Hindawi

Wireless Communications and Mobile Computing
Volume 2022, Article ID 5331712, 15 pages
https://doi.org/10.1155/2022/5331712

Research Article

WILEY | Q@) Hindawi

OffFog: An Approach to Support the Definition of Offloading

Policies on Fog Computing

Savio Melo), Felipe Oliveira®,' Cicero Silva(,> Paulo Lopes(,"' and Gibeon Aquino '

"Department of Informatics and Applied Mathematics (DIMAp), Federal University of Rio Grande do Norte, Natal, 1524 RN, Brazil
*Federal Institute of Education, Science and Technology of Paraiba, Catolé do Rocha, 227 PB, Brazil

Correspondence should be addressed to Savio Melo; saviorennan@ufrn.edu.br
Received 15 July 2021; Revised 25 November 2021; Accepted 8 December 2021; Published 4 January 2022
Academic Editor: Pengfei Wang

Copyright © 2022 Savio Melo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IoT devices deployed in Smart Cities usually have significant resource limitations. For this reason, offload tasks or data to other
layers such as fog or cloud is regularly adopted to smooth out this issue. Although data offloading is a well-known aspect of
fog computing, the specification of offloading policies is still an open issue due to the lack of clear guidelines. Therefore, we
propose OffFog—an approach to guide the definition of data offloading policies in the context of fog computing. In order to
evaluate OffFog, we extended the well-known simulator iFogSim and conducted an experimental study based on an urban
surveillance system. The results demonstrated the benefits of implementing data offloading based on OffFog recommended
policies. Furthermore, we identified the best configuration involving design decisions such as data compression, data criticality,
and storage thresholds. The best configuration produced at least 76% improvement in network latency and 5% in the average
execution time compared to the iFogSim default strategy. We believe these results represent a significant step towards

establishing a systematic decision framework for data offloading policies in the context of fog computing.

1. Introduction

Fog computing plays an essential role in building a sustainable
IoT infrastructure for smart cities [1]. Many research efforts
have been made on fog computing in smart cities, but there
are still several open challenges towards its concrete realization
[1, 2]. Moreover, despite Fog computing brings advantages to
the development of 10T applications such as latency improve-
ment, new challenges related to storage, and local processing
power emerges in the context of Smart Cities [3, 4]. Indeed,
IoT devices deployed in Smart Cities usually have significant
resource limitations. Therefore, some strategies must be used
to mitigate the problems caused by this issue. A usual solution
is to transfer the responsibility to entities with more resources,
known as oftloading. One particular category is the data off-
loading between the fog and cloud. The need to transfer the
data to the cloud emerges in several cases, being very usual
when there is the need for long-term storage of data produced
on the network border [5].

Data offloading affords several benefits to IoT applica-
tions, including energy-saving, storage reduction, decreased

network usage, reduced decision-making time, among
others. However, the correct execution of this task requires
following specific rules (or policies) related to transferring
data between persistence entities. These policies should be
defined based on criteria such as load balancing, data
volume, long-term storage, latency, data management and
privacy, among others [5, 6]. Furthermore, they are con-
text-dependent, i.e., they are strongly influenced by the
application domain and the characteristics of the fog devices.
Thus, defining and implementing effective data offloading
strategies in the fog context is a challenging issue.
Therefore, our work proposes an approach to assist the
definition of data offloading strategies in fog contexts. This
approach is called OffFog and aims to facilitate decisions
for selecting data offloading criteria. It consolidates the main
concerns related to data offloading in fog contexts and offers
proper guidelines in the form of a set of activities aiming at
conducting the solution’s architect to an effective offloading
strategy. To the best of our knowledge, no other previous
work provides clear guidelines on how to perform the data
offloading process in fog computing-based applications.

https://orcid.org/0000-0002-3917-1865
https://orcid.org/0000-0001-6814-8798
https://orcid.org/0000-0002-7713-685X
https://orcid.org/0000-0001-5514-0770
https://orcid.org/0000-0001-6950-8169
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5331712

As a case study, we use OffFog in the context of an urban
security camera application, basing on the scenario proposed
by Gupta et al. [7]. This case study attempts to demonstrate
the feasibility of using OftFog in applications based on fog
computing and, at the same time, to verify the offloading
criteria of selected data influence in this scenario. For this,
we extended the work of Naas et al. [8], including new
offloading capabilities, such as data compression, and per-
formed simulations in order to evaluate the impact of differ-
ent levels of choice for these criteria.

The main contribution of this paper is threefold. (1) A
taxonomy that compiles and structures the knowledge
regarding concepts and techniques of data offloading in fog
contexts. (2) The OffFog approach aiming to guide the
definition of data offloading policies in the context of fog
computing. (3) The extension of the well-known simulator
iFogSim [7], including new data offloading capabilities. We
believe these results represent a significant step towards
establishing a systematic decision framework for data off-
loading policies in the context of fog computing.

The remainder of this article is organized as follows:
Section 2 describes the related works. Section 3 presents
the background related to data offloading on Fog computing.
Section 4 describes the OftFog approach. A case study is
described in Section 5, aiming at demonstrating the execu-
tion of OffFog in a scenario of a Surveillance Camera System
(SCS). Section 6 presents the results of an experimental
study involving simulations of the SCS scenario. Finally,
Section 7 discusses the concluding remarks.

2. Related Works

Studies related to this work can be divided into two groups:
studies dealing with data offloading in fog computing
(Section 2.1); solutions that enable the simulation of applica-
tions based on fog computing (Section 2.2).

2.1. Data Offloading. According to Farahani et al. [9], Silva
[10], Silva and Aquino Jr. [11], there are several challenges
related to managing stored data in the fog layer. Further-
more, the storage capacity on Fog is usually limited when
compared to Cloud [3, 11]. Thus, several works propose
strategies to deal with these issues.

Silva et al. [12] propose a fog computing-based architec-
ture to manage patients’ medical data. In this architecture,
the authors define a component particularly designed to
store metadata related to medical records kept in the fog.
Thus, this metadata helps decide which data to free or keep
on the fog nodes. However, the proposed solution defines a
generic behaviour without specify the offloading process’s
concrete rules (or policies).

Alelaiwi [13] and Pisani et al. [14] use the data offloading
process to meet the requirements of their applications better.
Thus, these authors consider strategies and policies that set
the course for such a process, serving to mitigate the limita-
tions of the fog environment. On the other hand, consider-
ing a dynamic fog computing network, Shan et al. [15] use
the heterogeneity of sensor nodes as contextual information
to promote the data offloading between sensors and fog

Wireless Communications and Mobile Computing

nodes while improving the algorithm for stable performance
in urban areas environments.

The data offloading process in fog computing is a topic
of constant discussion. Alelaiwi [13] uses machine learning
algorithms that select the data to be sent to the cloud. In this
approach, the offloading of edge data is only performed after
carrying out deep learning techniques. Pisani et al. [14]
consider data that needs to be balanced across fog nodes to
data offloading according to available storage. However,
these studies do not discuss criteria related to the volume
and nature of the data.

Aazam et al. [5] classify the types of oftloading that exist,
defining different situations where the process can occur and
showing its variations. He et al. [16] consider that security
and load balancing aspects are significant in the data offload-
ing process. However, neither of the two works relates the
properties of data and infrastructure.

Still dealing with security, He et al. [16] propose a
security model for storing fog data, highlighting the possible
vulnerabilities that this data may be subject to. Verma et al.
[17] propose a processing balancing model adaptable to the
context of fog data. However, the authors do not specify the
techniques used in the processes and their possible impacts.

