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Deep learning models have attracted tremendous attention in computer vision in recent years, while most of them heavily rely on
massive data for training. As one of the solutions to the sparse data problem, data augmentation techniques, such as image
translation and rotation, can substantially increase the model’s generalization ability and performance. However, on one hand,
these approaches primarily work under the pixel domain, which is limited to fully mining and fusing picture data from the
frequency viewpoint. On the other hand, the fusion weighting factors are primarily modified in a manual fashion, which
increases the application costs in practice. To this end, we propose a novel method termed as frequency-based Mixup (FreMix)
that allows images to be fused in the frequency domain and to improve the efficiency of data augmentation by adaptively
adjusting the weighting coefficients in this paper. In FreMix, first, a fast Fourier transformation (FFT) is performed on the
input image, such that the frequency information rather than raw pixel information can be extracted for further augmentation.
Besides, an exploration-exploitation training paradigm is exploited, such that the FreMix can be trained periodically to
facilitate learning and avoid manually hyperparameter settings. We conduct comparing experiments on three benchmark
datasets including CIFAR, ImageNet, and ILSVRC2015, and the experimental results validate the effectiveness of the proposed
method.

1. Introduction

Existing deep neural networks rely on a considerable quan-
tity of data with low confidence due to the enormous series
of tests and the risk of overfitting [1]. Data augmentation
[2] approaches have been proposed since deep learning [3]
models require big data. In the field of data augmentation,
horizontal/vertical flip [4], rotation [5], scaling, cropping,
clipping [6], panning, contrast, color dithering [7], noise,
pixel domain fusion, and other techniques are available.
However, scaling distortion distorts the image [8], and most
of these methods suffer from the low-accuracy problem,
which further limits their applications in practice.

Existing advances show that automatic enhancement
and bit-image blending are the more advanced data aug-
mentation techniques. For example, hybrid-based tech-
niques such as Mixup [9] regulate the neural network
enhancing the linearity between training samples. The

robustness of the adversarial samples is increased and can
stabilize the training process for generating adversarial net-
works [10]. Mixup uses a convex combination of two pairs
of instances and labels to train the network to function line-
arly in the training instances. This simple learning process
gives rise to robustness to adversarial examples and
improved calibration capability. Mixup can implicitly con-
trol the complexity of the model. However, since the coeffi-
cients are manually adjusted, there is a problem that the
operation is very inconvenient and there is a cost for experi-
menting with the parameters. Pixel-based blending affects
the nature of the pixel-based image, which is not consistent
with the pixel problem [11]. And there is also the obvious
problem that using Mixup introduces some very unnatural
pseudopixel information [12]. To reduce the effect of pseu-
dopixel information, Cutout [13] or CutMix [14] methods
are developed, which differ in the pixel values of the filled
areas. Cutout enables the model to focus on the regions
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(abdomen) that are harder to distinguish from the target, but
there is a part of the region without any information, which
will affect the training efficiency. Cutout randomly masks
the square part of the input image during the training pro-
cess so the classification algorithm cannot adapt well to the
masked data. CutMix uses a region-based enhancement
strategy that exploits a binary mask to select the blended
regions. Such an operation allows the model to identify
two targets from a local view of an image. Also, CutMix
allows the learned model to retain a good understanding of
the actual data, which can improve the training efficiency
and does not have unnatural image blending. However,
when CutMix was used to train MobileNetV2 [15] on Tiny
imagenet [16], we observed severe performance degradation.
Only a tiny section of an image can affect the results in fine-
grained image classification tasks. Hence, CutMix blurs the
features that are critical for establishing the picture class.
This makes the model confusing for classification.

To improve the existing sample blending-based strategy,
we propose a frequency-based Mixup (FreMix) which fuses
with extracted frequencies and adaptive exploration of the
fusion coefficients. Previous related methods are mainly
based on the pixel domain mining of the images while lack-
ing the frequency information exploration, which thus leads
to incomplete exploitation of the raw data. Thus, in the pro-
posed FreMix, we study a frequency-based method which
does not directly sum images in the pixel space but adapts
to the interaction of different textures and high and low
information of images by fusion in the natural domain of
frequencies. Besides, unlike the previous way that requires
manual adjustment of parameters, we design an online
update method of parameters based on exploration-
exploitation mechanism from reinforcement learning, which
can solve the problem of manual adjustment of parameters.

