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In order to obtain higher quality silicon single crystal, a hybrid strategy for modeling of Czochralski silicon crystal growth and
optimizing of process parameters is presented in the paper. The hybrid strategy includes the computational fluid dynamics (CFD)
method, neural network of group method of data handing (GMDH), and improved nondominated sorting genetic algorithm II
(NSGA-II). The shape variable of solid-liquid interface h and the defect evaluation criteria V/G are set to objective functions
according to engineering experience and process requirement. The polynomial of the objective functions is produced by GMDH
and CFD. Ultimately, an improved elitist strategy and crowding distance NSGA-II is proposed in the paper to obtain the Pareto
optimum solution by the objective functions identified by the GMDH. Compared with other optimization algorithms, the
improved NSGA-II can increase the lateral diversity and the uniform distribution of the nondominated solutions. Engineering
validation proved that the proposed hybrid strategy can effectively solve the complex uncertain multiobjective optimization
problem of system and provides a new method for obtaining high-quality crystal growth process parameters.

1. Introduction

The vigorous development of integrated circuit industry pro-
moted the development of silicon crystal in the direction of
larger size and higher quality [1]. The process of silicon crystal
growth is the key factor to measure the production level of
semiconductor materials. The process parameters are usually
set from numerical simulation methods or engineering experi-
ence. But the process parameters obtained by those methods
are often not optimal. Therefore, it is a new direction to study
the intelligent optimization method of crystal growth process
parameters to improve the growth process and improve the
crystal quality.

At present, there are two main research directions for pro-
cess parameters in the field of silicon single crystal growth.
One is the combination of empirical method and experimental
method, the other is numerical simulation method based on
computational fluid dynamics (CFD). Empirical and experi-

mental methods rely on specific equipment, which requires
experienced technicians and strong experimental funds. The
production units often use the experimental method in the
final verification stage. The experimental data and experience
obtained are also confidential. Because of the advantages of
fast, high efficiency, low cost, and flexible design, numerical
simulation method has been widely used in the research of
crystal growth.

In recent years, the study of crystal growth technology has
expanded from two-dimensional global model to three-
dimensional local model, from simple fluid-thermal coupling
to impurity transport, and from fixed boundary to complex
boundary conditions involving functional and chemical reac-
tions [2–4]. At present, the researches on optimization of
process parameters are still at the level of numerical simula-
tion and mechanism analysis. Liu et al. studied the effect of
temperature and external magnetic field on the deformation
of solid-liquid interface [5]. Asadi et al. studied the change of
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solid-liquid interface at different rotating speeds of crystals
and crucibles [6]. Voronkov and Falster studied the effect of
growth parameters on crystal quality from the factors of crys-
tal defects and proposed a criterion V/G for evaluating the
probability of vacancies and self-gap in crystals [7]. Neural
networks and intelligent optimization methods have been
applied more and more in the field of crystal growth. Qi
et al. established a heat and mass transfer model to simulate
the crystal growth process and verified the experimental data
with neural network and genetic algorithm to obtain the opti-
mal growth parameters [8]. Dang et al. established the heat
transfer model and a thermal stress model in single crystalline
silicon growth and studied the mapping relationship between
optimization variables and targets [9]. The above researches
based on numerical simulation can effectively explain the rela-
tionship between single process parameter and crystal quality,
but these conclusions are limited to the basis of limited calcu-
lation results, which is helpless for multiobjective and multi-
process parameters cooperative optimization.

For parameter optimization problems, researchers always
expect a clear mathematical model or objective function, in
which CFD cannot achieve. However, the combination of
CFD, model identification, and multiobjective optimization is
a good strategy. This hybrid strategy has been applied in many
industrial fields and has attracted more and more attention
[10–12]. Wang et al. simulated the turbine model use CFD
and provided training samples for BP neural network. The
maximum efficiency and the minimum blocking quality were
optimized by using NSGA-II with improved congestion dis-
tance [13]. Damavandi et al. established the models of maxi-
mum heat transfer efficiency and minimum pressure drop
function of corrugated fin elliptical heat exchanger by combin-
ing CFDwith the groupmethod of data handing (GMDH) neu-
ral network. The improved nondominated sorting genetic
algorithm II (NSGA-II) is used to optimize the structure design,
and the optimal structural design scheme is obtained [14]. Jafari
et al. modeling and calculation of DI diesel engine used CFD
and response surface fittingUsed Kriging interpolationmethod,
and optimize the first efficiency law and the second efficiency
law used multiobjective optimization algorithm [15]. Because
it is difficult to establish the model of optimization objective
and process parameters, the application of this hybrid strategy
in the field of crystal growth has not been reported yet.

