OM〠h

i=1RAi

Xð Þ = x ∈U ⋀
h

i=1
x½ �Ai

∩ X ≠∅
� �����

� �
,

PM
〠
h

i=1
RAi

Xð Þ = x ∈U ⋀
h

i=1
x½ �Ai

⊆ X
� �����

� �
,

�PM〠h

i=1RAi

Xð Þ = x ∈U ⋁
h

i=1
x½ �Ai

∩ X ≠∅
� �����

� �
:

ð2Þ

An intuitionistic fuzzy set X of U has the form X =
fhx, τXðxÞ, νXðxÞijx ∈Ug, where τX : U ⟶ ½0, 1� and νX
: U ⟶ ½0, 1�. τXðxÞ and νXðxÞ are called the membership
degree and nonmembership degree of the object x ∈U to
X. Furthermore, they satisfy 0 ≤ τXðxÞ + νXðxÞ ≤ 1 for any
x ∈U . In general, we use IFðUÞ to denote all intuitionistic
fuzzy sets in the universe U . Let X, Y ∈ IFðUÞ, X ⊆ Y ⇔
τXðxÞ ≤ τYðxÞ∧νXðxÞ ≥ νYðxÞ for any x ∈U . If both X ⊆
Y and Y ⊆ X, then we say X is equal to Y , denoted by
X = Y . The universe set and empty set are special intui-
tionistic fuzzy sets, where U = fhx, 1, 0ijx ∈Ug and ∅ =
fhx, 0, 1ijx ∈Ug. The intersection and union of X and
Y are denoted as X ∩ Y and X ∪ Y , respectively. More-
over, we denote complement of X by ~ X: Let X, Y ∈ IF
ðUÞ, and then,

X ∩ Y = x,∧ τX xð Þ, τY xð Þf g,∨ νX xð Þ, νY xð Þf gh i x ∈Ujf g,
X ∪ Y = x,∨ τX xð Þ, τY xð Þf g,∧ νX xð Þ, νY xð Þf gh i x ∈Ujf g,

~ X = x, νX xð Þ, τX xð Þh i x ∈Ujf g:
ð3Þ

For X ∈ IFðUÞ, the membership degree of X is τXðxÞ,
and the nonmembership degree of X is νXðxÞ. Then, the
intuitionistic index (or hesitancy degree) of X is πXðxÞ.
They have the following condition: τXðxÞ + νXðxÞ + πXðx
Þ = 1: Under the condition that the intuitionistic index
is a constant, the above formula can be used as a formula
to determine the nonmembership degree of intuitionistic
fuzzy sets.

An information system ðU , At, V , FÞ is called an intui-
tionistic fuzzy information system if the domain Vl of
each condition attribute al is an intuitionistic fuzzy set of
U . A decision intuitionistic fuzzy information system is
an intuitionistic fuzzy system with decision attribute set,
namely, ðU , At ∪ fdg, V , FÞ, where d is a decision attri-
bute. For an intuitionistic fuzzy information system, in
many cases, its condition attributes are no longer indistin-
guishable, but the impact and importance of each attribute
on the system are different. In other words, the weight of
attributes should be considered. Let us introduce an
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objective method for solving weight with an intuitionistic
fuzzy information system and provides the concept of
intuitionistic fuzzy weighted neighborhood information
system (IFWN).

Definition 3 (see [39]). Given an IFWN = ðU , At ∪ fdg, V ,
FÞ, C ⊆ At, an intuitionistic fuzzy weighted neighborhood
relation Rδ

C is defined as

Rδ
C = x, yð Þ dc x, yð Þ < δ, y ∈Ujf g, ð4Þ

where δ is a neighborhood threshold.

Denote ½x�δC as the intuitionistic fuzzy weighted neigh-

borhood class of x. ∀y ∈ ½x�δC , it satisfies dcðx, yÞ < δ. dc is a
function to compute the distance between elements x and
y, which is defined as

dC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
a∈C

w að Þ f x, að Þ − f y, að Þð Þð Þ2
r

, ð5Þ

where f ðx, aÞ = <τaðxÞ, νaðxÞ > refers to the attribute
value of element x under attribute a.

w að Þ f x, að Þ − f y, að Þð Þð Þ2 =wτ að Þ2 τa xð Þ − τa yð Þð Þ2
+wν að Þ2 νa xð Þ − νa yð Þð Þ2,

ð6Þ

where wτðaÞ means the attribute a’s membership degree
weight, and wνðaÞ means the attribute a’s nonmembership
degree weight.

The formation ofwτðaÞ andwνðaÞ is calculated as follows.

wτ að Þ = Cj juτ að Þ
∑ai∈C uτ aið Þj j ,

wν að Þ = Cj juν að Þ
∑ai∈C uν aið Þj j ,

ð7Þ

uτ = AT
τAτ


 �−1
AT
τY , uν = AT

νAν


 �−1
AT
νY , ð8Þ

where Aτ and Aν are defined as

Aτ =
f x1, a1, τð Þ f x1, a2, τð Þ ⋯ f x1, am, τð Þ

⋮ ⋮ ⋮ ⋮

f xn, a1, τð Þ f xn, a2, τð Þ ⋯ f xn, am, τð Þ

0
BB@

1
CCA,

Aν =
f x1, a1, νð Þ f x1, a2, νð Þ ⋯ f x1, am, νð Þ

⋮ ⋮ ⋮ ⋮

f xn, a1, νð Þ f xn, a2, νð Þ ⋯ f xn, am, νð Þ

0
BB@

1
CCA,

ð9Þ

and f ðxi, aj, τÞ means the membership degree of xi in the
attribute aj; similarly, f ðxi, aj, νÞ means the nonmembership

degree of xi in the attribute aj, and Y is the decision vector

Y = f x1, dð Þ, f x2, dð Þ,⋯, f xn, dð Þð Þ: ð10Þ

Sometimes, there exists some columns in Aτ (or Aν) that
are linearly correlated or the number of samples less than
the number of attributes, which makes AT