Our research was aimed at better mining image data in
the field of data augmentation and providing improved
methods to avoid manual adjustment of weighting coeffi-
cients and also improving the efficiency and accuracy of
mining image data by experimentally exploring new solu-
tions to adjust coefficients online. The approach is based
on the fusion of natural domains of frequencies to fit the
interaction of different textures and high and low informa-
tion of images, instead of summing directly in pixel space.
The automatic hyperparameter optimization is performed
using exploration-exploitation mechanism from reinforce-
ment learning. The results of our method on different data-
sets and different networks improve the accuracy extensively
and effectively, such as ResNet [17], VGG [18], and WRN
[19]. Our contribution can be summarized as follows: (1)
we developed a novel FreMix method in which the fre-
quency domain information of images is leveraged for better
data augmentation. (2) An exploration-exploitation mecha-
nism is leveraged in FreMix, such that the proposed method
can avoid manually setting hyperparameters and be more
applicable in practice. (3) Experiments on three datasets
show that the proposed method achieves superior perfor-
mance in terms of data augmentation.

The remainder of this paper is organized as follows. In
Section 2, we present related work in the field of data aug-

mentation and hyperparameter tuning methods. In Section
3, our proposed FreMix is presented with a detailed algo-
rithm procedure provided. In Section 4, the proposed Fre-
Mix is verified through two real-world datasets. Finally,
Section 5 concludes the paper.

2. Related Work

2.1. Data Augmentation. Data augmentation is a typical
machine learning approach that is mainly used to increase
the size of the training dataset to make it as diverse as possi-
ble so that the trained model can generalize better. Cur-
rently, data augmentation mainly includes horizontal/
vertical flipping, rotation, scaling, cropping, clipping, pan-
ning, contrast, color dithering, and noise. The main existing
methods are Mixup, CutMix, and Cutout. Mixup mixes two
random samples proportionally, and the proportional distri-
bution of classification results may cause underfitting. Cut-
out enables the model to focus on the region (abdomen)
where the target is difficult to distinguish. Still, there is a part
of the region without any information, which will affect the
training efficiency. Mixup utilizes all of the pixel data while
also introducing some extremely strange pseudopixel data.
Mixup uses a convex combination of two pairs of instances
and labels to train the network so that the network functions
linearly across the training instances. Notably, this simple
learning procedure leads to robustness to adversarial exam-
ples and improved calibration. AdaMixup [20] diagnoses
flow intrusions in Mixup, where a mixed model collides with
another example in the data flow, which can cause underfit-
ting. This risk is regulated, and the loss term penalizes the
intrusion by an intrusion discriminator. Manifold Mixup
[21] uses two intermediate representations as examples at
the kth layer. When k = 0 implies the input layer, it reduces
to vanilla Mixup. CutMix uses a region-based augmentation
method that selects the mixing zone using a binary mask for
better performance in spatial situations. Note that our
approach is related to these methods, but clearly, since we
do not use real labels for Mixup supervision. Besides, our
proposed FreMix in this paper does not directly sum in pixel
space but fits the different textures of images and the inter-
action of high and low information through the fusion of
natural domains of frequencies. It achieves very good perfor-
mance on several datasets and different models such as
CIFAR [22] and ImageNet [23] and greatly exceeds the pre-
vious methods.

2.2. Hyperparameter Optimization Method. The setting of
hyperparameters has a direct impact on model performance
and its importance cannot be overstated. To maximize
model performance, it is critical to understand how to opti-
mize hyperparameters. Several standard hyperparameter
optimization methods are described. Most of the time, engi-
neers depend on trial-and-error methods which could tune
hyperparameters for optimization. On another side, this
method is time-consuming and needs a lot of experience.
Therefore, many automated hyperparameter optimization
methods have been developed. Grid search [24] is arguably
the most basic hyperparameter optimization method. Using
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this technique, we simply construct separate models for all
hyperparameters possible, evaluate the performance of each
model, and select the model and hyperparameters that yield
the best results. This method enables training for individual
hyperparameter combination models and evaluating the
performance of each. Each model is independent, so it is
easy to perform parallel computation. However, the fact that
each model is independent also results in no guidance
between models, and the computational results of the former
model do not influence the choice of hyperparameters for
the latter model.