Mukherjee et al. [18] present a fog data oftloading strategy
to minimize energy consumption and the total delay related to
the processing task for the end-user. The work formulates an
optimization problem and provides a solution through the
CVX tools, a modelling system based on MATLAB for convex
optimization [18]. The simulation results demonstrated that
the proposed solution offers minimal end-to-end latency than
running all tasks on end-user devices and running all tasks on
primary fog nodes. However, the study does not discuss
criteria related to data volume and nature.

Zhu et al. [19] propose task offloading policy to help
decide whether to process tasks locally and send them to
the appropriate fog node or cloud. This approach considers
calculating the execution time and energy consumption
when running the task on the device compared to the execu-
tion time and energy consumed when transferring and
receiving the processed task at the appropriate fog node.
Dinh et al. [20] propose an offloading framework to opti-
mize the task allocation decision and the allocation of
computational resources.

In summary, several works in the literature propose
solutions for data offloading in fog, which addresses different
problems. The work of Bali et al. [21], for instance, provides
a systematic literature review (SLR) where approaches on
data offloading in IoT networks at edge and fog nodes can
be found. In that same work, the authors propose an intelli-
gent architecture for data offloading and propose a data
offloading workflow for industrial IoT. However, there are
no clear directions regarding the selection criteria to assist
data offloading decision making. Therefore, unlike other
works, this paper classifies the criteria of the data offloading
process to guide in defining policies to enable the execution
of data offloading in fog-based solutions.

2.2. Simulation of Fog Computing Environments. Some tools
simulate fog computing environments. Margariti et al.’s [22]

Wireless Communications and Mobile Computing

work investigates the simulation tools used to develop fog-
based solutions. Among the simulation tools investigated,
iFogSim stands out. iFogSim (https://github.com/cloudslab/
ifogsim) is currently the most used tool to simulate fog
computing-based environments. Described in Gupta et al.
[7], this simulator implements resource management tech-
niques on fog computing environments in order to measure
latency and throughput.

Some iFogSim extensions were implemented, aiming
to add additional features to this simulator. Lopes et al.
[23] developed MyiFogSim (http://www.lrc.ic.unicamp.br/
fogcomputing), an extension of iFogSim to support the
mobility requirement of fog computing-based applications.
In addition, Naas et al. [24] extended iFogSim to simulate
scenarios with strategies aimed at optimizing data place-
ment, called iFogSimWithDataPlacement (https://github
.com/medislam/iFogSimWithDataPlacement).

An important extension of iFogSim that allows simulat-
ing environments with the requirement of mobility is the
so-called MobFogSim. Proposed by Puliafito et al. [25], this
extension allows overcoming the limitations of environ-
ments that require mobility. It also extends iFogSim to allow
device mobility modelling. However, its distinguishing fea-
ture is support for service migration in fog computing.

Another well-known simulation environment for fog
computing is the Edge-Fog cloud simulator [26]. This simu-
lator is a Python implementation consisting of two layers: an
outer layer consisting of the edge devices and an inner layer
consisting of the fog devices. Furthermore, this implementa-
tion focuses on implementing the Least Processing Cost First
(LPCF) algorithm, which reduces processing time and net-
work costs.

Overall, none of the implementations mentioned above
brings the possibility of simulating data offloading policies.
Thus, iFogSimWithDataPlacement was extended in our
work, generating a new implementation called iFogSimOff-
load (https://github.com/labcomu/iFogSimOffload), which
differs from the others by providing some techniques related
to the data offloading processes, such as compression and
data criticality.

3. Data Offloading in Fog

The offloading process is responsible for performing migra-
tion of data or processing tasks, helping devices with limited
computational capabilities [27]. Regarding data oftloading,
this is a technique that has been widely discussed in the
fog computing paradigm [5]. Furthermore, it is generally
applied due to the resource constraints of the entities that
make up the fog. Data offloading is controlled through rules,
which indicate how data is managed during this process.
Finally, these rules are commonly called policies.

To organize the essential concepts involved in the data
offloading process, we defined taxonomy. In particular, it
compiles essential aspects for data offloading policies in the
fog contexts. Moreover, the taxonomy describes the main
properties to be considered when designing data oftloading
policies for the most diverse fog scenarios, considering the
characteristic of the data and the infrastructure of the envi-

ronments involved. Therefore, the section classifies some
concepts about the data offloading process and exemplifies
the main techniques used in such a process. Thus, this
classification can serve as a basis for selecting techniques to
define data offloading policies since it provides many of
the concepts necessary for this definition.

3.1. Taxonomy. In our taxonomy, the criteria were divided
into two main views: data and environment. Therefore, the
classes and subclasses that compose the taxonomy are dis-
tributed in these views.

The Data View brings together the characteristics
directly related to data generation, transmission, and pro-
cessing in a fog computing environment. Thus, it is formed
by the Security, Management, Nature, and Volume classes.
On the other hand, the Environment View encompasses
the physical characteristics related to the data offloading
process in a fog environment. This view is related to the
requirements of the environment in which the data resides,
that is, the physical properties of the fog nodes. Therefore,
it is formed only by the Infrastructure class.

Figure 1 shows the taxonomy proposed by Melo et al.
[6]. It summarizes the classes that help design policies for

data offloading in fog computing. Therefore, these classes
will be detailed below.

3.1.1. Security. The use of inappropriate approaches creates
many security problems in the nodes that form the fog
[28]. However, applying the four pillars of information secu-
rity (confidentiality, availability, integrity, and privacy) guar-
antees the security of information transferred in the fog.

As far as confidentiality is concerned, the application of
authentication protocols guarantees the identity of the fog
connected nodes [29]. In addition, the use of this type of
protocol can prevent unauthorized people from accessing
the data transmitted between these nodes. On the other
hand, technologies that promote data availability must be
applied to ensure that fog nodes or cloud servers are always
available [29]. The use of techniques such as data replication
and load balancing can help achieve this goal.

In the same context, data integrity ensures the detection
of any unauthorized attempts to modify them. In fog com-
puting, Blockchain technology is often used to avoid this
type of problem [30]. The privacy attribute is intended to
protect sensitive personal information [31]. To meet this
requirement, [32] propose a Blockchain-based method to
ensure the patient’s medical data privacy in the fog comput-
ing environment. In this perspective, it is common to use
Blockchain technology to provide the data anonymization
feature.

3.1.2. Management. Transferring data from one device to
another is a common task in fog computing. Therefore, this
process needs to be well managed [5]. The primary motiva-
tion to consider this aspect in the data offloading process is
that fog nodes are geographically distributed, making it
challenging to identify the location of the data. In addition,
several techniques can be used during data management,
such as optimization and replication. Thus, using these

https://github.com/cloudslab/ifogsim
https://github.com/cloudslab/ifogsim
http://www.lrc.ic.unicamp.br/fogcomputing
http://www.lrc.ic.unicamp.br/fogcomputing
https://github.com/medislam/iFogSimWithDataPlacement
https://github.com/medislam/iFogSimWithDataPlacement
https://github.com/labcomu/iFogSimOffload

4 Wireless Communications and Mobile Computing
[Data offloading in fog computing J
Data Environment
e P S I P W mmmm -
Nature Volume Infrastructure

Security Management

Confidentiality|

Optimization Volatility

Availability

Replication Criticality

Integrity

Privacy

Bandwidth

Network
Latency

Storage

Processing

Energy

FIGURE 1: Taxonomy for data offloading in fog computing.

techniques will help distribute the data between the fog
nodes more efficiently since the requested data may not be
available in nearby nodes.

About data optimization, this process is directly related
to the storage capacity and processing constraints of a fog
node [33]. According to Rahmani et al. [34], two optimiza-
tion techniques stand out in the fog computing paradigm:
data filtering and compression.

3.1.3. Nature. Generally, environments in which fog comput-
ing is applied do not use their hardware or communication
technologies as a solution for nonvolatile data storage [35].
On the other hand, most resources (storage and network)
are provided by devices near the edge of the network, such
as smartphones, smart TVs, or vehicles. Thus, this paradigm
faces a challenge linked to the resources provided by its nodes,
as they may at some point become unavailable for access [36].