τAτ and AT
νAν that

are singular matrices. Under these circumstances, the calcula-
tion formula of uτ and uν turns into

uτ = AT
τAτ + E


 �−1
AT
τY ,

uν = AT
νAν + E


 �−1
AT
νY :

ð11Þ

3. Multigranulation Rough Sets for Intuitionistic
Fuzzy IoT Data with Weighted Attributes

In this section, we provide the construction of multigranula-
tion rough sets in the intuitionistic fuzzy weighted neighbor-
hood information systems and discuss their corresponding
properties. We denote the pessimistic multigranulation
intuitionistic fuzzy weighted neighborhood rough set as
model I and the optimistic multigranulation weighted neigh-
borhood rough set as model II.

Definition 4. Let IFWN = ðU , At ∪ fdg, V , FÞ be an IFWN,
X ⊆U , and Rδ

A1
, Rδ

A2
,⋯, Rδ

Ah
are intuitionistic fuzzy weighted

neighborhood relations induced by A1, A2,⋯, Ah ⊆ At. α
and β are thresholds, where 0 ≤ β ≤ α ≤ 1. The weight of each
granularity can be calculated from formula (7). Then, the
upper and lower approximations of model I and model II
are defined as follows.

Model I:

�PR β,δð Þ
〠h

i=1Ai

Xð Þ = x ∈U ⋁
h

i=1
P X x½ �δAi

> β
���� ������

� �
,

PR α,δð Þ

〠
h

i=1
Ai

Xð Þ = x ∈U ⋀
h

i=1
P X x½ �δAi

≥ α
���� ������

� �
:

ð12Þ

Model II:

�OR β,δð Þ
〠h

i=1Ai

Xð Þ = x ∈U ⋀
h

i=1
P X x½ �δAi

> β
���� ������

� �
,

OR α,δð Þ

〠
h

i=1
Ai

Xð Þ = x ∈U ⋁
h

i=1
P X x½ �δAi

≥ α
���� ������

� �
:

ð13Þ

Remark 5.

(1) Rδ
Ai
ði ∈ f1, 2,⋯,hgÞ satisfies reflexivity and symme-

try, and U/Rδ
Ai
ði ∈ f1, 2,⋯,hgÞ is a covering on U
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(2) When δ = 0, α = 1, and β = 0, the relation Rδ
Ai

ði ∈ f1, 2,⋯,hgÞ degenerates to an intuitionistic fuzzy
equivalence relation

In order to facilitate the generalized multigranulation
rough sets in intuitionistic fuzzy weighted neighborhood
information system, the definition of characteristic function
is discussed in the following.

Definition 6. Let IFWN = ðU , At ∪ fdg, V , FÞ be an IFWN,
and Rδ

A1
, Rδ

A2
,⋯, Rδ

Ah
are intuitionistic fuzzy weighted neigh-

borhood relations induced by A1, A2,⋯, Ah ⊆ At. The char-
acteristic functions UAi

X ðxÞ and LAi
X ðxÞ are defined as

LAi
X xð Þ =

1, P X x½ �δAi

���� �
≥ α

0, else

8<
: ,

UAi
X xð Þ =

1, P X x½ �δAi

���� �
> β

0, else

8<
: :

ð14Þ

LAi
X ðxÞ represents the relationship between the conditional

probability of X under Ai and the parameter α, and UAi
X ðxÞ

represents the relationship between the conditional probabil-
ity of X under Ai and the parameter β. ∑h

i=1U
Ai
X ðxÞ indicates

the total number of granularity whose conditional probability
PðXj½x�δAi

Þ ≥ α, and ∑h
i=1L

Ai
X ðxÞ indicates the total number of

granularity whose conditional probability PðXj½x�δAi
Þ > β.

With the above concepts, model I and model II can be
expressed as

Model I:

�PR β,δð Þ
〠h

i=1Ai

Xð Þ = x ∈U
∑h

i=1U
Ai
X xð Þ

h
> 0

�����
( )

,

PR α,δð Þ

〠
h

i=1
Ai

Xð Þ = x ∈U
∑h

i=1L
Ai
X xð Þ
h

= 1
�����

( )
:

ð15Þ

Model II:

�OR β,δð Þ
〠h

i=1Ai

Xð Þ = x ∈U
∑h

i=1U
Ai
X xð Þ

h
= 1

�����
( )

,

OR α,δð Þ

〠
h

i=1
Ai

Xð Þ = x ∈U
∑h

i=1L
Ai
X xð Þ
h

> 0
�����

( )
:

ð16Þ

We introduce the parameter variable η (η ∈ ð0, 1�) to
study the upper approximation and lower approximation

for the generalized multigranulation intuitionistic fuzzy
weighted neighborhood rough sets below.