In the paper, the process of 300mm silicon crystal growth
by the Cz method is studied. The solid-liquid interface defor-
mation h and V/G value, which represent the crystal quality,
are taken as objective functions. Heating temperature T, crys-
tal rotating velocity rc, melt rotating velocity rm, and pulling
speed V are the process parameters to be optimized. Firstly,
according to design variables, the three-dimensional local
model of the Cz crystal growth was solved by CFD technology,
and training samples for GMDH were provided. Then, the
polynomial models of two objective functions are obtained
by the GMDH algorithm. Finally, an improved NSGA-II is
proposed to optimize the process parameters and obtain the
Pareto frontier, which satisfies the requirements of two objec-
tive functions at the same time. This improved NSGA-II
includes controlling elite strategy to limit the number of indi-
viduals on nondominated frontier, improving the congestion

distance, and using dynamic crowding distance (DCD) to
improve the Pareto frontier distribution. The effectiveness of
the hybrid algorithm is verified by crystal growth experiments.

2. Crystal Growth Model and
Numerical Solution

2.1. Mathematical Models. The Cz silicon crystal growth con-
sists by high-temperature melt and crystal. The structure of
the Cz silicon crystal is shown in Figure 1. The melt in crucible
is kept liquid state by the high temperature. The crystal rises
slowly at a certain pulling speed. In order to make the temper-
ature in the melt evenly distributed, the crucible and the crys-
tal rotate in the opposite direction at different speeds. The
continuum equation, momentum conservation equation, and
energy conservation equation of melt flow and heat transfer
calculation are expressed as follows [16].

∇ × v! = 0, ð1Þ

ρv! × ∇v! = −∇p+∇ × μ ∇v!+∇v!
T� �h i

− ρg!βTΔT , ð2Þ

ρc v
! × ∇T = ∇ × k∇Tð Þ, ð3Þ

where T, ρ, p, μ, g!, βT, c, and k are temperature, density, pres-
sure, melt viscosity, gravity acceleration, thermal expansion
coefficient, thermal capacity, and thermal conductivity,
respectively. The melt velocity v! is mainly related to the rota-
tional speed of crystals and melts. The last term in Equation
(2) denotes thermal buoyancy, which is one of the main fac-
tors affecting the conservation of momentum.

At the solid-liquid interface, it is assumed that the tem-
peratures of solid and liquid phases are equal, that is, Ts =
Tl. The energy balance equation at the solid-liquid interface
is as follows:

ρsLa VI −Vð Þ = λs
∂T
∂n

����
s

− λl
∂T
∂n

����
l

, ð4Þ

where n is the normal vector of interface. VI and V are inter-
face moving speed and crystal lifting speed, respectively. La
is latent heat. λ is thermal conductivity, and subscripts s
and l indicate crystals and melts, respectively. The deforma-
tion position of solid-liquid interface at each moment can be
obtained by calculating V in Equation (4).

2.2. Numerical Simulation. The Fluent software is used to sim-
ulate the Cz silicon single crystal growth 3D local model in the
paper, which is an internationally popular commercial CFD
software. Convection and diffusion terms are upwind of sec-
ond order, and the SIMPLE algorithm [5] is used to solve
the coupling between velocity and pressure fields. The two-
equation realizable k − ε turbulence model is selected, which
ensures the continuity of turbulence and has a good perfor-
mance for rotational flow and boundary layer flow.

In order to ensure the independence of the grid and min-
imize the computational cost, numerical analysis is carried
out under three models with different mesh accuracy. The
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results of objective functions h and V/G on different grids are
shown in Table 1, when the computational parameters are T
= 1720K, rc = 10rev/min, rm = 5rev/min, and V = 1:8mm/
min. The errors between the results of 232436 mesh models
and those of the denser mesh models can be neglected. So,
232436 mesh models satisfy the requirement of independence
precision. The meshing of the three-dimensional model of
crystal growth and the result of numerical simulation are
shown in Figures 2(a) and 2(b), respectively.