In addition, many applications make use of fog comput-
ing to meet their real-time operational needs. At the same
time, large-scale computing infrastructures are increasingly
dealing with critical data, which is also stored in cloud data-
bases [37]. Therefore, when operating/transmitting the data
generated by the fog layer device, it is necessary to consider
its different degrees of criticality. For example, critical data
may be found in the scenario of monitoring patient health
information. In contrast, some other data in the same solu-
tion may be less relevant and volatile.

3.1.4. Volume. The volume class is related to two aspects:
data size and flow [38]. These two aspects are the most men-
tioned in the literature and the most relevant when the data
analysis is done in the nodes that make up the fog or in
external entities. In this context, analyzing these two factors
in this paradigm allows data to be transferred to the cloud
only when necessary.

The size aspect is related to the amount of data that
needs to be processed and stored in the fog. Thus, many
researchers point to this feature as one of the essential
requirements for meeting requests [39]. In addition, this
aspect must be considered to mitigate the storage limitation
characteristic of the nodes that make up the fog. Concerning
data flow, this aspect is related to the intensity at which data
is sent from a source to a fog node. Thus, the flow can occur

in two ways: event-driven [40] or real-time [41]. In real-
time, streaming data is streamed into the fog immediately
after generation, resulting in nodes being overloaded. There-
fore, understanding the size and flow of data in the fog
during the data offloading process is essential to keep the
system running smoothly.

3.1.5. Infrastructure. The fog is composed of several hetero-
geneous devices, which use different communication proto-
cols. Furthermore, the nodes that make up the fog have
several hardware limitations. However, with the knowledge
of the limitations of the fog computing environment, the
cloud can contribute with its capabilities and resources.
Therefore, the process of offloading data from the fog nodes
to the cloud makes it possible to use the capabilities of this
last paradigm.

The storage in the fog computing paradigm is a topic
widely discussed in the literature [3, 11]. It is known that
data storage in fog nodes is limited, even with the applica-
tion of data management techniques and the elimination of
unnecessary transactions. Furthermore, this paradigm also
applies techniques related to the processing aspect, which
aim to reduce the amount of data sent to the cloud [42].
On the other hand, applying these techniques can overload
the infrastructure that makes up the fog. It is noteworthy
that in the fog, network devices constitute the nodes in the
fog, and they are mostly battery powered. Therefore, the
application of data compression and processing techniques,
while helping to alleviate the restrictions of the fog environ-
ment, can overload and worsen the energy autonomy of this
paradigm’s infrastructure.

In summary, the assessment of infrastructure resources
is a requirement that contributes when designing policies
for data offloading in the fog. Such resource availability
analysis will indicate whether the data flow will proceed
normally or whether data offloading will occur [43].

4. OffFog Approach

In order to guide the designing of data offloading policies in
the context of fog, we propose OffFog. It is an approach that
describes essential activities for defining data offloading
policies from fog to cloud layers. This approach guides the

Wireless Communications and Mobile Computing

TasLE 1: Example of a security-focused policy.

Requirements Objective Criteria Techniques
Confidentiality Authentication and encryption
. Availability Replication and load balancing
Data Security . .
Integrity Blockchain
Privacy Anonymization

selection of valuable criteria for data offloading decisions
and suggests techniques that support the fulfilment of these
criteria in fog computing environments.

Policies play an essential role in the data offloading pro-
cess. They define how the data will be managed during the
offloading process, which security procedures will be neces-
sary, when the process should be executed, which techniques
will be used, among other factors. For better understanding,
Table 1 presents an example of the basic structure of a data
offloading policy. In this example, the policy meets data
requirements, has a security-oriented objective, and is based
on data offloading criteria given the haze system problems.
Finally, the techniques to be used as decision aids in the data
oftloading process are defined.

Policies are critical for scenarios that require the efficient
execution of the data offloading process. The efficient execu-
tion of this process brings some benefits to fog computing
solutions. Among the benefits, some are remarkable, such
as network usage decrease [44], latency reduction [45],
energy efficiency [44], and privacy [32, 46]. In this context,
a guidance mechanism is required for a taxonomy to be
instantiated and used to support policy definition. There-
fore, this section presents a methodology to guide the
definition of policies for data oftloading in fog computing.
Therefore, the following activities define actions to be done
in the policy design phase.

The purpose of the activities is to ensure that the policy
definition accommodates the main oftloading criteria classi-
fied by the taxonomy. To this end, the guide proposed here
seeks to provide an initial methodology that consists of five
(5) activities, as presented by Figure 2.

The activity #1 has as the main action understanding the
system requirements. The requirement elicitation of the fog
system and other software involved is essential to obtain
knowledge of the characteristics of the data and the organi-
zation’s infrastructure. That said, this knowledge serves to
support the understanding of the general business require-
ments and the criteria that influence the offloading process.

As a support for the survey of these requirements, the
IoT system requirement engineering support framework
proposed by Silva et al. [47] was adopted. The tool was
adapted to the fog computing context to consider the
requirements of the fog system and the software involved
in its solutions.

In this scope, these requirements must be elicited and
analyzed to know the system behaviour and the interactions
between the components that can help in the offloading
decision. In order to provide a tool for this elicitation, we
designed a template that shows how this requirements elici-
tation can be done practically. In summary, based on the

Silva et al. [47] method, the suggestion is that the template
to identify requirements for fog systems should have an
identity field, a description, and a field to define the degree
of priority of the requirement under specification.

At the end of the first activity, the architect designing the
data offloading policies will have requirements which serve
as the foundation for the oftloading decisions required by
the following activities.

The purpose of activity #2 is to identify the possible data
oftloading problems. Before defining a policy, it is also nec-
essary to identify the problems that will influence the data
offloading process.

There are two situations that must be considered in this
activity. The first is the identification of data offloading
problems considering that the policy design is for a new
system and the second keeping in mind the policy design
is for existing systems. For the case of new systems, the prob-
lem identification process will be done based on require-
ments. On the other hand, when the policy design is for
existing systems, the problem identification process flow
should also consider existing policies and possible problems.
In this sense, to assist in identifying possible problems
arising from requirements and policies, Table 2 provides a
grouping of requirements and relates them to common
problems of the fog environment when there is a need for
data offloading.

At the end of the second activity, the architect designing
the policies will have a list of common problems in fog
computing systems. Therefore, the execution of this activity
adds to the policy design stage the identification of the main
problems that will motivate the definition of the objectives of
the data oftloading policies.

Activity #3 will serve to define the policy objectives. The
definition of these objectives is a central action in the design
of policies for data oftfloading. Therefore, this activity helps
the architect to identify the main criteria that may impact
the system’s cloud data oftloading process.

Table 3 guides this identification and organizes the
criteria in the data view, i.e., considering the characteristics
of the data trafficked in the fog. This support tool will serve
to guide the architect to define the system’s data offloading
criteria and consequently define its objectives. According
to Tables 3 and 4 by answering some questions about the
system based on its requirements, it is possible to identify
which data offloading criteria are related. Therefore, as these
criteria refer to a certain objective, at the end of the analysis
of the questions, we have two definitions: criteria and
objectives.

