
Research Article
Performance Evaluation of Multiagent Reinforcement Learning
Based Training Methods for Swarm Fighting

Huanli Gao , Yahui Cai , He Cai , Haolin Lu , and Jiahui Lu

School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

Correspondence should be addressed to He Cai; caihe@scut.edu.cn

Received 13 August 2022; Accepted 24 September 2022; Published 11 October 2022

Academic Editor: Jun Ye

Copyright © 2022 Huanli Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we conducted a performance evaluation of two multiagent reinforcement learning based training methods for
swarm fighting, namely, the multiagent reinforcement learning (MARL) training method, and the combined multiagent
reinforcement learning and behavior cloning (MARL-BC) training method. The behavior cloning expert is taken from some
well-trained model in the final steady phase by the MARL training method. From the perspective of winning rate, the
performances of these two different training methods can be divided into three phases. In the first phase, learning progresses
slowly for both these two training methods. As the model trained by the MARL training method grows stronger, the
experience of the behavior cloning expert gradually becomes useful, and the second phase kicks off where the MARL-BC
training method takes obvious advantage. Surprisingly, the advantage of the MARL-BC training method will disappear as the
learning progress goes on because in this final phase the expert of the behavior cloning training method can no longer offer
the right strategy in presence of the ever changing environment and opponent.

1. Introduction

The core mechanism of reinforcement learning (RL) is feed-
back. In the process of RL, agents perceive the environment,
take actions based on observation, and receive feedback
from the environment to adjust their actions. By extensive
trial and error, agents tend to exhibit the desired behavior
expected by the trainer. RL has also inspired many other
learning methods, such as Q learning [1], Neuro-Dynamic
Programming [2], Policy Gradient Learning [3], and so on.
These novel RL related learning methods have drastically
improved the ability of RL from the perspective of percep-
tion and expression, thus facilitating the application of RL
in many scenarios, such as robotics, computer vision, health,
transportation, finance, games, autonomous driving, natural
language processing, and other aspects [4–13].

Multiagent reinforcement learning (MARL) is an impor-
tant research direction of RL because the problem that can
be solved by a single agent is very limited. In the scenario
of swarm fighting, multiagent systems should make timely
judgment according to the change of the environment and
take action in the next move, such as attacking, avoiding,

encircling, and cheating. In order the win the fighting, the
multiagent system need to learn how to collaborate in the
process of reinforcement learning, and strive to maximize
the benefits in the changing environment. For example, for
unmanned aerial vehicle air combat, the environment is
evolving with high dynamic subject to complex conditions,
such as intermittent signal interference and dense fire threat.
Thus, it would be impossible to obtain a feasible fighting
strategy by a single and centralized learning method.
Instead, distributed and collaborative decision-making by
multiple agents would be necessary. However, the behaviors
of multiagent systems are essentially unstable Markov
decision-making process, which makes it extremely difficult,
if possible, to obtain any affirmatively effective solution by
rule-based methods. On the contrary, it is the very property
of RL to effectively deal with complex and dynamic environ-
ment. Recently, the MARL method proves to be a promising
way to solve the swarm fighting problem [14]. The players
on both sides in the swarm fighting constantly interact with
the environment, learn the reward value of each behavior
through RL, and combine these reward values to find the
optimal strategy. The multiagent deep deterministic policy

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5340517, 11 pages
https://doi.org/10.1155/2022/5340517

https://orcid.org/0000-0002-7468-7349
https://orcid.org/0000-0003-2382-5497
https://orcid.org/0000-0002-0411-1774
https://orcid.org/0000-0002-6447-880X
https://orcid.org/0000-0003-2217-6843
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5340517