Definition 7. Let IFWN = ðU , At ∪ fdg, V , FÞ be a intuitio-
nistic fuzzy weighted neighborhood information system, X
⊆U , and Rδ

A1
, Rδ

A2
,⋯, Rδ

Ah
are intuitionistic fuzzy weighted

neighborhood relations induced by A1, A2,⋯, Ah ⊆ At. The
generalized upper approximation and lower approximation
are defined as follows:

�G β,δð Þ
〠h

i=1Ai

Xð Þ = x ∈U
∑h

i=1U
Ai
X xð Þ

h
> 1 − η

�����
( )

,

G α,δð Þ

〠
h

i=1
Ai

Xð Þ = x ∈U
∑h

i=1L
Ai
X xð Þ
h

≥ η

�����
( )

:
ð17Þ

The positive region, negative region, upper boundary
region, and lower boundary region are derived as

POS Xð Þ = �G β,δð Þ
〠h

i=1Ai

Xð Þ ∩G α,δð Þ

〠
h

i=1
Ai

Xð Þ,

NEG Xð Þ = ~ �G β,δð Þ
〠h

i=1Ai

Xð Þ ∪G α,δð Þ

〠
h

i=1
Ai

Xð Þ

0
BBBB@

1
CCCCA,

upBN Xð Þ = �G β,δð Þ
〠h

i=1Ai

Xð Þ −G α,δð Þ

〠
h

i=1
Ai

Xð Þ,

lowBN Xð Þ = G α,δð Þ

〠
h

i=1
Ai

Xð Þ − �G β,δð Þ
〠h

i=1Ai

Xð Þ:

ð18Þ

Proposition 8. Given an IFWN = ðU ,At ∪ fdg,V , FÞ and
granularity sets A1, A2,⋯,Ah ⊆ At, X ⊆U , there exists the
following:

(1) POSðXÞ ∩NEGðXÞ =∅

(2) POSðXÞ ∩ ðupBNðXÞ ∪ lowBNðXÞÞ =∅

(3) POSðXÞ ∪NEGðXÞ ∪ upBNðXÞ ∪ lowBNðXÞ =U

Proof.

5Wireless Communications and Mobile Computing



(1) From Definition 7, POSðXÞ ∩NEGðXÞ = ð �Gðβ,δÞ
∑h

i=1Ai
ðX

Þ ∩Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∩ ð~ ð �upperðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðXÞÞÞ = ð
�Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∩Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∩ ðU − �Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∪Gðα,δÞ
∑h

i=1Ai
ð

XÞÞ⇒ ð �Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðXÞÞ ∩ ðU − �Gðβ,δÞ
∑h

i=1Ai
ðXÞ

∪Gðα,δÞ
∑h

i=1Ai
ðXÞÞ =∅; hence, POSðXÞ ∩NEGðXÞ =∅

(2) POSðXÞ ∩ ðupBNðXÞ ∪ lowBNðXÞÞ = ð �Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∩

Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∩ ðð �Gðβ,δÞ

∑h
i=1Ai

ðXÞ −Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∪ ðGðα,δÞ

∑h
i=1Ai

ð

XÞ − �Gðβ,δÞ
∑h

i=1Ai
ðXÞÞÞ = ð �Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∩Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∩ ð

�Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðXÞ − ð �Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∩Gðα,δÞ

∑h
i=1Ai

ðXÞÞÞ
=∅

(3) POSðXÞ ∪NEGðXÞ ∪ upBNðXÞ ∪ lowBNðXÞ = ð
�Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∩Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∪ ð~ ð �Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∪Gðα,δÞ
∑h

i=1Ai
ðX

ÞÞÞ ∪ ðð �Gðβ,δÞ
∑h

i=1Ai
ðXÞ −Gðα,δÞ

∑h
i=1Ai

ðXÞÞ ∪ ðGðα,δÞ
∑h

i=1Ai
ðXÞ −

�Gðβ,δÞ
∑h

i=1Ai
ðXÞÞÞ = ð �Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∩Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∪ ðU −

�Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðXÞÞ ∪ ð �Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðXÞ

− �Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∩Gðα,δÞ

∑h
i=1Ai

ðXÞÞ = ðU − �Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∪

Gðα,δÞ
∑h

i=1Ai
ðXÞÞ ∪ ð �Gðβ,δÞ

∑h
i=1Ai

ðXÞ ∪Gðα,δÞ
∑h

i=1Ai
ðXÞÞ =U

Proposition 9. Given an IFWN = ðU , At ∪ fdg, V , FÞ and
granularity set A1, A2,⋯, Ah ⊆ At, X ⊆U , then