Similarly, the environment view perspective (Table 4),
i.e, helps in the identification of data offloading criteria

6 Wireless Communications and Mobile Computing
Architect’s initial decisions Data offloading policy design Defined policies
Requirements Problems Objectives Criteria Techniques
Start
iti Answer to offloadin Techniques .
Obtaining the Identification R power 50 07 04cing o List of defined data
. = f orobl of > criteria identification —>{ Specifica- offloading policies
requirements of problems s questions tion gp
End
Activity #1 | | Activity #2 | | Activity #3 | | Activity #4 | | Activity #5
FIGURE 2: Activities for defining data offloading policies.
TABLE 2: Relationship between requirements and most common problems.
Requirements Problems

(i) Data redundancy compromises fog node storage [17]

(i) Continuous flow of sensor data compromises storage components [41]

Data communication

(iii) Local data processing compromises processing components [42]

(iv) Loss or modification of data [48]

(i) Incorrect approaches [49]

Security (ii) Data theft by malicious users [28]
(iii) Display of sensitive personal information [50]
Availability (i) Loss of critical data [51]

(i) Network unavailability [52]

Communication between systems

(ii) Power unavailability [53]

TaBLE 3: Identifying data offloading criteria in the data view.

ID Questions Criteria Objectives
Q1 Does the system handle sensitive or confidential data? Confidentiality
Q2 Is the data accessed frequently? Availability Security
Q3 Does the loss or modification of part of the data cause any harm? Integrity
Q4 Should you control data sharing? Privacy
Q5 Is the data prefiltered and analyzed beforehand? Optimization

o Management
Q6 Is there data redundancy? Replication
Q7 Is there a need for long-term data storage? Volatility Nature
Q8 Can data availability tolerate delays? Criticality
Q9 Is there a need to reduce the space occupied by data on a particular device? Size Volume
Q10 Is there simultaneity between data generation and data storage? Flow

based on the characteristics of the organization’s infrastruc-
ture. It is important to note that the choice of objectives and
criteria for offloading of the policy under development will
occur from the favorable response to each question. Thus,
each positive answer to the questions in relation to the sys-
tem requirements will define a criterion to be considered

in the policy objective that is being designed in the infra-
structure view.

As a result of this activity, based on the answers to
the criteria identification questions, the architect will have
the definition of their policy objective as a result. There-
fore, performing this activity adds to the policy design

Wireless Communications and Mobile Computing 7
TaBLE 4: Identifying data offloading criteria in the environment view.

ID Questions Criteria Objectives
Q11 Is the system sensitive to the latency of requests? Network
Q12 Does the infrastructure of the scenario have its own storage resources? Storage

Infrastructure
Q13 Does the system have favorable energy autonomy? Energy
Q14 Do the fog devices have good processing power? Processing

I O g g W
O O O O O

v v v

Confidentiality Optimization Volatility

- Authentication - Data filtering - Synchronization

- Encryption - Data compression - Local processing
Availability Replication Criticality

- Replication - Data replication - Data prioritization
- Collaboration - Data fragmentation - Replication of

between fog nodes critical data
Integrity

- Blockchain
-Validation of data
modules

Privacy

- Blockchain
- Anonymization
- Privacy policies

2 v

Size Network

- Data distribution
- Data compression

- Network hierarchy architecture
- Network underutilization

Flow Storage

- Data distribution
- Data compression
- Data filtering

- Event-based driving
- Real-time driving

Processing

- Load balancing

Energy

- Data compression
- Network underutilization

FiGURrk 3: Data offloading criteria and techniques.

phase the ability to establish a relationship between the
actual system needs and requirements and the policy
objectives.

However, it is still necessary to specify the techniques
related to each data offloading criterion for the organized
requirements, problems, and criteria to support policy
design. With this in mind, the actions of this activity #4 will
be focused on selecting methods and techniques to support
the data offloading process. This selection will be made
based on the highest priority requirements. Therefore, this
activity will specify the techniques that will be part of the
system’s data offloading policies, usually considering the
highest priority problems.

Initially, this activity strives to understand the criteria of
each policy data offloading objective. With this in mind, the
next step is to specify which techniques are essential in
executing the fog-cloud data offloading process. Figure 3
simply lists some techniques that were discovered through
the study organized by the data offloading taxonomy present
in Section 3. By looking at it, it is possible to highlight the
most commonly used techniques in each data offloading
criterion, which will make it easier to define the actions of
the policy being defined.

Activity #5 assists in analyzing the output of the process
specified here, that is, the list of policies defined for the
solution. The main goal of this activity is to select the con-
flicting policies. The action defined by this activity is neces-
sary due to the possibility of fog systems having more than
one data offloading policy that conflict. In this activity, one
must consider that policies can result in different solutions,
benefiting or worsening the data offloading in the system.
Therefore, it is a crucial decision to be made.

When there are conflicts between policies, the architect
should look for alternatives based on his experience and
knowledge of the system requirements. Activity #1 can
support the decisions regarding requirements, which helps
gather requirements based on priority level. So an alternative
is to consider this priority level to select which policy is most
relevant for the system.

In summary, within the activities required to define data
offloading policies, many actions are performed. The first
action is formed by the architect’s decisions about the
requirements and problems addressed in the policies. After
these decisions are made, the definition of policies begins.
Some questions are raised to identify the criteria that will
motivate the data offloading process with the objective

{}§A

. Fog Device
Fog Device %, Fog Device LPoP Fog
LPoP LPoP
© 0 /]\ Layer 2
I N 728 3

Wireless Communications and Mobile Computing

T

Data center

Fog
Fog Device HGW Fog Device HGW Fog Device HGW
$. ? Layer1
P T R I |
1 1 1 1
By By By By By By By AT A T AT AT A
A A A A A A At
| Camems&,:p ! | Cameras %} | | Cameras (O I Layer0
B A S - g e s : Sensors
D oo
0oo & Lg%:) !!!Eg A 888 oo —
=|=af==&at Ejlulggmgﬂg ooo = |88| o000
=== T @ul%ﬂﬂ@:— nid 1000l je?)000

/\ Infrastructure
[Storage

FIGURE 4: System architectur

defined. Then, after the questions are answered, the tech-
niques used to solve the solution’s offloading problem are
specified. Finally, there is an output with a policy for each
identified problem, which allows decision-making to be per-
formed on conflicts of choice between policies.

5. Case Study

In order to demonstrate the practical use of the OftFog
approach, we applied it in an urban security application,
particularly in a surveillance camera system (SCS). The
study is based on the scenario proposed by Gupta et al. [7]
but also includes requirements related to high-scale IoT
infrastructure for smart cities. This case study attempts to
demonstrate the feasibility of using OftFog in fog computing
applications.

Intelligent cameras send a detection alert and video
stream to a designated controller upon detecting motion in

4= Application
[;j Data

e (adapted from Naas et al. [24]).

their field of view. As a result, SCS must handle motion
detection alerts as quickly as perceived by multiple sensors.
Furthermore, a long-term data storage capacity from the
systems is required, driven by the nature of several uses for
captured images. For that, SCS demands low latency com-
munication to report activities that are currently taking place
and also synchronise with other cameras. Therefore, a cloud-
based centralised system scenario suffers from a disadvan-
tage because all sensors must forward data to the cloud to
handle all processing, causing higher network latency and
bandwidth consumption.

For our analysis, we considered a distributed architecture
for the SCS, where cameras are responsible for monitoring
public places based on the scenario proposed by Hong et al.
[54]. Camera sensors detect activities in the context and send
the video stream to intermediary devices previously config-
ured. In turn, these devices perform tasks like data compres-
sion, partial store, data forward, and data criticality.

Wireless Communications and Mobile Computing

TaBLE 5: Data oftloading policies for the camera surveillance system.

Policy ID Requirements Objectives Criteria Techniques
Pl Long-term image storage Nat Volatility Storing video surveillance images in the cloud
ature
Video stream management for emergency response Criticality Storing data in fog nodes
- Real-time data flow management Vol Flow Event-driven data flow for noncritical data
olume
Camera file data size management Size Data compression in fog nodes
Object and motion detection Storage . .
P3 Infrastructure Storing data in fog nodes
Security systems with decision making without delay Latency

5.1. Surveillance Camera System Architecture. Devices LPoP
and RPoP organisationally cover infrastructure nodes dis-
posal in the local or regional network. They are responsible
for the communication between devices. Data collected by
the sensors (cameras) are stored and disposed of on devices
installed on fog (HGW) and cloud (DC) layers. Figure 4
shows the arrangement of components present in the SCS
architecture.