3. Design Variables and Objective Functions

Four design variables related to the objective function are
selected in the paper, which are the heater temperature T ,
the crystal rotating velocity rc, the melt rotating velocity rm
, and the lifting speed V . These variables and their value
ranges are listed in Table 2. Many design points can be
obtained by changing the value of the design variables, so
the corresponding objective function values of these design
points can be calculated by CFD.

The two objective functions are the deformation of solid-
liquid interface h and the defect evaluation criteria V/G.
Because of the change of heat transfer from melt to crystal,
the convex deformation of solid-liquid interface is produced
under the action of thermal stress. The larger the deformation
h, the greater the probability of growth defects and the ther-
moelastic stress in the crystal. V/G is an important index for
“self-gap” and “vacancy” in silicon wafers. Literature [17]
shows that the range of lifting speed V is related to the size
of crystal diameter within the required range of V/G. The per-
fect range of V/G values can be ensured when the lifting speed
is set between 1mm/min and 1:8mm/min for 300mm diame-
ter silicon crystal. The larger the V/G, the larger lifting speed,
and the more conducive to shortening the production cycle,
saving energy consumption, and reducing costs. However,
the increase of lifting speed will increase h and reduce the uni-
formity of crystal cross-section. The two objective functions
are conflicting and constitute a multiobjective optimization
problem in the process of silicon crystal growth. Therefore,
the purpose of this study is to find the optimal solution which
satisfies the two objective functions simultaneously.

4. Object Function Modeling by GMDH

Although the approximate solutions of the two objective func-
tions can be obtained by numerical calculation, the explicit
mathematical expressions containing the four design variables
mentioned above cannot be obtained. However, the accurate
model of objective functions is necessary for system control
and process parameter optimization. The artificial neural net-
work cannot be restricted by the nonlinear model because it
has the ability to approximate any nonlinear mapping by learn-
ing. So, the artificial neural network method is used to deter-
mine model has obvious advantages. GMDH is a relatively
complete and widely used neural network structure [18]. The
GMDH algorithm works by describing the model as the struc-
ture of a group of neurons. Each pair of neurons in each layer is
connected by a quadratic polynomial and new neurons are cre-
ated in the next layer. During modeling, the input-output map-
ping can be represented using this method.

The way to solve the problem of model identification is to
establish a function f̂ that can approximately replace the actual
model f , so as tominimize the error between the estimated out-
put ŷ and the actual model output y when the input vector X
= ðx1, x2,⋯,xnÞ is specified. Therefore, theM-estimated values
include n inputs, and one output can be expressed as follows:

yi = f xi1, xi2, xi3 ⋯ xinð Þ: ð5Þ

Estimate of the target value ŷi of each input vector X
= ðxi1, xi2, xi3 ⋯ xinÞ by the GMDH neural network is as
follows:

ŷi = f̂ xi1, xi2, xi3 ⋯ xinð Þ: ð6Þ

The GMDH neural network can minimize the difference
square between the actual value and the predicted value,
which is

〠
M

i=1
ŷi − yi½ �2 ⇒min: ð7Þ

The overall relationship between input and output vari-
ables can be expressed as a complex discrete Volterra func-
tion:

y = a0 + 〠
n

i=1
aixi + 〠

n

i=1
〠
n

j=1
aijxixj + 〠

n

i=1
〠
n

j=1
〠
n

k=1
aijkxixjxk+⋯:

ð8Þ
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Figure 1: Three-dimensional local model and boundary description
of the Cz crystal growth.

Table 1: Result of grid independence.

Mesh number h V/G
141096 0.01127 1:902e − 3

232436 0.01011 1:885e − 3

754356 0.01007 1:883e − 3
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The above equation can be simplified to the composition
form of a partial quadratic polynomial containing only two
variables, namely

ŷ =G xi, xj
� �

= a0 + a1xi + a2xj + a3x
2
i + a4x

2
j + a5xixj: ð9Þ

The parameters ai in the equation are calculated by the
regression method.