gradient was proposed in [15], which established a frame-
work featuring centralized training and decentralized execu-
tion. Reference [16] proposed the Deep Reinforcement
Opponent Network algorithm with two neural networks,
where one neural network is designed to evaluate its own
Q value, while the other neural network is designed to learn
policy representations for other agents. In this way, the
intentions of other agents can be understood which helps
to improve algorithm performance. In [17], a novel cooper-
ative multiagent reinforcement learning method was con-
ceived for both discrete and continuous action spaces,
called FACtored Multiagent Centralised policy gradients
(FACMCA). Like the Multiagent Deep Deterministic Policy
Gradient method, FACMCA also uses depth determination
policy gradients to learn policies. However, FACMCA learns
a centralized but decomposed critic that combines the appli-
cation of each agent into a joint action-value function via a
nonlinear monotonic function. The authors of [18] utilized
additional state information in MARL and proposed a new
actor-critic framework, namely value-decomposition actor-
critic (VDAC). This framework achieves a reasonable bal-
ance between training efficiency and algorithm performance.
As the number of agents increases, the input of centralized
reviewers under the centralized training distribution execu-
tion framework increases linearly, increasing the difficulty
of training. To address this issue, [19] introduced an atten-
tion mechanism to solve the issues of dataset and training.
Efficient communication is crucial for effective cooperation
of agents. [20] explored the communication among agents
and proposed the Multiagent Bidirectionally-Coordinated
Network. A communication channel through a two-way
recurrent neural network was built, and the agents could
store local information while communicating continuously.
RL may encounter the problem of sparse rewards during
training, i.e., the agent does not get any reward after many
decision-making steps, which makes the learning process
of the agent difficult [21]. In such cases, the researchers
thought of using behavior cloning to speed up the learning
progress, i.e., the agent imitates the behavior of the expert,
making its own behavior close to the expert. Behavior
cloning was invoked in [22] for autonomous driving. By
collecting action-observation pairs in advance, the model
was trained to control the steering wheel, accelerate, and
brake by imitating experts. The DeepMind team also used
behavior cloning to initialize the policy network when train-
ing AlphaGo [23]. They encoded each chessboard state as a
tensor through an encoder, and trained the policy network
through supervised learning. This method greatly improves
the accuracy of the model placing chess pieces and speeds
up the training speed. Some other works related to behavior
cloning can be found in [24, 25].

In this paper, we build a 3V3 swarm fighting simulation
environment based on the Unity platform, and conducted
performance evaluation of two MARL based training
methods for swarm fighting. In particular, for the first
method, we directly employ the MARL training method,
and for the second method, we combine the MARL training
method and the behavior cloning training method by appro-
priately weighting between these two methods, leading to the

combined MARL and behavior cloning (MARL-BC) train-
ing method. The behavior cloning expert adopted in this
paper is taken from some well-trained model in the final
steady phase by the MARL training method. From the per-
spective of winning rate, the performances of these two dif-
ferent training methods can be divided into three phases. In
the first phase, learning progresses slowly for both these two
training methods. The reason is obvious for MARL training
method. While, for the MARL-BC training method, since
the data available for learning is mainly for opponents of
comparable ability, for the scenarios where the opponent is
weak, these data could not bring any extra benefits. As the
model by the MARL training method grows stronger, the
experience of the behavior cloning expert gradually becomes
useful, and the second phase kicks off where the MARL-BC
training method takes obvious advantage. Surprisingly, the
advantage of the MARL-BC training method will disappear
as the learning progress goes on. The reason behind this is
that in the final phase, the model trained by the MARL train-
ing method still keeps learning from the environment and its
opponent, while the model trained by the MARL-BC train-
ing method has to follow the rules of the expert to some
extent. Therefore, the resulted strategy cannot effectively
adapt to the ever changing environment and opponent.

2. Environment and Agent Setting

In this paper, we build the 3V3 swarm fighting simulation
environment based on the Unity platform. Unity is a plat-
form for real-time 3D interactive content creation and
operation, which has been widely used in game develop-
ment, art, architecture, automobile design, and other fields.
Also, Unity has a powerful physics engine based on NVI-
DIAphysX or Havok and an AAA-grade image rendering
engine. Based on the above engines, Unity can simulate rigid
bodies, particles, and other realistic physical environments
with high accuracy. Most importantly, Unity enables fast
distributed simulation. When tasks require fast simulation
speed other than the frame rate of the rendering process,
Unity can simulate from the code level and significantly
improve the learning efficiency of RL.

2.1. Environment Setting. Based on the Unity platform, the
simulation environment can support a large number of
agents to train in a single environment. Figure 1 shows the
top and side views of the specific environment. The environ-
ment is bounded by boundaries 200 meters long and 160
meters wide, including six intelligent tanks, three in the red
teams and three in the green teams. These intelligent tanks
have the same attributes and will be referred to as agents
later. The agents in both teams have certain endurance and
fire limits. The goal of each team is to annihilate the other
with maximal efficiency and minimal loss.