Intermediate devices HGW are responsible for receiving
data captured by sensors or transmitted from another device
via LPoP node. Also, they can serve data to system applica-
tions. Furthermore, they operate under established data off-
loading policies. For this, they send data to other HGW
devices or to the cloud, according to resource availability,
such as storage capacity and data relevance. A set of sensors
strictly communicates with a node in the fog set on the
topology definition. Sensors are responsible for inserting
data obtained and its properties such as size, compression
ratio, and relevance in the simulated scenario.

5.2. Data Offloading Policies for the SCS. The data offloading
policies for the SCS scenario accord to the activities specified
by OftFog. Table 5 presents the structure of this design and
highlights the three policies defined. According to OftFog
guidelines, the policies were organized considering the
priorities of the scenario requirements, their objectives, the
definition of data offloading criteria, and the specification
of techniques that support the offloading decision.

According to Table 5, policy P1 defines that the nature of
the data in this scenario should be considered. Data offload-
ing criteria such as data volatility and criticality must be
considered to meet two system requirements. The first
requirement concerns the need for long-term persistence of
the monitoring images. For this requirement, the suggested
technique is to store nonvolatile data in the cloud. The sec-
ond requirement is the management and analysis of the
video streams for emergency service response. For this
requirement, the suggested technique is to store data in the
nearest fog nodes to decrease the latency for decision mak-
ing in emergencies.

The P2 policy aims to control the volume of data traffic
in the system. The system requirements that motivate this
policy are the need to manage the data flow in real-time
and manage the size of the video files captured by the cam-
era. For the data flow control requirement, the suggested
technique is task scheduling (for noncritical data), i.e., data
oftloading will only occur after some conditional factor, such

as when the storage reaches its total capacity. Similarly, the
suggested technique is data compression for the data size
requirement, aiming to decrease the disk space occupied by
the monitoring videos.

Regarding the P3 policy, the focus is to consider the
management impact of some resources of the environment
infrastructure on the data offloading process. To this end,
the first requirement to be considered concerns the storage
of object detection and motion data made by the cameras.
For this requirement, the suggested technique is to store it
in fog nodes near the device, reducing communication
latency and allowing the system to recognise objects and
their movements faster. Finally, emergency response systems
should work without delays that impact their operation, so
the suggestion is to prioritise the storage in fog nodes.

6. Experimental Analysis

Aiming to evaluate the resulting policies of OffFog adoption
on the scenario presented in Section 5, we executed an
experimental study based on the well-known framework
iFogSim [7]. In particular, we provide a fog computing
simulation environment to reproduce the SCS behaviour
following the resulting offloading policies from the OftFog
execution.

Furthermore, we seek to provide insights and also
evaluate the trade-offs related to the resulting policies. We
evaluated from a latency-sensitive perspective, based on the
Naas et al. [24] architecture. We performed several simula-
tions using different values to relevant attributes for the
oftloading techniques resulting from OftFog (device storage
capacity, level of data compression, and data relevance).
We offer a topology for this use case, including cloud
devices, fog devices, and sensors.

6.1. Implementation. Despite the iFogSim allows the elabora-
tion of complex and heterogeneous evaluation scenarios, as
pointed out by Naas et al. [8], the base framework lacks good
data abstraction. The Tuple class represents a data fragment
and elementary information, but it does not elaborate on stor-
age abstractions. In their study, Naas et al. [8] introduced
improvements to the base framework to evaluate different
aspects of data placement, i.e., how to better distribute the
data, using different strategies, thus, reducing overall latency.

We extended the iFogSimWithDataPlacement (https://
github.com/medislam/iFogSimWithDataPlacement) by includ-
ing new capabilities related to data offloading. Figure 5

https://github.com/medislam/iFogSimWithDataPlacement
https://github.com/medislam/iFogSimWithDataPlacement

10 Wireless Communications and Mobile Computing
Oftload
_ |- - __ =|Offload allocation | _____ >
: P Storage state
,' l !
1 ! 1
1 ! 1
V N |
I I
Tuple : i
I ' v
Bits | | Storage handler |
FiGure 5: Data offloading implementation components.
TaBLE 6: Data offloading simulation parameters.
Parameter Description Values

<DV>_TUPLE_FILE_SIZE“
<DV>_Storage*
<DV>_Storage_Min_Threshold ¢
<DV>_Storage_Max_Threshold *
<DV>_Storage_Compression *
<DV>_Critical_Selection ¢

<DV>_Compression_Selection *

Data fragment size

Storage capacity

102400 (100 KB)
1048576 (1 MB)

Storage lower-level threshold percentage 10, 20
Storage upper-level threshold percentage 20, 30, 40
Data fragment compress level 20, 40, 60
Probability of data fragment CRITICAL 0.3, 0.5, 0.7
Probability of data fragment COMPRESS 0.3, 0.5, 0.7

@ <DV> represents the infrastructure device type (DC, RPoP, LPoP, or HGW).

describes the main components used by our extension. The
OffloadAllocation acts as the data offloading entry point,
reasoning which host should store the given data. It answers
whether it should be kept in the current host or be offloaded
to a corresponding node, i.e., to the Cloud (other nodes in
the infrastructure may be considered, but it was still not
implemented in this version). Other essential components
are DeviceState and StorageState, which abstract a device
and its current storage state. These components keep track
of the stored data and the storage free space, acting as the
building blocks to the implementation of data offloading
policies. All resources, including source codes, are available
at iFogSimOffload on Github (https://github.com/labcomu/
iFogSimOffload).

Once a new Tuple (data fragment) arrives at OffloadAl-
location, it is wrapped with data headers to support the data
offloading policies. The Bit component represents these
headers. Currently, it provides the options of COMPRESS
and CRITICAL. These options indicate if the StorageState
should compress the fragment size and if the data fragment
should never be offloaded, respectively. These characteris-
tics are selected randomly according to the simulation
parameters.

Requests to OftloadAllocation initiate a store attempt
into the device storage—performed on StorageState. First, if
the COMPRESS bit is activated, it compresses according to
the compress level passed as a simulation parameter. Then,
it tries to store it, failing when there is no space left on the
device. If it succeeds, but the currently used space reaches
an upper-level threshold, the store operation initiates data

offloading to the corresponding node (for instance, Cloud
node). The StorageState starts moving data to the corre-
sponding node, halting when the used space reaches a
lower-level threshold. The StorageHandler component
handles data offloading and halts logic.

Each simulation takes into consideration parameters that
influence the offloading behaviour, as detailed in Table 6.
These parameters are configured on the DataPlacement
component, which initiates the framework execution. The
<DV>_TUPLE_FILE_SIZE parameter is closely related to
the corresponding <DV>_Storage parameter and should be
defined in conjunction. Otherwise, the data offloading
operation might not be triggered. In other words, if a stor-
age free space is too large compared to the Tuple data
fragment size, the used space will remain under the upper
threshold—hence, data oftloading will not be required. The
<DV>_Compression_Selection and <DV>_Ciritical_Selec-
tion parameters define the probabilities where a data frag-
ment has the COMPRESS and CRITICAL bits selected,
respectively. For instance, if we want to select only 20% of
data fragments arriving at HGW devices as critical, we
should define HGW _Critical_Selection to 0.2.