Obviously, the greater the amount of input and output
data used in the calculation, the more accurate and effective
the GMDH method will be. In the paper, each set of input
and output data is obtained by the CFD calculation. For each
set of numerical simulation calculation, especially for three-
dimensional model calculation with large number of grids,
there is a certain calculation time cost, and the acquisition of
these data cannot be infinite. Therefore, the limited amount
of data should be reasonably optimized to obtain the maxi-
mum information. In this paper, 245 groups of effective
CFD results are used as input and output data, of which 196
groups are training samples and 49 groups are used to test
neural networks. The training set trains the neural network
according to GMDH algorithm, and the test set is used to ana-
lyze the performance of the network. The inputs are four
design variables T, rc, rm, and V . The outputs are objective
functions h and V/G. The structure of GMDH neural network
with two hidden layers is shown in Figures 3(a) and 3(b). The
GMDH polynomial coefficients and equations of functions h
can be expressed as follows:

(a)

Solid-liquid interface
morphology

Temperature

1715
1710
1705
1700
1695
1690
1680
1660
1640
1620
1600
1580
1560
1540
1520

(b)

Figure 2: The meshing of three-dimensional model of crystal growth (a) and the result of numerical simulation (b).

Table 2: Design variables and values ranges.

Design variables Minimum Maximum Unit

T 1720 1750 K
rc 5 25 rev/min
rm 5 15 rev/min
V 1 1.8 mm/min

y1 = −13:264 + 0:0146T − 0:0139rm − 3:9973e − 6T2 + 2:3697e − 5r2m + 7:4065e − 6Trm,

y2 = −3:9785 + 0:0039T − 0:0045rc − 9:12e − 7T2 + 1:2125e − 5r2c + 2:3085e − 6Trc,

y3 = 3:6691 − 0:0049T − 0:0442V + 1:6128e − 6T2 − 9:7088e − 4V2 + 2:8777e − 5TV ,

y4 = −6:5822e − 4 + 0:7795y1 + 0:2406y2 + 33:4405y12 + 37:2714y22 − 64:6788y1y2,

y5 = 3:5224e − 5 + 0:8606y1 + 0:1163y3 + 7:1862y12 + 7:0331y32 − 13:4094y1y3,

h = y6 = 9:6574e − 6 + 1:618y4 − 0:6166y5 − 69:7539y42 − 45:1352y52 + 114:8276y4y5:

ð10Þ

4 Wireless Communications and Mobile Computing



Similarly, the GMDH polynomial coefficients and
equations of the objective function V/G can be expressed
as follows:

The comparison results of objective functions h and V/G
obtained from CFD and GMDH are shown in Figures 4(a)
and 4(b). At the same time, the backpropagation artificial
neural network (BP-ANN) algorithm is used to calculate
the objective function and compare with CFD results. The
result comparisons are shown in Figures 5(a) and 5(b).

In order to evaluate the performance of the model estab-
lished by GMDH, two statistical parameters are introduced,
that is absolute variance fraction R2 and mean absolute per-
centage errorMAPE. The formulas were expressed as follows:

R2 = 1 − 〠
n

i=1

yiGMDH − yiCFDð Þ2
y2iCFD

,

MAPE =
1
n
〠
n

i=1

yiGMDH − yiCFDð Þ
yiCFD

 !
× 100:

ð12Þ

The calculated results of the statistical parameters R2 and
MAPE of the objective function by GMDH and BP-ANN
are shown in Table 3. The results show that the GMDHmodel
has high accuracy in predicting CFD data and the prediction
accuracy is slightly higher than that of the BP-ANN algorithm.

5. Optimization Results of NSGA-II
and Analysis

5.1. Improved NSGA-II. NSGA-II is a universally recognized
multiobjective optimization algorithm with extensive appli-
cations and excellent effects [19]. It contains many advanced
concepts, such as elite strategy, fast nondominant ranking,
and diversity maintenance of the Pareto frontier. However,
there are still deficiencies in NSGA-II in maintaining trans-
verse diversity and uniform distribution of nondominant
solutions [20]. The main reason for these defects is that they
simply judge the individual distribution from the crowded
distance but ignore the uneven distribution caused by the
individual density, which is easy to fall into the local optimal.
To overcome the shortcomings of NSGA-II, an improved
scheme is proposed in the paper. This scheme is divided into
two aspects. Firstly, to ensure the diversity of nondominant
individuals by exert control on elite strategies. Secondly,
the congestion distance formula is improved, and dynamic
congestion distance (DCD) is used to improve the distribu-
tion of noninferior solutions.