In contrast, Bayesian optimization methods [25] can
draw on existing results to influence the selection of hyper-
parameters for subsequent models. Only combinations of
hyperparameters that are likely to increase model perfor-
mance are computed, which reduces the number of calcula-
tions required for model training assessment. Bayesian
optimization works by establishing a posterior distribution
of the function that best describes the function to be opti-
mized. The posterior distribution improves as the number
of observations grows, and the algorithm gets more confi-
dent about which portions of the parameter space are worth
examining and which are not. Gradient-based optimization
methods [26] are often used in neural network models,
where the gradient of the hyperparameters is mainly calcu-
lated and optimized by a gradient descent algorithm. The
idea of evolutionary optimization methods [27] comes from
biological concepts, and since natural evolution is a dynamic
process occurring in a constantly changing environment, it
applies to the hyperparameter search problem, since hyper-
parameter search is also a dynamic process.

3. Method

3.1. Frequency-Based Data Mix. Convolutional neural net-
works (CNNs) have shown excellent performance in com-
puter vision tasks, particularly in classification tasks. To
increase robustness in real-world scenarios, CNNs often
adopt two practical strategies: data augmentation and model
integration. Data augmentation reduces overfitting and
improves the generalization of the model. Traditional image
enhancement is label preserving, e.g., flipping and cropping.
Multiple inputs and their labels are proportionally mixed to
create artificial samples in mixed-sample data augmentation
(MSDA) approaches [28]. MSDA is simple to implement
and really helps to improve performance, so it is widely used
in areas such as image recognition, sound recognition, GAN,
and semisupervised learning.

Recently, hybrid-based enhancement techniques have
achieved highly accurate prediction performance. They gen-
erate input data by a linear combination of two randomly
selected training data. Likewise, their corresponding labels
are generated by the same linear combination of two labels.
By doing so, they effectively improve prediction accuracy
while preventing some undesirable behaviors such as mem-
ory and sensitivity to adversarial examples. Moreover,
Mixup training encourages the output of the DNN [29],
i.e., the estimated label distribution, as a better indicator of
the actual likelihood of correcting the predictions. Specifi-

cally, for generating an enhanced sample, the calculation
for Mixup training is as follows

xmix =
λx1 + 1 − λð Þx2,
M ⊙ x1 + 1 −Mð Þ ⊙ x2,

(

ymix = λy1 + 1 − λð Þy2, λ ∼ Beta α, αð Þ,
ð1Þ

where x and y denote a training sample and its label, M ∈
f0, 1gW×H denotes a binary mask indicating the position of
the reject and fill from the two images,⨀ is an element mul-
tiplication, Betað∙, ∙Þ implies the beta distribution, and α ∈ ð
0,∞Þ is the parameter controlling the shape of the beta dis-
tribution. Using mixed inputs and mixed labels, the model
minimizes the following equation.

Lmix = λH y
~
mix, y1

� �
+ 1 − λð ÞH y

~
mix, y2

� �
, ð2Þ

where ~yð= σð f ðxÞÞÞ denotes the predicted label distribution
from the model, f is the model, σ is the activation function,
usually a softmax function, σsmðzÞ = exp ðzÞ/∑N

i=1 exp ðziÞ,
and H is the cross-entropy function formulated by Hðp, q
Þ = −

Ð
xpðxÞ log qðxÞ.

Because the Mixup’s raw picture exploration is
restricted, the suggested FreMix performs a fast Fourier
transform (FFT) on the input image first, extracting the fre-
quency information rather than the original pixel informa-
tion for subsequent augmentation. Figure 1 depicts the
flow of our technique. The fast Fourier transform (FFT) is
a technique for computing a sequence’s discrete Fourier
transform (DFT) or inverse transform fast [30]. Fourier
analysis converts a signal’s original domain (typically time
or space) into a frequency domain representation or vice
versa. By reducing the DFT matrix into the product of sparse
(mainly zero) elements, the FFT can quickly perform such a
transform.

The DFT requires the computation of approximately N2

multiplications and N2 additions. This computation is large
when N is large. The N-point DFT is decomposed into two
N/2-point DFTs using the symmetry and periodicity of WN ;
therefore, the total computation of two N/2-point DFTs is
just half of the original, i.e., ðN/2Þ2 + ðN/2Þ2 =N2/2. This
can be continued by decomposing N/2 into N/4-point DFTs
again, etc. For N = 2m, points of DFT can be decomposed
into 2 points of DFT, so that its computation can be reduced
to ðN/2Þ log2N times multiplication and Nlog2N times
addition. Here are the steps of the operation.