6.2. Experimental Setup. All simulations were performed on
an Intel Core i7 4 CPU 1.8 GHz with 16 GB of RAM. Since
the iFogSim base framework does not benefit from parallel
processing and uses only up to 3 GB of RAM, the simulation
duration is only influenced by the unitary core frequency
(1.8 GHz). Moreover, we defined a topology with 5DC, 10
RPoP, 50 LPoP, and 500 HGW. Table 6 details the main

https://github.com/labcomu/iFogSimOffload
https://github.com/labcomu/iFogSimOffload

Wireless Communications and Mobile Computing

parameter values varied on simulations. In order to achieve
better confidence, we performed three full executions of all
possible combinations, producing a total of 405 executions
(135 per full simulation) and combined the results by
averaging the corresponding values of each configuration.
Because we focus on investigating data offloading operations
and due to the high number of simulations, we kept the
HGW_TUPLE_FILE_SIZE parameter as a fraction of 0.1
of HGW_Storage, and both as low as possible. In this way,
we observed more data offloading occurring within practical
execution times (see Section 6.3).

6.3. Evaluation. We grouped the executions by HGW_Stor-
age_Min_Threshold and HGW_Storage_Max_Threshold,
ie, the storage lower-level and upper-level thresholds,
respectively. Section 6.1 explains these thresholds, which
determine when the offloading starts and halts, according
to a storage usage percentage. The groups were tagged with
T _<Min>_<Max>, where <Min> and <Max> determine
minimal and maximal thresholds for oftfloading, respectively.
For instance, the execution T_10_20 starts offloading when
storage usage reaches 20% of its capacity and halts at 10%.
This storage threshold would trigger more data offloading
than T_20_40, which accepts up to 40% usage and halts
at 20%.

In order to understand how the OffFog chosen policies
affected the system behaviour, we measured the network
latencies under different experiment configurations. In par-
ticular, we evaluated the average network latencies, which
represent the average time spent, in milliseconds, on all
network communications between any pair of devices in
the SCS topology (Section 5.1). Having lower latencies
means that, on average, the simulations triggered fewer
communications.

Figure 6(a) shows the average network latency when we
vary the HGW_Storage_Compression and keep both
HGW_Compression_Selection and HGW_Critical_Selec-
tion fixed in the minimum value (0.3). In all simulations,
we can notice a reduction in network latencies with higher
compression levels. On the T_10_40 configuration occurs
the most considerable variation. It represents an excellent
example of how the compression policy, notably the more
strong compression techniques, could significantly impact
the offloading performance. Also, we can notice that with
HGW_Storage_Min_Threshold at 20 (T_20_30 and T_20_
40), the latency is significantly lower than the others config-
uration. It demonstrates the positive influence of more
tolerant storage thresholds, where fewer data fragments are
offloaded, resulting in fewer network communications.

Figure 6(b) shows the results for HGW_Compression_
Selection when we keep fixed the HGW_Storage_Compres-
sion and HGW_Ciritical_Selection to the minimum values
(20 and 0.3, respectively). Again, the T_10_40 configuration
presents the most considerable variation when HGW_Com-
pression_Selection is between 0.5 and 0.7. It repeats the
same pattern observed in Figure 6(a). To some extent, both
cases are related to the compression policy. With more data
fragments selected for compression, the storage threshold
will delay reaching the upper level, resulting in fewer data

11

oftloading. Once more, with HGW_Storage_Min_Threshold
at 20, the latency is significantly reduced to approximately
half due to fewer data offloading.

Figure 6(c) shows the results for HGW_Critical_Selec-
tion when we keep fixed the HGW_Storage_Compression
and HGW_Compression_Selection to the minimum values
(20 and 0.3, respectively). Changes in HGW_Ciritical_Selec-
tion produce significant latency variation, especially with
values between 0.5 and 0.7. Indeed, the criticality policy
directly affects offloading behaviour, given that a data frag-
ment tagged with a CRITICAL bit would never be offloaded.
More critical data fragments indicate that a smaller amount
of data stored is available for offloading. However, it is rele-
vant to note that this is not always feasible in practice since a
critical data fragment will never be sent to the Cloud, which
can be undesirable in many real-world scenarios. Finally, we
can observe again a reduction in the latency (approximately
50%) when the HGW_Storage_ Min_Threshold is the mini-
mum (i.e., 20).

Table 7 presents the evaluation of the results of the two
strategies: data offloading (offload, i.e., our extension) and
data sent directly to the cloud host (cloud, i.e., without data
offloading activated). The two strategy latencies are pre-
sented regarding their absolute values in milliseconds (time)
and the ratio between offload and cloud (ratio). Data off-
loading outperforms cloud strategy in all latency statistics
by at least 76% (max. ratio 0.24). On average, data offloading
reduces the network latencies by 87%. These represent a
remarkable improvement, demonstrating the efficacy of
selecting significative data offloading policies.

One also can note that the minimum average latency is
equal to 1 ms (Table 7). Very low latencies occurred when
we simulated HGW_Compression_Selection at 0.7 and
HGW_Storage_Compression at 60. It means that with a
high number of compressed data fragments and at an ele-
vated compress level, data offloading is reduced drastically.
However, such behaviour can compromise data share
between devices, which can be undesirable in real-world
situations. Therefore, these data offloading policy configu-
rations should be balanced according to the application
scenario.

Although the average execution time presented a modest
improvement of 5% (Avg. Ration 0.95), the execution was
faster in all 405 simulations. With data offloading enabled,
less processing occurs when Tuple components (data frag-
ments) are not transferred to other hosts in the simulated
topology. It is an interesting behaviour because the same is
expected to happen in real-world scenarios.

In summary, the experiments with iFogSimOffload
revealed the OffFog’s selected policies effectiveness (Table 5).
Grouping results by minimal and maximal thresholds
(<DV>_Storage Min_Threshold and <DV>_Storage_Max_
Threshold) demonstrated a direct influence on network laten-
cies. With more tolerant ranges, fewer data fragments are
offloaded. Nevertheless, it should be selected with caution.
Otherwise, it might even lead to no data sharing at all. The
same considerations apply to data criticality (<DV>_Criti-
cal_Selection). Simulations with data compression parame-
ters (<DV>_Storage_Compression and <DV>_Compression_

12 Wireless Communications and Mobile Computing

HGW_Storage_Compression HGW_Compression_Selection
40 ~ 40 ~
35 35
30 30
o &
§ 25 A § 25 A
= =
& 20 & 20 -
g g
4 s
< 154 < 154
10 10
5 1 5 1
0 0
T_10.20 T_10.30 T_10.40 T_20_30 T_20_40 T 1020 T_10.30 T_10_40 T_20_30 T_20_40
0 20.0 0 03
| 40.0 m| 05
[60.0 o7
(a) HGW_Storage_Compression (b) HGW_Compression_Selection
HGW _Critical_Selection
40 ~
35
30
o
g 25 A
=
& 20
<
g
< 154
10 1
5
0
T_10_.20 T_10.30 T_10_40 T_20_30 T_20_40
03
A 05
o7
(c) HGW_Critical_Selection
FiGure 6: HGW_Storage_Compression latency variation per storage threshold.
TaBLE 7: Comparison between cloud and offload statistics.
Average latency Execution time
Cloud Time (ms) Ratio Time (ms) Ratio
165 — 53,776 —
Min. 1 0.01 48,145 0.90
Max. 40 0.24 53,536 1.00
Offload
Avg. 22 0.13 51,230 0.95
Median 22 0.13 51,910 0.97
Selection) also demonstrate direct influence on latency reduc- It is important to note that iFogSim considers a con-

tion. Again, it should be considered carefully due to the need stant data fragment size. It represents a limitation of our
for more processing related to compression tasks. work since we cannot perform more refined analysis with

Wireless Communications and Mobile Computing

dynamic data fragment sizes. Moreover, because the
storage capacity directly influences the time to trigger data
offloading, our experiments become unfeasible to execute
with large storage sizes. Thus, we kept this configuration
more tangible, i.e., 100 KB data fragments and HGW stor-
age capacity of 1 MB.