Controlling elite strategy is to limit the number of indi-
viduals in the current best nondominant frontier and main-
tain the predistribution of the number of individuals in each

V
y3

y5

y6

y4
y2

y1

rm

rc

T

(a)

y´3
y´5

y´6

y´4
y´2

y´1

V

rm

rc

T

(b)

Figure 3: Evolved structures of objective function (a) h and objective function (b) V/G.

y′1 = −0:1216 + 1:4e − 4T + 0:0061V − 4:0303e − 8T2 + 1:0417e − 6V2 − 2:9295e − 6TV ,

y′2 = −4:6869e − 5 + 5:4857e − 7rc − 2:7376e − 8r2c + 0:0011V − 2:831e − 5V2 + 9:3239e − 7rcV ,

y′3 = −5:5267e − 5 + 1:98e − 6rm − 2:0407e − 7r2m + 0:0011V − 3:4898e − 5V2 + 3:0291e − 6rmV ,

y′4 = 8:8019e − 6 + 1:004y′1 − 0:0185y′2 + 212:8503y′12 + 262:4922y′22 − 470:8536y′1y′2,
y′5 = 1:6033e − 5 + 1:0715y′1 − 0:0972y′3 + 182:4942y′12 + 294:8509y′32 − 461:6831y′1y′3,

V/G = y′6 = 1:2105e − 5 + 8:1999y′4 − 7:2203y′5 − 4:6729e + 5y′42 − 4:6164e + 5y′52 + 9:2894e + 5y′4y′5:

ð11Þ
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Figure 4: Result comparisons of CFD and GMDH for objective function (a) h and (b) objective function V/G.
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Figure 5: Result comparisons of CFD and BP-ANN for objective function (a) h and (b) objective function V/G.

Table 3: Results of R2 and MAPE of GMDH and BP-ANN on the objective function.

Algorithm GMDH BP

Parameters
h V/G h V/G

Training Test Training Test Training Test Training Test

R2 0.9121 0.9417 0.9674 0.9896 0.9104 0.9472 0.9620 0.9791

MAPE 100%ð Þ 0.1841 0.2590 0.0977 0.0886 0.1912 0.2636 0.1017 0.0892
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frontier. A new population RðtÞ is ordered nondominated,
which is formed by combining the parent population popt
and the offspring population of f t . The nondominant fron-
tier number of the merged population is named S. According
to the geometric distribution, the number of individuals
allowed at the jth frontier in the new population is the larg-
est and the size of the population Nj is given by

Nj =N
1 − r
1 − rS

r j−1, ð13Þ

where r ∈ ð0, 1Þ is the decrease rate. So, the maximum num-
ber of individuals allowed on the first nondominant front is
the maximum. The number of individuals allowed for each
subsequent front is exponentially lower.

To eliminate the inhomogeneity of individual distribution
and improve lateral diversity in the Pareto frontier, Luo et al.
proposed a dynamic congestion distance (DCD) method [21].
This method deletes the individual with the lowest DCD value
calculated each time and recalculates the DCD value for the
remaining individual. Because the calculation of DCD value
still depends on the crowding distance, the shortcomings of
crowding distance calculation are not avoided. In the paper, a
simple improvement of crowding distance is made, to allocate
a characteristic coefficient to the crowding distance to balance
the contribution of each target to the crowding distance.

Cj′= σjCj, Cj =
1
N
〠
N

i=1
Fj+1
i − Fj−1

i

��� ���,
σj =

YN
i=0

Fj+1
i − Fj−1

i

F j
i

� �
max

− Fj
i

� �
min

,
ð14Þ

where Cj′ is the improved crowding distance for the jth individ-
uals. σj andCj are corresponding characteristic coefficients and

original congestion distances, respectively. ðFj
iÞmax and ðFj

iÞmin
are the maximum and minimum of the objective function i for
all individuals on the same front. The improved individual
dynamic congestion distance value is

DCDj =
Cj′

log 1/Varj
� � , ð15Þ

where Varj is the variance of crowding distance between
neighbors of the jth individual, which can be expressed as

Varj =
1
N
〠
N

i=1
Fj+1
i − Fj−1

i

��� ��� − Cj′
� �2

: ð16Þ

The population size is assumed as N, and the size of com-
bined population of the t-generation nondominant set R isM.
IfM >N, ðM‐NÞ individuals are removed from the nondomi-
nant concentration by DCD strategy. The process of DCD
algorithm is briefly described as follows.