(L1) Gðα,δÞ
∑h

i=1Ai
ðX ∩ YÞ ⊆Gðα,δÞ

∑h
i=1Ai

ðXÞ ∩Gðα,δÞ
∑h

i=1Ai
ðYÞ

(U1)
�

Gðβ,δÞ
∑h

i=1Ai
ðX ∩ YÞ ⊆ �

Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∩ �

Gðβ,δÞ
∑h

i=1Ai
ðYÞ

(L2) Gðα,δÞ
∑h

i=1Ai
ðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðYÞ ⊆ Gðα,δÞ
∑h

i=1Ai
ðX ∪ YÞ

(U2)
�

Gðβ,δÞ
∑h

i=1Ai
ðXÞ ∪ �

Gðβ,δÞ
∑h

i=1Ai
ðYÞ ⊆ �

Gðβ,δÞ
∑h

i=1Ai
ðX ∪ YÞ

(L3) X ⊆ Y ⇒ Gðα,δÞ
∑h

i=1Ai
ðXÞ ⊆Gðα,δÞ

∑h
i=1Ai

ðYÞ

(U3) X ⊆ Y ⇒ �
Gðβ,δÞ
∑h

i=1Ai
ðXÞ ⊆ �

Gðβ,δÞ
∑h

i=1Ai
ðYÞ

(LU1) Gðα,δÞ
∑h

i=1Ai
ð∅Þ = �

Gðβ,δÞ
∑h

i=1Ai
ð∅Þ =∅

(LU2) Gðα,δÞ
∑h

i=1Ai
ðUÞ = �

Gðβ,δÞ
∑h

i=1Ai
ðUÞ =U

Proof. (L1) Gðα,δÞ
∑h

i=1Ai
ðX ∩ YÞ = fx ∈Uj∑h

i=1L
Ai
X∩YðxÞ/h ≥ ηg, for

∀x ∈Gðα,δÞ
∑h

i=1Ai
ðX ∩ YÞ, if PðX ∩ Y j½x�δAi

Þ ≥ α, then we can

obtain PðXj½x�δAi
Þ ≥ α, and PðY j½x�δAi

Þ ≥ α. Therefore, it can

be obtained by combining Definitions 6 and 7 that x ∈

Gðα,δÞ
∑h

i=1Ai
ðXÞ and x ∈Gðα,δÞ

∑h
i=1Ai

ðYÞ, namely, Gðα,δÞ
∑h

i=1Ai
ðX ∩ YÞ ⊆

Gðα,δÞ
∑h

i=1Ai
ðXÞ ∩Gðα,δÞ

∑h
i=1Ai

ðYÞ
(U2) This item can be proved similar to item (L1) in this

proposition

(L2) For ∀x ∈Gðα,δÞ
∑h

i=1Ai
ðXÞ or ∀y ∈Gðα,δÞ

∑h
i=1Ai

ðYÞ, we can obtain
x ∈Gðα,δÞ

∑h
i=1Ai

ðX ∪ YÞ or y ∈Gðα,δÞ
∑h

i=1Ai
ðX ∪ YÞ from Definitions 6

and 7. Hence, Gðα,δÞ
∑h

i=1Ai
ðXÞ ∪Gðα,δÞ

∑h
i=1Ai

ðYÞ ⊆Gðα,δÞ
∑h

i=1Ai
ðX ∪ YÞ

(U2) (U2) can be proved similar to (L2)

(L3) Gðα,δÞ
∑h

i=1Ai
ðXÞ = fx ∈Uj∑h

i=1L
Ai
X ðxÞ/h ≥ ηg, for ∀x ∈

Gðα,δÞ
∑h

i=1Ai
ðXÞ as X ⊆ Y ; if PðXj½x�δAi

Þ ≥ α, we can obtained PðY
j½x�δAi

Þ ≥ α. Thus, we can say when X ⊆ Y , there exists

Gðα,δÞ
∑h

i=1Ai
ðXÞ ⊆Gðα,δÞ

∑h
i=1Ai

ðYÞ
(U2) (U3) can be obtained similar to (L3)

(LU1) Gðα,δÞ
∑h

i=1Ai
ð∅Þ = fx ∈U j∑h

i=1L
Ai
∅ ðxÞ/h ≥ ηg, �Gðβ,δÞ

∑h
i=1Ai

ð∅
Þ = fx ∈U j∑h

i=1U
Ai
∅ ðxÞ/h > 1 − ηg. Pð∅j½x�δAi

Þ = 0 holds for

every granularity Ai ∈ At. So, ∑
h
i=1U

Ai
X ðxÞ =∑h

i=1L
Ai
X ðxÞ = 0.

Because η ∈ ð0, 1�, Gðα,δÞ
∑h

i=1Ai
ð∅Þ = �Gðβ,δÞ

∑h
i=1Ai

ð∅Þ =∅ is established

(LU2) Gðα,δÞ
∑h

i=1Ai
ðUÞ = fx ∈U j∑h

i=1L
Ai
U ðxÞ/h ≥ ηg, �Gðβ,δÞ

∑h
i=1Ai

ðU
Þ = fx ∈U j∑h

i=1U
Ai
U ðxÞ/h > 1 − ηg. PðUj½x�δAi

Þ = 1 holds for

every granularity Ai ∈ At. So, ∑
h
i=1U

Ai
X ðxÞ =∑h

i=1L
Ai
X ðxÞ = h.

Because η ∈ ð0, 1�, Gðα,δÞ
∑h

i=1Ai
ðUÞ = �Gðβ,δÞ

∑h
i=1Ai

ðUÞ =U is established

Theorem 10. (1) When η = 1/h, the generalized multigranu-
lation rough sets degenerate into optimistic multigranulation
rough sets; (2) when η = 1, the generalized multigranulation
rough sets degenerate into pessimistic multigranulation rough
sets.

Proof.

(1) When η = 1/h, there are
�Gðβ,δÞ

∑h
i=1Ai

ðXÞ = fx ∈U j∑h
i=1

UAi
X ðxÞ/h > 1 − 1/hg, Gðα,δÞ

∑h
i=1Ai

ðXÞ = fx ∈U j∑h
i=1L

Ai
X ðxÞ/

h ≥ 1/hg: Due to ∑h
i=1L

Ai
X ðxÞ and ∑h

i=1U
Ai
X ðxÞ, it can

only take an integer between ½0, h�, so that ∑h
i=1U

Ai
X ð

xÞ/h > 1 − 1/h equals to ∑h
i=1U

Ai
X ðxÞ/h = 1 and ∑h

i=1
LAi
X ðxÞ/h ≥ 1/h equals to ∑h

i=1L
Ai
X ðxÞ/h > 0

(2) While η = 1, �Gðβ,δÞ
∑h

i=1Ai
ðXÞ = fx ∈U j∑h

i=1U
Ai
X ðxÞ/h > 0g,

Gðα,δÞ
∑h

i=1Ai
ðXÞ = fx ∈U j∑h

i=1L
Ai
X ðxÞ/h ≥ 1g

(3) Can be easily obtained
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In the following, some properties of generalized multi-
granulation rough sets are studied when they degenerate
into pessimistic multigranulation rough sets and optimistic
multigranulation rough sets.