7. Conclusions

Although data offloading is a well-known aspect of fog
computing applications, the specification of offloading pol-
icies is still an open issue due to the lack of clear guide-
lines. Therefore, software teams must have knowledge
bases arranged in an organized and structured manner to
support data offloading decision making for such specifica-
tions. OftFog provides this support and, in addition, it also
offers a set of activities that guides the policy design from
requirements prioritisation to conflicting requirements
resolution.

The experiments with iFogSimOffload demonstrated
the benefits of implementing data offloading based on
OftFog recommended policies in an urban surveillance
system. Once a real-world scenario topology is imple-
mented, the iFogSimOffload can help to identify the best
relation between configurations. An optimal combination
of compression level, compression selection, critical selec-
tion, and offloading thresholds significantly reduces the
amount of data offloaded. Indeed, our experiments show
an improvement of at least 76% of network latencies
compared to cloud strategy. Also, iFogSimOffload is exe-
cuted faster in all simulations, another positive effect of
implementing OffFog policies.

In future work, we plan to extend iFogSimOffload in
order to analyse power-related policies. This feature would
allow the inclusion of power-sensitive oftloading policies,
e.g., data offloading to the cloud during low-battery con-
ditions, thus, avoiding data loss. In particular, we can
extend the existing iFogSim ability to track device power
consumption.

Data Availability

The data used to support the findings of this study are
included in the article. More detailed resources were also
publicly published, including source code and simulation
results. These are available at the iFogSimOffload on Github
repository (https://github.com/labcomu/iFogSimOftload).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the Department of Infor-
matics and Applied Mathematics (DIMAp) and the Coordi-
nation of Superior Level Staff Improvement (CAPES) for the
assistance and support provided in all stages of this work.

13

This study was financed, in part, by the Coordination of
Superior Level Staff Improvement—Brazil (CAPES)—Fi-
nance Code 001.

References

[1] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V.
Vasilakos, “Fog computing for sustainable smart cities,” ACM
Computing Surveys (CSUR), vol. 50, no. 3, pp. 1-43, 2017.

[2] G.Javadzadeh and A. M. Rahmani, “Fog computing applica-
tions in smart cities: a systematic survey,” Wireless Networks,
vol. 26, no. 2, pp. 1433-1457, 2020.

[3] I Azimi, A. Anzanpour, A. M. Rahmani, P. Liljeberg, and
T. Salakoski, “Medical warning system based on internet of
things using fog computing,” in 2016 International Workshop
on Big Data and Information Security (IWBIS), pp. 19-24,
Jakarta, Indonesia, 2016.

[4] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and
F. Zanichelli, “A simulation platform for largescale internet
of things scenarios in urban environments,” in Proceedings of
the First International Conference on IoT in Urban Space,
pp. 50-55, Rome, Italy, 2014.

[5] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog
computing for iot: review, enabling technologies, and research
opportunities,” Future Generation Computer Systems, vol. 87,
pp. 278-289, 2018.

[6] S.Melo, C. Silva, and G. Aquino, “Classification aspects of the
data offloading process applied to fog computing,” in Interna-
tional Conference on Computational Science and Its Applica-
tions, pp. 340-353, Cagliari, Italy, 2021.

[7] H. Gupta, A. Vahid Dastjerdi, S. Ghosh, and R. Buyya, “ifog-
sim: a toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog
computing environments,” Software - Practice and Experience,
vol. 47, no. 9, pp. 1275-1296, 2017.

[8] M. Naas, P. Parvedy, J. Boukhobza, and L. Lemarchand,
“IFogStor: an IoT data placement strategy for fog infrastruc-
ture,” in 2017 IEEE Ist International Conference on Fog and
Edge Computing, ICFEC 2017, pp. 97-104, Madrid, Spain,
2017.

[9] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant,
and K. Mankodiya, “Towards fog-driven IoT eHealth: prom-
ises and challenges of IoT in medicine and healthcare,” Future
Generation Computer Systems, vol. 78, pp. 659-676, 2018.

[10] C. A. Silva, A Fog Computing-Based Software Architecture for
Patient-Centered Management of Medical Records, PhD thesis,
Federal University of Rio Grande do Norte, 2020.

[11] C. A.Silvaand G. S. Aquino Jr., “Fog computing in healthcare:
a review,” in 2018 IEEE Symposium on Computers and Com-
munications (ISCC), pp. 1126-1131, Natal, Brazil, 2018.

[12] C. A. Silva, G. S. Aquino Jr., S. R. M. Melo, and D. J. B. Egidio,
“A fog computing-based architecture for medical records
management,” Wireless Communications and Mobile Comput-
ing, vol. 2019, 16 pages, 2019.

[13] A. Alelaiwi, “An efficient method of computation offloading in
an edge cloud platform,” Journal of Parallel and Distributed
Computing, vol. 127, pp. 58-64, 2019.

[14] F. Pisani, V. Martins do Rosario, and E. Borin, “Fog vs. cloud
computing: should i stay or should i go?” Future Internet,
vol. 11, no. 2, p. 34, 2019.

https://github.com/labcomu/iFogSimOffload

14

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

Y. Shan, H. Wang, Z. Cao, and K. Yury, “Data offloading in
heterogeneous dynamic fog computing network: a contextual
bandit approach,” in 2021 3rd International Conference on
Computer Communication and the Internet (ICCCI), pp. 73—
77, Nagoya, Japan, 2021.

S. He, B. Cheng, H. Wang, X. Xiao, Y. Cao, and J. Chen,
“Data security storage model for fog computing in large-
scale iot application,” in IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 39-44, Honolulu, HI, USA, 2018.

S. Verma, A. K. Yadav, D. Motwani, R. Raw, and H. K. Singh,
“An efficient data replication and load balancing technique for
fog computing environment,” in 2016 3rd International Con-
ference on Computing for Sustainable Global Development
(INDIACom), pp. 2888-2895, New Delhi, India, 2016.

M. Mukherjee, V. Kumar, S. Kumar et al., “Computation
offloading strategy in heterogeneous fog computing with
energy and delay constraints,” in ICC 2020-2020 IEEE Inter-
national Conference on Communications (ICC), pp. 1-5,
Dublin, Ireland, 2020.

Q. Zhu, B. Si, F. Yang, and Y. Ma, “Task offloading decision in
fog computing system,” China Communications, vol. 14,
no. 11, pp. 59-68, 2017.

T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in
mobile edge computing: task allocation and computational
frequency scaling,” IEEE Transactions on Communications,
vol. 65, no. 8, pp. 3571-3584, 2017.

M. S. Bali, K. Gupta, D. Koundal, A. Zaguia, S. Mahajan, and
A. K. Pandit, “Smart architectural framework for symmetrical
data offloading in iot,” Symmetry, vol. 13, no. 10, p. 1889, 2021.

S. V. Margariti, V. V. Dimakopoulos, and G. Tsoumanis,
“Modeling and simulation tools for fog computing—a com-
prehensive survey from a cost perspective,” Future Internet,
vol. 12, no. 5, p. 89, 2020.

M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F.
Bittencourt, “Myifogsim: a simulator for virtual machine
migration in fog computing,” in Companion Proceedings of
the 10th International Conference on Utility and Cloud
Computing, pp. 47-52, Austin, Texas, USA, 2017.

M. Naas, J. Boukhobza, P. Raipin Parvedy, and L. Lemarchand,
“An extension to ifogsim to enable the design of data place-
ment strategies,” in 2018 IEEE 2nd International Conference
on Fog and Edge Computing (ICFEC), pp. 1-8, Washington,
DC, USA, 2018.