The DFT of a finite length discrete signal xðnÞ, n = 0, 1,
⋯,N − 1 is defined as

X kð Þ = 〠
N−1

n=0
x nð ÞWkn

N k = 0, 1,⋯, N − 1,WN = e−j
2π
N : ð3Þ
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Decomposing xðnÞ into the sum of two sequences of
even and odd numbers, i.e.,

x nð Þ = x1 nð Þ + x2 nð Þ, ð4Þ

where x1ðnÞ and x2ðnÞ are both of length N/2, x1ðnÞ is an
even sequence, and x2ðnÞ is an odd sequence, then

X kð Þ = 〠
N/2ð Þ−1

n=0
x1 nð ÞW2kn

N + 〠
N/2

n=0
x2 nð ÞW 2n+1ð Þk

N k = 0, 1,⋯,N − 1ð Þ:

ð5Þ

Because W2kn
N = e−jð2π/NÞ2kn = e−jð2π/N/2Þkn =Wkn

N/2, then

X kð Þ = 〠
N/2ð Þ−1

n=0
x1 nð ÞWkn

N/2 +Wk
N 〠

N/2ð Þ−1

n=0
x2 nð ÞWkn

N/2

= X1 kð Þ +Wk
NX2 kð Þ k = 0, 1,⋯,N − 1ð Þ,

ð6Þ

where X1ðkÞ and X2ðkÞ are the N/2-point DFTs of x1ðnÞ and
x2ðnÞ, respectively. Since both X1ðkÞ and X2ðkÞ have period
N/2 and Wk

N +N/2 = −Wk
N , XðkÞ can again be expressed as

X kð Þ = X1 kð Þ +Wk
NX2 kð Þ k = 0, 1,⋯,N2 − 1

� �
,

X k + N
2

� �
= X1 kð Þ −Wk

NX2 kð Þ k = 0, 1,⋯,N/2 − 1ð Þ:

ð7Þ

The principle of the FFT algorithm is to achieve large-
scale transformations by many small more easily performed
transformations, reducing the operational requirements and
increasing the speed with the operation. The FFT is not an
approximation of the DFT, they are exactly equivalent.
Figure 2 shows the flow chart of 8-point FFT decomposition.

3.2. Adaptive Fusion Algorithm. FreMix creates new samples
by linearly interpolating pairs of FFT information of raw
examples, and it is simple to do and to be effective in picture
classification problems. There are two issues. First, FreMix

asks for more epochs to converge. The reason is that it needs
more extended training and explores more regions of the
data space. Second, FreMix has a condition of hyperpara-
meter value to sample mixing coefficients, while various
hyperparameter values usually cause large differences in
model accuracy. To mitigate this problem, inspired by
Mixup without hesitation (mWh) [31], we integrate the
exploration-exploitation mechanism from reinforcement
learning into our FreMix to overcome both problems, rather
than enriching data by using Mixup during the model train-
ing process. FreMix will be speeded up since exploration-
exploitation will turn the mixing operation off. And it also
makes it robust to the hyperparameter α. Note that mWh
is a pixel domain-based method, which has the disadvantage
of requiring extraction from the original pixels compared to
the frequency domain. We utilize the exploration-
exploitation (EE) mechanism to operate in the frequency
domain in the proposed FreMix. Our method can extract
frequency information directly instead of the original pixels
for further data augmentation.

Specifically, we propose an adaptive fusion algorithm,
which assumes that the number of minibatches is m during
training and defines two parameters p and q
(0 ≤ p < q ≤ 10 ≤ p < q ≤ 1), which divide the training process
into three phases:

Step 1. From 1 to pm minibatch, train using Mixup.

Step 2. From pm + 1pm + 1 to qm, switch between Mixup
and base data enhancement algorithms.

Step 3. Run Mixup with probability ϵ, where ϵ decreases lin-
early from 1 to 0.

In Step 1, the FreMix algorithm uses Mixup to search in
the large percentage of the sample representation area. In
Step 2, there is a trade-off between exploration and exploita-
tion. Step 3 gradually switches from the exploration model
to the exploitation model. As for effective training, FreMix
is a general and straightforward training policy. To balance
exploration and exploitation, we use the method of reintro-
ducing essential data augmentation. When comparing

FFT

FFT

FFT-1

Figure 1: Schematic diagram of our approach.
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CutMix and mWh in CutMix with ResNet-50, experimental
results showed that the convergence rate of diverse dataset
instances is improved by mWh and the accuracy on Ima-
geNet is robust. Compared with the baseline, it also gets sig-
nificant improvement in various tasks and models. Our
FreMix method based on mWh in the frequency domain
gives further improved results.