The winning condition for each team is to annihilate all
agents of the other team. A time limit is added to avoid end-
less battles. If the time limit is exceeded, the game will be
tied. The specific rules are given by Algorithm 1, where
Red.num and Green.num represent the number of surviving
agents in red team and green team, respectively, and

2 Wireless Communications and Mobile Computing



Agent of green team

Agent of red team

Border

(a) Top view of the simulation environment

(b) Side view of the simulation environment

Figure 1: Top and side views of the swarm fighting simulation environment.

3Wireless Communications and Mobile Computing



Green.win (Red.win) means green team (red team) wins the
fighting. An independent script acts as a judge throughout
the environment, which analyzes each frame in the environ-
ment to ensure that the execution of global rules is correct.

2.2. Agent Setting. Each agent has two continuous actions:
forward, turn, and a discrete action: fire or not. The agent
obtains environmental information by communicating with
the surrounding agents through sensors. Now we introduce
the basic configuration information of the agent.

2.2.1. Motion. According to the task requirements, the agent
can only move in the XOZ plane in the global coordinate
system, and the motion control of the agent follows the
second-order unicycle model, which is given by

ϕ k + 1ð Þ
x k + 1ð Þ
y k + 1ð Þ

2
664

3
775 =

x kð Þ + v kð Þ · cos ϕ kð Þð Þ · Ts

y kð Þ + v kð Þ · sin ϕ kð Þð Þ · Ts

ϕ kð Þ + ω kð Þ · Ts

2
664

3
775, ð1Þ

where ðxðkÞ, yðkÞÞ denote the Cartesian coordinate of the
agent; ϕðkÞ denotes the anticlockwise angle of the agent with
respect to the x-axis; vðkÞ and ωðkÞ denote the linear and
angular velocities of the agent, respectively; Ts denotes the
sampling time. Moreover, we impose limits for linear
and angular velocities for each agent. In particular, vðkÞ ∈
½−10m/s, ð20m/sÞ�, and ωðkÞ ∈ ½−10∘/s, ð10∘/sÞ�.
2.2.2. Perception. The agent has three ways to perceive the
surrounding environment, i.e., by Raycast Observations, by
communication with teammates, and by self-observation.
As shown in Figure 2(a), an omnidirectional laser detector
is employed by each agent to detect the surrounding obsta-
cles, where 14 rays with a length of 35m are emitted from
the agent to the surroundings to form an omnidirectional
laser detector. Each ray returns an n-dimensional vector,
where n is the number of detected tags. In this paper, we
set the tags to be Wall, Enemy, and Teammate. In
Figure 2(b), we can see that the 5th ray detects the enemy,

the 8th ray detects the teammate, and the 10th-12th rays
detect the wall.

In the simulation environment, we suppose there is
regular communication between agents of the same team.
By communication, the agents can share information with
each other, including HP, velocity, and position, as shown
in Table 1.

The agent can obtain the information of the opponents
within a certain range that are not blocked by obstacles
through observation. If the opponent is behind the agent,
there is a 20% chance that the opponent’s information can
be obtained. The opponent’s speed and HP information
are summarized in Table 2.

2.2.3. Attack Capability. The agent can attack the opponent
by firing projectiles. When the agent chooses to shoot, the
projectile acquires an initial angle and an initial velocity
relative to the agent’s coordinate system. In the simulation
environment, the air resistance is ignored, and thus the pro-
jectile’s trajectory in the air is parabolic subject to gravity.
When the projectile hits any object, it will explode, causing
damage to all the agents within the blast radius. Let Di
represent the distance between agent i and the projectile, ζ
represent the maximum damage of the projectile, η repre-
sents the blast radius. Then the damage Hi caused by the
projectile to agent i is described as follows:

Hi =
ζ∗

η −Di

η

� �
Di ≤ η

0 Di > η

8><
>:

: ð2Þ

The initial velocity at which an agent fires a projectile is
controllable. If an agent fires a shell when the opponent is
close to it, the shell may injure itself.