Step1: if jRðtÞj ≤N , go to Step5; otherwise, go to Step2

Step2: calculating the DCD value of individuals in RðtÞ,
use formula (15)

Step3: ranking nondominant set RðtÞ based on DCD
strategy

Step4: removing the individual of lowest DCD in RðtÞ
Step5: if jRðtÞj ≤N , stop population maintenance; other-

wise, transfer to Step2 and continue execution

5.2. Implementation of the Improved NSGA-II Strategy. The
steps of the improved NSGA-II proposed in the paper for
the optimization of the above two objective functions in Cz
crystal growth are described as follows.

Step1: set initial parameters, such as population sizeN, prob-
ability of crossover and mutation, index of crossover and muta-
tion, iterations, and upper and lower bounds of design variables

Step2: generate random initial population pop0 in the
range of design variables and iteration numbers t = 0

Step3: evaluate the objective functions h and V/G with
each individual of each generation popt

Step4: creating offspring population by the tournament
selection, simulated binary crossover operator, and polyno-
mial mutation

Step5: nondominant sequencing of merged population
RðtÞ

Step6: to limit the number of individuals at the best non-
dominant frontier at present, use control elite strategy and
maintain the predistribution of the number of individuals at
each frontier use the formula (13). The decrease rate r is 0.5

Step7: if the numbers of nondominant set is larger than
the numbers of population, then use the DCD strategy to
remove ðM‐NÞ individuals from nondominant sets, and
then jump to Step4

Step8: the algorithm stopped when the iteration count
reaches the maximum iterations; otherwise, the number of
iterations increases 1 and then jumps to Step3

0.8
0.008

0.01

0.012

0.014

0.016

0.018

0.02

SPEA-II
MOPSO
NSGA-II

MOGA-II
MNSGA-II

0.022

0.024

1 1.2 1.4
V/G ×10–3

1.6 1.8

h 
(m

)

Figure 6: Pareto frontier of different algorithms.
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5.3. Result Analysis. The ultimate goal of the paper is to obtain
the optimum process parameters with the requirements of
minimizing the interface deformation h and maximizing V/
G. However, the objective functions cannot be optimally satis-
fied at the same time, so the feasible solution is to seek Pareto
optimal sets. The optimization research for Cz crystal growth
can be expressed in the following forms

Maxmize V/G = f1 T , rc, rm, Vð Þ
Minmize h = f2 T , rc, rm, Vð Þ

Subject to :

1720K ≤ T ≤ 1750K

5 rev/min ≤ rc ≤ 25 rev/min

5 rev/min ≤ rm ≤ 15 rev/min

1mm/min ≤V ≤ 1:8mm/min:

ð17Þ

In order to prove the validity and correctness of improved
NSGA-II in optimizing the process parameters of crystal
growth, four multiobjective optimization algorithms are
selected to compared with the results of our algorithm, includ-
ing NSGA-II, multiobjective particle swarm optimization algo-
rithm (MOPSO) [22], second-generation multiobjective genetic
algorithm (MOGA-II) [23], and second-generation strong

Pareto evolutionary algorithm (SPEA-II) [24]. The Pareto fron-
tier results of five algorithms are shown in Figure 6, and
MNSGA-II is our algorithm. NSGA-II and MOPSO fall into
local optimum easily and cannot get the optimum Pareto front.
MOGA-II and SPEA-II have similar Pareto frontier trends, but
there are obvious shortcomings. Although the MOGA-II algo-
rithm maintains a good individual distance, there are some
individuals are missed in the frontier. SPEA-II maintains the
continuity of the frontier, but the individual distance is not
good. The improved NSGA-II effectively avoids the shortcom-
ings of MOGA-II and SPEA-II and obtains a relatively excellent
Pareto frontier.