4. Experiments

We evaluate our method in a variety of tasks and compare it
to the competition. We emphasize that our approach can be
combined with any model structure to enjoy its performance
benefits. This is simply done by adding our data augmenta-
tion technique before training the model.

4.1. Model Architecture. We choose five CNN architectures
as backbone networks: three of them are traditional CNN
(i.e., VGGNet, ResNet, and ResNeXt) [32] and the others
are lightweight CNN (i.e., MobileNetV2 and ShuffleNet)
[33] datasets. We validated the effectiveness of our method
on three benchmark datasets ranging from small to large:
CIFAR100 (32 × 32 RGB images, 100 classes), Tiny imagenet
(64 × 64 RGB images, 100 classes) and ILSVRC2015
(256 × 256 RGB images, 1000 classes).

4.2. Evaluation Settings. The best training method for all net-
works was stochastic gradient decay with a momentum of
0.9. All methods used for our comparisons followed the
same training schedule and dataset. For CIFAR100, we set
the initial learning rate to 0.1 and decayed the learning rate
by 0.2 every 60, 120, 160, and 200 epochs. In Tiny imagenet
and ILSVRC2015, we set the initial learning rate to 0.1 and
decayed it by 0.1 in 75, 150, and 225 calendars. Because
lightweight models have a different ideal training scheme,
we followed the procedure described in their paper. We used
a weight decay of 4e-5 for CIFAR100 and 1e-4 for the other
models to regularise the model. For the CIFAR100, Tiny

imagenet, and ILSVRC datasets, the batch sizes for each
model are 256.

4.3. Classification Accuracy and Expected Calibration Error.
We will show that our approach improves classification
accuracy (i.e., high confidence on test samples). Besides, in
this subsection section, we experiment with a more realistic
scenario. For the quantitative analysis of confidence calibra-
tion, we use two popular metrics, expected calibration error
(ECE) and excess confidence error (OE).

The ECE represents the average difference between true
confidence and predicted confidence. If ECE is zero, it
means that the network is correctly calibrated. OE is similar
to ECE, but it only measures the difference in confidence
when overconfidence is indicated. Overconfidence is primar-
ily a critical factor in high-risk systems. Therefore, this met-
ric is a good indicator to assess system reliability for high-
risk applications. These two metrics were calculated on the
validation set.

The experimental findings employing various networks
and data sets are shown in Tables 1, 2, and 3. After combin-
ing our methods, we consistently achieved better accuracy
and confidence calibration. In particular, our gains in predic-
tion accuracy are substantial, with the gap between the base-
line and the baseline combined with our method being as
large as the gap between vanilla and other competitors. As
a result, our method exceeds the performance of existing
methods under most experimental conditions. A key obser-
vation can be made by experimenting with compact models
like MobileNetV2. In general, a Mixup-like approach is an
enhancement method that populates training examples to
prevent overfitting. However, if it injects examples that are
far from the training distribution, such an augmentation
method can cause underfitting. Underfitting usually does
not degrade the performance of high-volume networks, but
it can impair the performance of low-volume networks. Since
MobileNetV2 is a low-volume model, it requires less regular-
ization than larger models, and applying weak regularization
(i.e., small weight decay) may be sufficient. When CutMix
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Figure 2: Illustration of an 8-point FFT decomposition procedure.
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was used to train MobileNetV2 on Tiny imagenet, we
observed severe performance degradation, and we speculate
that the accuracy degradation is due to the strong regulariza-
tion induced underfitting.

In contrast, when our method is combined with CutMix,
the impact of this underfitting is greatly reduced, filling the
degradation gap caused by CutMix. From this result, we
believe that our method does not penalize vanilla training
to prevent overfitting. Instead, our method helps the model
understand the hidden relationships by weak supervision.
Since hidden relationships can provide a reasonable expla-
nation for understanding examples far from the training dis-
tribution, our method can also prevent underfitting. This
observation is consistent with our motivation that interclass
correlations help improve prediction accuracy and predic-
tion confidence estimates.