2.3. Reward Setting. In the process of RL training, by setting
appropriate positive and negative rewards, the agent can be
guided to learn the correct behavior. In the simulation envi-
ronment, there are two kinds of rewards, agent-wise and
group-wise. Agent rewards are used to optimize individual
behaviors, so that agents can learn basic behaviors such as
attack or retreat. Group rewards are used to encourage coop-
erative behaviors of group members. The specific positive
and negative rewards are given in Tables 3 and 4. The termi-
nologies in the tables are explained as follows:

(i) HP represents the remaining blood volume of the
agent, and FullHP represents the full blood volume
of the agent. HP Sum represents the total HP of a
team

(ii) ResetTimer denotes the current number of steps,
and MaxEnvironmentSteps denotes the longest
number of steps in a round. If the number of steps
is exceeded, the fight will be forced to end

Input: Begin//bool value, initialize the environment,
whether to start round.
Output: Winner of this round.

Execute this program each frame.
MaxEnviormentStep =8000//Defines the maximum.
number of steps in the environment.
for i≤ MaxEnviormentStep && Begin do.

++i:
if Red.num ==0 && Green.num ==0 then

return tie
else if Red.num ==0 then

return Green.win
else

return Red.win
return null

Algorithm 1: Global Rules

4 Wireless Communications and Mobile Computing



1213

14

1

2

3

4

5
6

7

8

9

10

11

(a) The sensor of the agent

12

1314

1

2

3

4
5

6

7

8

9

1011

(b) Detection by the sensor

Figure 2: The working principle of the sensor.

Table 1: Information obtained by communication.

Number of feature Meaning of feature

1 The remaining HP of the agent

2 The X-coordinate of the agent

3 The Z-coordinate of the agent

4 The X-direction velocity of the agent

5 The Z-direction velocity of the agent

Table 2: Information obtained by self-observation.

Number of feature Meaning of features

1 The remaining HP of the opponent

2 The X-direction velocity of the agent

3 The Z-direction velocity of the agent

5Wireless Communications and Mobile Computing



3. Algorithm

RL is a trial-and-error-based machine learning method.
During the learning process, the agent is not told what
actions to take, but must try to discover which action may
produce more benefits. Let st represent the state of the agent
at step t, at represent the action taken by the agent at step t,
and rt+1 represent the reward obtained by the agent per-
forming action at in state st . The agent uses the reward of
each step as feedback to adjust the weighted parameters of
the reinforcement learning network to maximize the reward,
and the agent also learns the optimal strategy at each step. In
the process of MARL, in order to strengthen the cooperation
between agents, the rewards of the environment are mostly
shared rewards. We want the agent’s behavior to maximize
the group’s future reward. However, during the training pro-
cess, the agent may terminate early and be removed from the
environment. The removed agent cannot learn the success or
failure of the group from subsequent phase. This problem is
known as the postmortem credit allocation problem. The
MA-POCA algorithm proposed by the Unity team solves
this problem very well [26]. The algorithm introduces an
attention mechanism at the input of RL, so that the network
has the ability to deal with a variable number of agents,
which is convenient for us to add or delete agents during
the training process. In this experiment, we choose this algo-
rithm to train the agent.

In the experiment, we set up two groups of experiments.
One group of experiments only use MA-POCA algorithm,
and the other group of experiments use MA-POCA and
behavioral cloning. In behavioral cloning, the most impor-
tant factor is the demo model. The demo of this experiment
comes from the agent with the highest winning rate obtained
from many experiments. We train 100M times to get the
agent model through MARL by self-play. At this far, the
capability of the agent reaches a bottleneck. We set the

Table 3: Positive reward setting.

Type Situation Reward

Agent

Projectile hits opponent 0:1 ∗
Hi

ζ

� �
+ 0:15 ∗

HP
FullHP

� �

Group wins 0:6 +
HP

FullHP

� �
∗ 1 −

ResetTimer
MaxEnvironmentSteps

� �� �
∗ 0:6

Opponent is killed 0:15 ∗
Hi

ζ

� �
+ 0:2 ∗

HP
FullHP

� �

Group

Opponent is killed 0.1

Group wins 0:9 − 0:5 ∗
ResetTimer

MaxEnvironmentSteps

� �
+ 0:2 ∗ HPSumð Þ

� �

Table 4: Negative reward setting.

Type Situation Reward

Agent

Agent is killed −0:2 +
ResetTimer

MaxEnvironmentSteps

� �
∗ 0:1

Group failed -0.1

Injure teammates −0:2 ∗
Hi

ζ

� �� �

Group

Group ties −0:2 +
ResetTimer

MaxEnvironmentSteps

� �
∗ 0:12

Group fails −0:8 +
ResetTimer

MaxEnvironmentSteps

� �
∗ 0:5

Table 5: Hyperparameters used for this experiment.