C. Puliafito, D. M. Gongalves, M. M. Lopes et al., “Mobfogsim:
simulation of mobility and migration for fog computing,” Sim-
ulation Modelling Practice and Theory, vol. 101, article 102062,
2020.

N. Mohan and J. Kangasharju, “Edge-fog cloud: a distributed
cloud for internet of things computations,” in 2016 Cloudifica-
tion of the Internet of Things (CloT), pp. 1-6, Paris, France,
2016.

N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud com-
puting: a survey,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 84-106, 2013.

K. Lee, D. Kim, D. Ha, U. Rajput, and H. Oh, “On security and
privacy issues of fog computing supported internet of things
environment,” in 2015 6th International Conference on the Net-
work of the Future (NOF), pp. 1-3, Montreal, QC, Canada, 2015.
C. Huang, R. Ly, and K.-K. R. Choo, “Vehicular fog comput-
ing: architecture, use case, and security and forensic chal-

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

Wireless Communications and Mobile Computing

lenges,” IEEE Communications Magazine, vol. 55, no. 11,
pp. 105-111, 2017.

S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: a
blockchain-based lightweight framework for edge and fog
computing,” Journal of Systems and Software, vol. 154,
pp. 22-36, 2019.

V. Moysiadis, P. Sarigiannidis, and I. Moscholios, “Towards
distributed data management in fog computing,” Wireless
Communications and Mobile Computing, vol. 2018, 14 pages,
2018.

C. A. Silva, G. S. de Aquino Junior, and S. R. M. Melo, “A
blockchain-based approach for privacy control of patient’s
medical records in the fog layer,” in Anais Principais do XXV
Simpdsio Brasileiro de Multimidia e Web, pp. 133-136, Porto
Alegre, RS, Brasil, 2019, https://sol.sbc.org.br/index.php/
webmedia/article/view/8011.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the first
edition of the MCC workshop on Mobile cloud computing,
pp- 13-16, Helsinki, Finland, 2012.

A. M. Rahmani, T. N. Gia, B. Negash et al., “Exploiting smart
e-health gateways at the edge of healthcare internet-of-things:
a fog computing approach,” Future Generation Computer Sys-
tems, vol. 78, pp. 641-658, 2018.

A. Yousefpour, C. Fung, T. Nguyen et al., “All one needs to
know about fog computing and related edge computing para-
digms: a complete survey,” Journal of Systems Architecture,
vol. 98, pp. 289-330, 2019.

P. H. Kuo, A. Mourad, C. Lu et al., “An integrated edge and fog
system for future communication networks,” in 2018 IEEE
Wireless Communications and Networking Conference Work-
shops (WCNCW), pp. 338-343, Barcelona, Spain, 2018.

S. Esteves, J. Silva, and L. Veiga, “Quality-of-service for
consistency of data geo-replication in cloud computing,” in
European Conference on Parallel Processing, pp. 285-297,
Rhodes Island, Greece, 2012.

R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: a
taxonomy, survey and future directions,” in Internet of Every-
thing, pp. 103-130, Springer, 2018.

H. Shi, N. Chen, and R. Deters, “Combining mobile and fog
computing: using coap to link mobile device clouds with fog
computing,” in 2015 IEEE International Conference on Data
Science and Data Intensive Systems, pp. 564-571, Sydney,
NSW, Australia, 2015.

W. Lee, K. Nam, H.-G. Roh, and S.-H. Kim, “A gateway based
fog computing architecture for wireless sensors and actuator
networks,” in 2016 18th International Conference on Advanced
Communication Technology (ICACT), pp. 210-213, Pyeong-
Chang, Korea (South), 2016.

N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung,
“Developing iot applications in the fog: a distributed data-
flow approach,” in 2015 5th International Conference on
the Internet of Things (IOT), pp. 155-162, Seoul, Korea
(South), 2015.

M. Maksimovic, “Improving computing issues in internet of
things driven e-health systems,” in Proceedings of the Interna-
tional Conference for Young Researchers in Informatics, Math-
ematics and Engineering’l7, pp. 14-17, Kaunas, Lithuania,
2017.

N. I. M. Enzai and M. Tang, “A taxonomy of computation off-
loading in mobile cloud computing,” in 2014 2nd IEEE

https://sol.sbc.org.br/index.php/webmedia/article/view/8011
https://sol.sbc.org.br/index.php/webmedia/article/view/8011

Wireless Communications and Mobile Computing

[44]

(45]

(46]

(47]

(48]

(49]

(50]

(54]

international conference on mobile cloud computing, Services,
and Engineering, pp. 19-28, Oxford, UK, 2014.

X. Xu, Y. Xue, L. Qi et al., “An edge computing-enabled com-
putation offloading method with privacy preservation for
internet of connected vehicles,” Future Generation Computer
Systems, vol. 96, pp. 89-100, 2019.

K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model
considering computing and communication latency in 5g
cellular networks,” in 2016 IEEE International Conference on
Pervasive Computing and Communication Workshops (Per
Com Workshops), pp. 1-4, Sydney, NSW, Australia, 2016.

F. A. Gomes, W. Viana, L. S. Rocha, and F. Trinta, “A contex-
tual data offloading service with privacy support,” in Proceed-
ings of the 22nd Brazilian Symposium on Multimedia and the
Web, pp. 23-30, Teresina, Piaui, Brazil, 2016.

D. V. Silva, T. G. Gongalves, and G. H. Travassos, “A technol-
ogy to support the building of requirements documents for iot
software systems,” in 19th Brazilian Symposium on Software
Quality, pp. 1-10, Sao Luis, Brazil, 2020.

A. Alazeb and B. Panda, “Ensuring data integrity in fog com-
puting based health-care systems,” in International Conference
on Security, Privacy and Anonymity in Computation, Commu-
nication and Storage, pp. 63-77, Springer, 2019.

M. Mukherjee, R. Matam, L. Shu et al., “Security and privacy in
fog computing: challenges,” IEEE Access, vol. 5, pp. 19293-
19304, 2017.

A. Heidari, M. A. Jabraeil Jamali, N. Jafari Navimipour, and
S. Akbarpour, “Internet of things offloading: ongoing issues,
opportunities, and future challenges,” International Journal
of Communication Systems, vol. 33, no. 14, 2020.

U. O. Delaware, Understanding Data Criticality, 2018, http://
wwwl.udel.edu/security/data/criticality.html.

Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software
architecture for fog computing,” IEEE Internet Computing,
vol. 21, no. 2, pp. 44-53, 2017.

H. Dubey, J. Yang, N. Constant, A. M. Amiri, Q. Yang, and
K. Makodiya, “Fog data: enhancing telehealth big data through
fog computing,” in Proceedings of the ASE bigdata ¢ socialin-
formatics 2015, pp. 1-6, Kaohsiung, Taiwan, 2015.

K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwilder, and
B. Koldehofe, “Mobile fog: a programming model for large-
scale applications on the internet of things,” in Proceedings of
the second ACM SIGCOMM workshop on Mobile cloud com-
puting, pp. 15-20, Hong Kong, China, 2013.

15

http://www1.udel.edu/security/data/criticality.html
http://www1.udel.edu/security/data/criticality.html

	OffFog: An Approach to Support the Definition of Offloading Policies on Fog Computing
	1. Introduction
	2. Related Works
	2.1. Data Offloading
	2.2. Simulation of Fog Computing Environments

	3. Data Offloading in Fog
	3.1. Taxonomy
	3.1.1. Security
	3.1.2. Management
	3.1.3. Nature
	3.1.4. Volume
	3.1.5. Infrastructure

	4. OffFog Approach
	5. Case Study
	5.1. Surveillance Camera System Architecture
	5.2. Data Offloading Policies for the SCS

	6. Experimental Analysis
	6.1. Implementation
	6.2. Experimental Setup
	6.3. Evaluation

	7. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