Proposition 11. If 0 < h0 < h, for any target set X ⊆U ,

PUð Þ �
PR β,δð Þ

〠h0
i=1Ai

Xð Þ ⊆ �
PR β,δð Þ

〠h

i=1Ai

Xð Þ,

PLð Þ PR α,δð Þ

〠
h

i=1
Ai

Xð Þ ⊆ PR α,δð Þ

〠
h0

i=1
Ai

Xð Þ,

OUð Þ �
OR β,δð Þ

〠h

i=1Ai

Xð Þ ⊆ �
OR β,δð Þ

〠h0
i=1Ai

Xð Þ,

OLð ÞOR α,δð Þ

〠
h0

i=1
Ai

Xð Þ ⊆OR α,δð Þ

〠
h

i=1
Ai

Xð Þ:

ð19Þ

Proof. For any 0 < h0 < h: ðPUÞ, from Definition 4, it can

obtain
�PRðβ,δÞ
∑h0

i=1Ai

ðXÞ∨ �PRðβ,δÞ
∑h

i=h0Ai
ðXÞ = �PRðβ,δÞ

∑h
i=1Ai

ðXÞ, in which it

can find ∅⊆ �PRðβ,δÞ
∑h

i=h0Ai
ðXÞ ⊆U , namely,

�PRðβ,δÞ
∑h0

i=1Ai

ðXÞ ⊆
�PRðβ,δÞ
∑h

i=1Ai
ðXÞ. ðPLÞ Similarly, Definition 4 can obtain PRðα,δÞ

∑h0
i=1Ai

ðXÞ∧PRðα,δÞ
∑h

i=h0Ai
ðXÞ = PRðα,δÞ

∑h
i=1Ai

ðXÞ, and ∅⊆ PRðα,δÞ
∑h

i=h0Ai
ðXÞ ⊆U ,

and then PRðα,δÞ
∑h

i=1Ai
ðXÞ ⊆ PRðα,δÞ

∑h0
i=1Ai

ðXÞ is derived.With the same

mentality, it can easily prove ðOUÞ and ðOLÞ.

Proposition 12. Given an IFWN = ðU , At ∪ fdg, V , FÞ, for
0 ≤ β ≤ α ≤ 1, target set X ⊆U , the following properties hold.

(1) PRðα,δÞ
∑h

i=1Ai
ðXÞ ⊆ �

PRðβ,δÞ
∑h

i=1Ai
ðXÞ

(2) When α = 1 and β = 0, the proposed models degener-
ate to classical intuitionistic fuzzy multigranulation
weighted neighborhood rough set; in addition, if δ =
0, model I and model II degenerate to classical intui-
tionistic fuzzy multigranulation weighted rough set

Proof.

(1) From Definition 4, we can easily comprehend that
under each granularity Ai ∈ At, the upper and lower

approximation has the relationship: PRðα,δÞ
Ai

ðXÞ ⊆
�PRðβ,δÞ
Ai

ðXÞ. Then, ∧h
i=1PR

ðα,δÞ
Ai

ðXÞ ⊆ ∨h
i=1

�PRðβ,δÞ
Ai

ðXÞ,
that is to say, PRðα,δÞ

∑h
i=1Ai

ðXÞ ⊆ �PRðβ,δÞ
∑h

i=1Ai
ðXÞ

(2) Can be obtained from Definition 4

To make it easy for readers to comprehend, an example
is given to solve the upper and lower approximations for
generalized multigranulation rough sets when η = 1/h
(model II).

Example 13. The following Table 1 gives an information
table COVID-19 Surveillance Data Set, which is downloaded
from UCI (the original data has 13 samples and 7 attributes).
To facilitate calculation, the experiment only selects 6 sam-
ples and the first three attributes, and one granularity con-
siders only one attribute).

Assume that the membership degree of element x under
attribute Ai corresponds to the attribute value under attri-
bute Ai, i ∈ f1, 2, 3g, and the nonmembership degree is com-
puted by 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
membershipdegree

p
. After processing, it can

obtain the processed data like Table 2. Let δ = 1:4, and the
distance matrix d at each granularity is shown as

d1 =

0 0 0 0 1:50 0
0 0 0 0 1:50 0
0 0 0 0 1:50 0
0 0 0 0 1:50 0

1:50 1:50 1:50 1:50 0 1:50
0 0 0 0 1:50 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
,

d2 =

0 0 0 1:31 0 1:31
0 0 0 1:31 0 1:31
0 0 0 1:31 0 1:31

1:31 1:31 1:31 0 1:31 0
0 0 0 1:31 0 1:31

1:31 1:31 1:31 0 1:31 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
,

d3 =

0 1:43 0 1:43 1:43 1:43
1:43 0 1:43 0 0 0
0 1:43 0 1:43 1:43 1:43

1:43 0 1:43 0 0 0
1:43 0 1:43 0 0 0
1:43 0 1:43 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð20Þ

Then, from the distance matrix, the neighborhood classes
under each granularity can be obtained: ½x1�1:4A1

= ½x2�1:4A1
=

½x3�1:4A1
= ½x4�1:4A1

= ½x6�1:4A1
= fx1, x2, x3, x4, x6g, ½x5�1:4A1

= fx5g ;

½x1�1:4A2
= ½x2�1:4A2

= ½x3�1:4A2
= ½x4�1:4A2

= ½x5�1:4A2
= ½x6�1:4A2

= fx1, x2, x3
, x4, x5, x6g ; and ½x1�1:4A3

= ½x3�1:4A3
= fx1, x3g, ½x2�1:4A3

= ½x4�1:4A3
=

½x5�1:4A3
= ½x6�1:4A3

= fx2, x4, x5, x6g:
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Let α = 0:95, based on model II, considering granularity

A1, and the lower approximations are Rð0:95,1:4Þ
A1

ðD1Þ =∅,
Rð0:95,1:4Þ
A1

ðD2Þ = fx5g: Considering granularity A2, the lower

approximation is Rð0:95,1:4Þ
A2

ðD1Þ =∅, Rð0:95,1:4Þ
A2

ðD2Þ =∅:

Considering granularity A3, the lower approximation is

Rð0:95,1:4Þ
A3

ðD1Þ = fx1, x3g, Rð0:95,1:4Þ
A3

ðD2Þ =∅: Considering all

granularity, the lower approximation of model II is

ORð0:95,1:4Þ
∑3

i=1Ai
ðD1Þ = fx1, x3g, ORð0:95,1:4Þ

∑3
i=1Ai

ðD2Þ = fx5g:

4. Optimal Granularity Selection Based on
Granularity Significance

This section aims to select the optimal granularity from the
intuitionistic fuzzy weighted neighborhood information
systems.