Type MARL MARL-BC

Hyperparameters

Batch size 1024 1024

Buffer size 20480 20480

Learning rate 0.0001 0.0001

Entropy bonus 0.005 0.005

Num epoch 3 3

Network settings
Hidden units 512 512

Num layers 3 3

Reward signals
Discount factor 0.99 0.99

Strength 1.0 1.0

Behavior cloning
Steps / 100M

Strength 0.5 0.5

6 Wireless Communications and Mobile Computing



Red_Reward: 0.00 Green_Reward: 0.00

Red_win: 0
Green_win: 0

(a) Swarm fighting starts

Red_Reward: –0.25 Green_Reward: 0.18

Red_win: 0
Green_win: 0

(b) Green team is attacking

Red_Reward: –0.34 Green_Reward: –0.50

Red_win: 0
Green_win: 0

(c) Three agents are killed

Red_Reward: –0.36 Green_Reward: –0.79

Red_win: 0
Green_win: 0

(d) Three agents remain

Red_Reward: –0.39 Green_Reward: –0.83

Red_win: 0
Green_win: 0

(e) The green team surrounds the red team

Red_Reward: –0.39 Green_Reward: –0.83

Red_win: 0
Green_win: 0

(f) The green team wins

Figure 3: The whole process of a single round of swarm fighting.

7Wireless Communications and Mobile Computing



adversary with stronger attributes in terms of speed, HP,
angular velocity, and field of view. By gradually strengthen-
ing the properties of the adversary, the ability of the agent
is gradually improved. Finally, we obtain an agent model
with a higher winning rate. By recording the behavior of
the agent during testing, we obtain the demo files used for
behavioral cloning training. In the initial stage for the
MARL-BC method, the agent’s decision is made equally
based on the knowledge from RL and from the demo files
of the expert by the behavioral cloning training method.
This training process will continue for 100M steps.

The experiment is conducted in the ML-Agent develop-
ment environment of Unity, where the version number is
0.28.0. The hyperparameters used in this experiment are
listed in Table 5, and those parameters not listed in the table
just take default values. The terminologies of Table 5 are
explained as follows:

(i) Hyperparameters

Batch Size Setting Batch Size to 1024 means collecting
1024 data samples at one time for training. Generally speak-
ing, small batch size will increase the randomness of the
gradient descent, thus making the algorithm difficult to con-
verge. On the other hand, increasing batch size can reduce
sample randomness, improve learning efficiency, and make
the direction of the gradient descent more stable.

Buffer Size refers to the amount of experience to collect
before updating the policy model. For the swarm fighting
of three agents, setting Buffer Size to be 20480 can help the
agents learn quickly.

Learning rate corresponds to the magnitude of each gra-
dient descent update step. Excessive learning rate will violate

the stability of the training process. Extensive experiments
show that the model considered in this paper has better per-
formance when the learning rate is set to be 0.0001.

Entropy Bonus encourages agent to take unpredictable
actions. Setting Entropy Bonus to be 0.005 can help the agent
improve the generalization ability in the training process.

Num Epoch denotes the number of times to pass
through the experience buffer when performing gradient
descent optimization. Decreasing Num epoch will make
the updates more stable, but in the meantime slows down
the training speed. To balance stability and training effi-
ciency, we set Num epoch to be 3.

(ii) Network Settings

Hidden Units represent the neural network units of the
hidden layer, ranging from 32 to 512 as recommended by
the official document. In this paper, the number of hidden
units is set to be 512 to maximize the ability of the agents.

Num layers refers to the number of hidden layers of the
neural network. Taken into account the complex situation of
swarm fighting, we set Num layers to be 3.

(iii) Reward Signals

Discount Factor denotes the discount factor for future
rewards coming from the environment. It reflects how far
into the future the agent should care about the possible
rewards. Since the swarm fighting problem is a long
sequence process, we set Discount Factor to be 0.99.

Strength represents the multiplication coefficient of
the original reward. It is set to be 1 by the official
recommendation.