5. Discussion

5.1. The Difference between Our Method and Other Methods.
The coefficients of Mixup need to be adjusted manually.
They are fused in the pixel domain. The coefficients of Cut-
Mix also need to be adjusted manually, and the trained
model is fixed for both. Mixing in the pixel domain affects
the pixel-based image properties. Mixup injects examples
that are far from the training distribution, leading to the
underfitting of the data augmentation. CutMix generally
leads to underfit problems and may lead to confusion in
model classification. In our method, the coefficients can be
adjusted automatically within a preset range (for a compar-
ison of Mixup and CutMix with our method in terms of
coefficients, fusion domain, and training patterns, see the
Table 4 for details).

5.2. Shortcomings and Future Work. Although our method
mines the image data and expands the experimental data

Table 2: The results of our experiments on Tiny imagenet.

Network Metric Vanilla Mixup FreMix CutMix FreMix+EE

ResNet50

Acc 66.6 68.34 70.71 69.08 69.87

ECE 0.09 0.032 0.03 0.029 0.03

OE 0.07 0.022 0.01 0.015 0.05

MobileNetV2

Acc 57.62 59.55 62.12 53.54 57.66

ECE 0.08 0.09 0.03 0.09 0.08

OE 0.05 0.02 0.00 0.00 0.00

Table 3: The results of our experiments on ILSVRC2015.

Network Metric Vanilla Mixup FreMix CutMix FreMix+EE

ResNet50

Acc 76.13 77.37 78.38 78.43 78.51

ECE 0.37 0.04 0.03 0.03 0.02

OE 0.03 0.01 0.01 0.03 0.03

Table 4: The difference between our method and other methods.

Method Coefficient Fusion Training

Mixup Manual Pixel field Fixed

CutMix Manual Pixel field Fixed

Ours Automatic Frequency field Adaptive

Table 1: The results of our experiments on CIFAR100.

Network Metric Vanilla Mixup FreMix CutMix FreMix+EE

VGG16

Acc 74.30 75.02 76.22 75.34 76.10

ECE 0.18 0.06 0.03 0.06 0.06

OE 0.16 0.04 0.02 0.03 0.08

ResNet50

Acc 78.32 79.82 80.96 80.57 81.02

ECE 0.09 0.04 0.02 0.08 0.07

OE 0.07 0.03 0.01 0.06 0.06

ResNeXt50

Acc 79.18 81.10 81.63 81.16 81.46

ECE 0.06 0.04 0.02 0.059 0.03

OE 0.05 0.01 0.00 0.047 0.02

MobileNetV2

Acc 69.69 69.96 73.90 68.82 69.91

ECE 0.06 0.01 0.04 0.05 0.04

OE 0.04 0.01 0.01 0.01 0.00

ShuffleNetV2

Acc 72.17 74.17 75.53 73.60 73.73

ECE 0.08 0.06 0.042 0.01 0.02

OE 0.06 0.00 0.000 0.01 0.00

6 Wireless Communications and Mobile Computing



in the field of data augmentation, it will add extra computa-
tion. Another point is that although our method can auto-
matically adjust the coefficients, the range of adjustment
needs to be set. Then, the parameters are adjusted within
the range we set. That means the adaptive adjustment of
the parameters is within a certain range that we set manu-
ally. It is not completely free of manual operation. Our
future research direction is to add more automatic adjust-
ment settings to avoid manual hyperparameter adjustment
as much as possible.

6. Conclusion

Generally, existing deep learning models rely on a great
number of data. Data augmentation has a strong generaliza-
tion ability to raise the training data set as well as make the
data set as diverse as possible. The current class of augmen-
tation methods based on mixing different samples, including
Mixup and CutMix, can be very effective in improving the
model’s accuracy. However, since these methods operate
mainly in the pixel domain, they cannot process successfully
mined and fused image data, and the fused weighting factors
are mainly modified manually, so they are not suitable for
practical applications.

To better exploit the frequency information for data aug-
mentation and improve the existing sample-based fusion
strategies, we propose a novel FreMix method that fuses with
extracted frequencies and performs adaptive exploration of
the fused coefficients. Our method achieves very good per-
formance on several datasets with different model structures,
such as CIFAR and ImageNet, which greatly surpasses previ-
ous methods. Further, despite the effectiveness, it should be
noted that the proposed method increases the computational
effort and the coefficients of adaptive exploration fusion are
not fully automatic, and a range needs to be set manually.
Our future work will focus on improving the efficiency of
frequency fusion as well as adding more automatic adjust-
ment settings to avoid manual adjustment of
hyperparameters.
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