Definition 14. Let IFWN = ðU , At ∪ fdg, V , FÞ be an IFWN,
As ⊆ At, U/Rδ

As is a covering on U , and d is a decision attri-
bute. Under the decision attribute d, a partition U/d =D =
fD1,D2,⋯,Dqg is derived. With the relation of Rδ

As, the
dependency degree of D is defined as follows:

γδAs Dð Þ = WPOS Dð Þj j
Uj j ,

WPOS Dð Þ =
[

Di∈U/D
POS Dið Þ:

ð21Þ

In this formula, j∗j means the cardinality of ∗. γδAsðDÞ
can describe the ability of subset As to approximate D. It is
obvious that 0 ≤ γδCðDÞ ≤ 1.

Definition 15. Let IFWN = ðU ,At ∪ fdg,V , FÞ be an IFWN,
granularity At = fA1, A2,⋯, Ahg and granularity subset A
⊆ At. The internal significance and external significance of
granularity Ai ∈ A are defined as follows:

sigin Ai, A,Dð Þ = γδA Dð Þ − γδA−Ai
Dð Þ: ð22Þ

Lemma 16. If siginðAi, A,DÞ > ε, then Ai is important on
granularity set A. If siginðAi, A,DÞ < ε, we say Ai is unneces-
sary on granularity set A.

When siginðAi, A,DÞ = 0, it represents granularity Ai is
unimportant. Deleting these granularity can get the optimal
granularity selection. The optimal granularity selection
results of Example 13 are given according to this rule.

Example 17. From Example 13, it can, respectively, calculate
WPOSðDÞ under each granularity that is A1: WPOSðDÞ = f
x5g, A2: WPOSðDÞ =∅, and A3: WPOSðDÞ = fx1, x3g, con-
sidering all granularity: WPOSðDÞ = fx1, x3, x5g. If we com-
pute the WPOSðDÞ under A1 and A3, we can get
WPOSðDÞ = fx1, x3, x5g, which is same to the granularity.
There is no doubt that γδA1,A3

ðDÞ = γδAtðDÞ, which means A2
is unimportant. Therefore, fA1, A3g is the optimal granulation
selection. To understand our model, we provide the program
flow chart and algorithm for solving the optimal granularity
selection process below. Figure 1 is the program flow chart:
it is the process of data processing and solving the optimal
granularity. Algorithm 1 is the optimal granulation selection
of generalized multigranulation rough sets model. The param-
eter δ is a threshold that decisions the size of the intuitionistic
fuzzy weighted neighborhood class, when δ = 0, it means the
intuitionistic fuzzy weighted neighborhood class is degenerate
into intuitionistic fuzzy weighted class. The parameters α, β,
and η are three parameters that used to define the generalized
upper and lower approximation.

In the following analysis, assume that jAtj is the number
of attributes, max ðjAijÞ is the maximum number of attri-
butes in the granularity Ai, and h is the number of granular-
ity. In step 1, the time complexity is Oð1Þ; in step 2, compute
the weight of each granularity by formal (3), and the com-
plexity is OðjU jjAtjÞ; in steps 3-5, the complexity of comput-
ing the intuitionistic fuzzy weighted neighborhood relation
for each granularity is Oðh ∗max ðjAij ∗ jU j2ÞÞ because we
need to compute each elements’ neighborhood classes,
which demand to traverse all other elements. Steps 6-11
aim to calculate the sigin of each granularity in G and then
update the set G. When computing sigin for each granularity,
we need to calculate h times, and each time, we demand to
calculate the WPOS (D), which needs to compute the lower
approximation for each granularity. When computing the
lower approximation for each granularity, we need to tra-
verse each element to determine whether it is in the lower
approximation, and the complexity is OðjU jÞ. There
arejU/Djdecision classes that need to calculate the lower
approximation; so, the complexity of computing WPOS(D)
under one granularity is OðjU j ∗ jU/DjÞ . Therefore, the

Table 1: Partial data of COVID-19 Surveillance Data Set.

X A1 A2 A3 Categories
x1 1 1 1 1

x2 1 1 0 1

x3 1 1 1 1

x4 1 0 0 2

x5 0 1 0 2

x6 1 0 0 2

Table 2: Processed data of Table 1.

X A1 A2 A3 Categories
x1 1, 0ð Þ 1, 0ð Þ 1, 0ð Þ 1

x2 1, 0ð Þ 1, 0ð Þ 0, 1ð Þ 1

x3 1, 0ð Þ 1, 0ð Þ 1, 0ð Þ 1

x4 1, 0ð Þ 0, 1ð Þ 0, 1ð Þ 2

x5 0, 1ð Þ 1, 0ð Þ 0, 1ð Þ 2

x6 1, 0ð Þ 0, 1ð Þ 0, 1ð Þ 2
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Start

Data normalization

Granularity division

Calculate non-membership degree

A𝜏 A𝜏 or Av Av is singularT T
No Yes

Yes

Calculate w
𝜏 (a) and wv (a)

by formula (3) and (4)
Calculate w𝜏 (a) and wv (a)

by formula (3) and (7)

Compute R𝛿
Ai

 for each
Ai ∈ At by formula (1)

Compute sigin (Ai, G, D)A

Ai ∈ Atfor

sig
in (Ai, G, D) = 0

Output G

End

G = G−Ai

 let G = At

Figure 1: Flow chart of calculating optimal granularity selection.