The Pareto frontier obtained by the improved NSGA-II is
shown in Figure 7. Five characteristic optimization points, A,
B, C, D, and E are selected. It is clear that each optimization
point cannot be called absolute optimization for another point,
that is to say, from one point to another, one objective function
will become better, and the other one will become worse. The
corresponding design variables are shown in Table 4. As can
be seen in Figure 7, from point A to point E, the interface defor-
mation increases gradually with the increase of V/G. From
point A to point B, the increase of interface deformation is very
small (about 10%), while the increase of V/G is very large
(about 37.5%). Similarly, from point D to point E, the interface
deformation increases significantly (about 67.1%), while V/G
has little change (about 16.3%). In order to find the points that
fully satisfy these two objective functions, the objective function
values corresponding to these optimization points are normal-
ized, and then the norms of these function values are calcu-
lated. Among them, the optimum point is the point with the
highest norm value. The point C is the optimal point obtained
by this method.

6. Experiments

The above researchmethods are verified by engineering exper-
iments, and 300mm silicon single crystal is employed as an
experimental object. The C point on the Pareto frontier is

A

B
C

D

E

0.008

0.01

0.012

0.014

h = 0.97⁎10–2 m
V/G = 1.33⁎10–3

h = 0.83⁎10–2 m
V/G = 1⁎10–3

h = 1.25⁎10–2 m
V/G = 1.53⁎10–3

h = 1.29⁎10–2 m
V/G = 1.63⁎10–3

h = 2.23⁎10–2 m
V/G = 1.76⁎10–3

0.016

0.018

0.02

0.022

0.024

h 
(m

)

0.8 1 1.2 1.4
V/G ×10–3

1.6 1.8

Figure 7: Pareto optimization point analysis and morphology of solid-liquid interface.

Table 4: Design variables and corresponding objective function
values for selected points.

Optimization point
Design variable Objective function

T rc rm V h V/G
A 1750 5 15 1.1 0.0083 1:002e − 3

B 1746.5 7.5 14.2 1.46 0.0097 1:324e − 3

C 1728.5 10.3 6.2 1.61 0.0125 1:544e − 3

D 1732.5 14.7 6.8 1.73 0.0129 1:619e − 3

E 1725 25 5 1.8 0.0223 1:786e − 3
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selected, and the corresponding process parameters are heat-
ing temperature T = 1730K, crystal rotation speed rc = 10rev
/min, melt rotation speed rm = 6rev/min, and pulling speed
V = 1:6mm/min. The experimental process of crystal growth
is shown in Figure 8(a). From the start stage to the end of body
stage of growth, the crystal growth is stable, which shows that
the process parameters can meet the needs of large-size silicon
single crystal growth. In order to measure the deformation of
the solid-liquid interface, the end stage of crystal growth is
abandoned. The crystal is pulled away from the silicon melt
by rapid pulling, which ensures the visibility of the solid-
liquid interface shape and facilitates the measurement of the
deformation of the solid-liquid interface. The solid-liquid
interface shape is shown in Figure 8(b). The deformation
obtained by measuring the solid-liquid interface is about
12.9mm. The relative error is only 3.1% compared to the opti-
mized results. The actual engineering practice proves that the
optimized result of the proposed hybrid strategy has higher
precision and is more suitable for the optimization of high-
quality silicon single crystal growth process parameters.

7. Conclusion

A hybrid strategy including CFD, GMDH, and improved
NSGA-II for the process parameter optimization of Cz crystal
growth is proposed in the paper. In order to obtain the optimal
process parameters, the deformation of solid-liquid interface h
and the defect evaluation criteria V/G are selected as the opti-
mization functions. The polynomial model of objective func-
tion is identified by the CFD and GMDH neural network
algorithm. An improved NSGA-II is proposed to obtain Pareto
optimal solution of production process parameters. The hybrid
strategy proposed in this paper combines the numerical simu-
lation method with an advanced intelligent algorithm, which
has the advantage of avoiding the limitation of numerical
simulation results, transforming the complex crystal growth
process model into a clear mathematical expression by the
system identification strategy, and establishing the correspon-
dence relationship between crystal quality and growth process
parameters through the intelligent optimization. The experi-
ments prove that the hybrid strategy is a new method to obtain
accurate crystal growth process parameters, which can be

applied to solve multiobjective optimization problems of other
complex systems with uncertain models.
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