Input: An intuitionistic fuzzy multi granularity table I∗ = ðU , At, dÞ and four parameters δ, α, β and η
Output: Optimal granulation set G

1 begin
2 G = At;
3 Compute the weight of each conditional attribute by formula (3);
4 foreach Ai ⊆ Atdo
5 Compute Rδ

Ai
for each granularity by formula (8);

6 end
7 foreach Ai ⊆Gdo
8 siginðAi, G,DÞ = γδGðDÞ − γδG−Ai

ðDÞ;
9 ifsiginðA,G,DÞ = 0then
10 G =G − A;
11 end
12 end

return:G
13 end

Algorithm 1: Optimal granularity selection of generalized multigranulation rough sets model.

Table 3: Information of datasets.

Datasets Samples Attributes Classes h value

Sonar 208 60 2 30

Movement Libras (ML) 360 90 15 30

Micromass (MIC) 360 1300 10 100

Whole Scale Customers (WSC) 440 7 3 7

Pure 931 1300 2 100

Wireless Indoor Localization (WIL) 2000 7 4 7

Shill Bidding Dataset (SBD) 6321 11 2 6

Electrical Grid Stability Simulated Data (EGSSD) 10000 13 2 7
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complexity of steps 6-11 is OðhjU jjU/DjÞ. In summary, the
complexity of this algorithm is OðjUj2 ∗ h ∗max ðjAijÞÞ.

When facilitating the evaluation of the model, not only
the classification accuracy but also the number of selected
granularity should be considered. Consequently, the defini-
tion of classification accuracy and number of selected gran-
ularity(CAN) is shown below.

Definition 18. Assume that the total granularity number for a
dataset is h. If the machine learning model is trained with
the granularity selected by one model, and the classification
accuracy is r, the number of selected granularity is n. The
definition of classification accuracy and the number of
selected granularity CAN are

CAN = p1r + p2
h − n
h

: ð23Þ

CAN is used to describe the quality of the granularity
selection model. p1 and p2 are parameters describing the
importance of r and n and satisfy p1 + p2 = 1. If p1 > p2, it
means that we pay more attention to the accuracy r in the
results of granularity selection. It is obvious that, when r
and parameters are the same, the smaller the n is, the larger
CAN is, which means this model is superior. When n and
parameters are the same, the bigger the r is, the larger
CAN is. In real life, classification accuracy is often more
important. If a lot of granularity is removed but the classifi-
cation accuracy is not high, such reduction is often without
practical significance. Therefore, when defining CAN, the
weight of accuracy r is more important than removed gran-
ularity so that in Section 5, we set p1 = 0:7 and p2 = 0:3.

5. Numerical Analysis

In this section, we designed a numerical analysis experiment
to verify the effectiveness of these defined models. We will
use four models to select data to train a machine learning
model: gradient boosting regression trees (abbreviate it as
GBRT). The final classification accuracy is the average of
the classification accuracy of 10 cycles. What is more, we will
compare both the classification accuracy and the number of
selected granularity to evaluate these methods. All these
codes are executed in Anaconda 3 and run in a hardware

environment with Intel(R) Core(TM) i5-9300H CPU @
2.40GHz, with 8.00GB RAM. The Movement Libras dataset
is from KEEL-dataset, and the other 7 datasets are from
UCI. Table 3 shows the basic information of the data and
the granularity division. We preprocessed the data as fol-
lows: dataset Shill Bidding Dataset dropped one attribute
with text type values, and each dataset has been normalized.
However, the attribute in these datasets only has a single
value; to simulate the intuitionistic fuzzy information system
to get the membership degree and nonmembership degree,
we assume that the membership degree of an element x
under attribute A0 corresponds to the attribute value under
attribute A0, and the nonmembership degree is computed
by 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
membership degree

p
. Divide the number of attri-

butes by an integer Z to obtain the number of granularity
in the ceiling function. When the number of granularity is
not enough to divide, all granularity contains Z attributes

Table 4: The accuracy of datasets in different models.

Data ID Raw data Model 1 Model 2 Model 3 Model 4

Sonar 1:0 ± 0:0001 0:9165 ± 0:0001 0:9377 ± 0:0001 0:8072 ± 0:0001 0:8804 ± 0:0001
ML 0:9571 ± 0:0001 0:9267 ± 0:0001 0:9300 ± 0:0001 0:8627 ± 0:0001 0:9297 ± 0:0001
MIC 0:9887 ± 0:0001 0:8866 ± 0:0001 0:8969 ± 0:0001 0:8692 ± 0:0001 0:8791 ± 0:0001
WSC 0:4415 ± 0:0038 0:4371 ± 0:0001 0:4010 ± 0:0001 0:1591 ± 0:0001 0:1598 ± 0:0001
Pure 0:9603 ± 0:0001 0:8679 ± 0:0001 0:8679 ± 0:0001 0:6533 ± 0:0001 0:5664 ± 0:0223
WIL 0:9831 ± 0:0001 0:9710 ± 0:0001 0:2249 ± 0:0001 0:7919 ± 0:0001 0:7919 ± 0:0001
SBD 0:9609 ± 0:0001 0:9609 ± 0:0001 0:8977 ± 0:0001 0 0

EGSSD 0:9990 ± 0:0001 0:9990 ± 0:0001 0:9990 ± 0:0001 0:1221 ± 0:0001 0:2403 ± 0:0001

Table 5: The n value of datasets in different models.

Data ID Raw data Model 1 Model 2 Model 3 Model 4

Sonar 30 7 10 3 6

ML 30 6 9 4 8

MIC 100 6 6 5 5

WSC 7 4 4 2 2

Pure 100 19 19 5 4

WIL 7 4 2 2 2

SBD 6 4 4 0 0

EGSSD 7 7 7 1 2

Table 6: The CAN value computes with Tables 4 and 5.

Data ID
Model

Model 1 Model 2 Model 3 Model 4

Sonar 0.8716 0.8564 0.8350 0.8563

ML 0.8887 0.8610 0.8639 0.8708

MIC 0.9026 0.9098 0.8934 0.9004

WSC 0.4345 0.4093 0.3257 0.3261

Pure 0.8505 0.8505 0.7423 0.6845

WIL 0.8082 0.3717 0.7686 0.7686

SBD 0.7726 0.7284 0.3000 0.3000

EGSSD 0.6993 0.6993 0.3426 0.3825

10 Wireless Communications and Mobile Computing



1.2 0.9

0.85

0.8

0.75

0.7

0.65

0.6

1

0.4

0.2

0

0.8

0.6

Ac
cu

ra
cy

 o
r n

/h

CA
N

Ra
w

 d
at

a

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

Sonar

1 1
0.9165 0.9377

0.2333
0.3333

0.1
0.1667

0.8716

0.8072
0.8804

Accuracy
n/h
CAN

(a) Sonar

1.2

ML

0.9

0.85

0.8

0.75

0.7

0.65

0.6

CA
N

1

0.8

0.6

0.4

0.2

0

Ra
w

 d
at

a

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

Ac
cu

ra
cy

 o
r n

/h

10.9571
0.9267

0.2

0.3

0.1333

0.2667

0.93
0.8627

0.9297

0.8887

Accuracy
n/h
CAN

(b) ML

0.9

0.95

0.85

0.8

0.75

0.7

0.65

0.6

CA
N

Ra
w

 d
at

a

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

1.2

MIC

1

0.8

0.6

0.4

0.2

0

Ac
cu

ra
cy

 o
r n

/h

0.06 0.06 0.05 0.05

0.9098

0.9887

0.8866 0.8969 0.8692 0.8791

1

Accuracy
n/h
CAN

(c) MIC

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1
CA

N

Ra
w

 d
at

a

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

1.2
WSC

1

0.8

0.6

0.4

0.2

0

Ac
cu

ra
cy

 o
r n

/h

1

0.4415 0.4371

0.5714 0.5714

0.1591

0.2857

0.1598

0.2857

0.401

0.4345

Accuracy
n/h
CAN

(d) WSC

Figure 2: Continued.

11Wireless Communications and Mobile Computing



except the last granularity. Accidentally, we found that Aτ
and Aν of dataset micromass are singular matrices and thus

use uτ = ðAT
τAτ + EÞ−1AT

τY and uν = ðAT
νAν + EÞ−1AT

νY to
calculate uτ and uν instead.

This experiment uses machine learning model gradient
boosting regression trees as a classifier. GBRT is a method
based on ensemble learning, which trains multiple weak
classifiers and determines the final classification results by
voting [41]. This sequential model construction process is
in the form of function gradient descent; that is, a new tree
is added in each step to minimize the loss function [42,
43]. In order to simplify the selection of experimental

parameters, we set the parameter η to 1. Four models are
used to select granularity. Model 1 is the generalized multi-
granulation rough sets model proposed, and the parameters
α and δ are randomly generated between [0.5, 1] and [0, 0.5],
respectively. Model 2 is the predecessor of model 1, in which
attribute is not weighted, and parameter α and δ are same as
model 1. Model 3 is the model I with α = 1. Model 4 is the
classical pessimistic multigranulation rough set model under
IFWN, in which the attribute is not weighted, and parameter
α is 1. Then, the selected granularity is used to train the
machine learning model GBRT, which will be trained 10
times, each training set accounts for 85% of the total data,
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and the training set and test set are randomly divided. The
final classification accuracy takes the average of 10 classifica-
tion accuracy. If the accuracy variance exceeds 0.0001, the
accuracy result is expressed in the form of average classifica-
tion accuracy ± accuracy variance; otherwise, it is expressed
in the form of accuracy ± 0:0001.

Tables 4 and 5 are the accuracy and n value of datasets in
different models for 8 datasets. From Tables 4 and 5, the
CAN value in each case can be calculated to obtain
Table 6. Figure 2 shows the accuracy of each dataset under
different models, the number of selected granularity n, and
CAN value. It can be seen from Table 6 and Figure 2 that
the granularity selection results of the novel model: general-
ized multigranulation rough set model (model 1) is signifi-
cantly better than the other three models because the
optimal granularity selection results of 7 datasets are in the
novel model, which proves that the models proposed in this
paper are extremely effective and feasible.

6. Conclusions

The optimal granularity selection method is an ingenious
strategy in data dimensionality reduction. In an informa-
tion system, it uses certain information or variable to
select useful granularity. In this paper, we propose a
weighted neighborhood relation in an intuitionistic fuzzy
information system. The generalized multigranulation
rough set model under intuitionistic fuzzy weighted neigh-
borhood information system is established. In addition,
based on the novel model and combined with the granu-
larity importance, the algorithm of optimal granularity
selection is studied. Finally, to compare the efficiency of
the new model and the classical model, a series of experi-
ments are carried out on 8 datasets to verify the effective-
ness of the proposed model. Experimental results show
that the algorithm based on generalized multigranulation
rough set can get better granularity selection results. And
the parameters of the model can be adjusted according
to the actual data, which proves that the new model has
certain robustness to a certain extent. However, in the
paper, the changes of the model under different parameter
values have not been deeply studied. When facing rich
data and various problems, our future work will deeply
study whether there is a certain relationship between the
parameters of the new model and the characteristics of
the dataset, to facilitate the determination of model
parameters and improve the scalability of the model.
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