0 5 M 10 M 20 M 30 M 50 M 100 M
Different training steps

10

20

30

40

50

60

70

80

90

100

W
in

ni
ng

 ra
te

 (%
)

MARL with MARL-BC battle winning rate

50.1%

49.9%

57.6%

42.4%

87.4%

12.6%

68%

32%

51.4%

48.6%

52.7%

47.3%

MARL
MARL-BC

Figure 4: Winning rate of different training methods.

8 Wireless Communications and Mobile Computing



(iv) Behavior Cloning

Steps represent the training steps of behavior cloning,
which are set to be 100M. After 100M steps, the model will
no longer be trained by the behavior cloning method.

Strength represents the proportion of behavior
cloning training in the training process. In this paper,
it is set to be 0.5, i.e., the agents will be trained
equally by the MARL and the behavior cloning train-
ing method.

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–1

0 20 M 40 M 60 M 80 M

MARL
MARL-BC

100 M

(a) Cumulative agent reward throughout the training process

0.61

0.6

0.59

0.58

0.57

0.63

0.62

0.64

0.65

0 20 M 40 M 60 M 80 M

MARL
MARL-BC

100 M

(b) Cumulative group reward throughout the training process

Figure 5: Cumulative reward of agent and group.

9Wireless Communications and Mobile Computing



Two indicators are adopted to evaluate the performance
of the algorithm, namely, the winning rate and the cumula-
tive reward. We conduct ten sets of parallel tests of the same
environment to speed up the test efficiency. To make the
experimental results fair, we set up two identical competi-
tions in each set of test where the two sides of competitors
shall switch their initial status. In order to make the experi-
mental results more convincible, we measure the winning
rate of the model through at least 2000 rounds of tests. As
mentioned above, the agent takes different actions in differ-
ent states. The system gives different rewards according to
the quality of the action. If the average reward value of the
agent is large, it means that the agent makes more correct
decisions, and the training effect of the agent is better.
Figure 3 shows the whole process of a single round of swarm
fighting.

4. Results

The results are shown by Figures 4 and 5. Figure 4 shows the
winning rate of MARL and MARL-BC based training
method at different training steps. MARL refers to the train-
ing method by MA-POCA, which is represented by the pink
line. MARL-BC refers to the training method by MA-POCA
plus behavior cloning, which is represented by the green line.

At 5M steps, the winning rates of both sides are similar.
Starting from 5M steps, the winning rate of MARL-BC grad-
ually increases until it reaches 87.4% at 20M steps. After
that, the winning rate of MARL-BC starts to decline. At
50M steps, the winning rates of the two training methods
are close to each other again, where the winning rate of
MARL-BC is only 2.8% better than that of MARL. When
the training continues up to 100M steps, the winning rate
of MARL is 52.7%, which has exceeded the winning rate of
MARL-BC.

Figure 5(a) shows the profile of the cumulative reward
throughout the whole training process. In the early training
phase, the cumulative reward of MARL-BC is almost the
same as that of MARL, and both of which show a downward
trend. As the experiment continues, the cumulative reward
of MARL-BC first reaches the inflection point and starts to
increase, ahead of the cumulative reward of MARL. The
cumulative reward of MARL reaches its inflection point at
3M and also starts to increase, but it is slower than
MARL-BC. The cumulative reward of MARL-BC keeps
being higher than that of MARL until the experiment
reaches 22M steps, at which the two cumulative rewards of
the two training method are equal. In the next period, the
cumulative rewards of MARL-BC and MARL are compara-
ble. When the experiment reaches 54M steps, the cumula-
tive reward of MARL begins to lead MARL-BC, which
continues until the end of the experiment. Figure 5(b) shows
the profile of the group reward throughout the whole train-
ing process. Similar to Figure 5(a), MARL-BC reaches the
inflection point first, but the difference is that as the training
progresses, the group reward of the MARL-BC method is
larger than that of MARL.

As described above, behavior cloning helps agents learn
quickly to fight against opponents. While, behavior cloning

helps the agent beat the agent trained with a certain number
of steps. When faced with an agent with low intelligence
which is insufficiently trained, behavior cloning cannot help
much. Therefore, at 50M steps, the number of training steps
of the agent of MARL is not enough, and MARL-BC cannot
provide useful experience. At this phase, MARL-BC and
MARL have almost the same winning rate. As the experi-
ments proceeded, the model using the MARL method
became more sophisticated. Prior knowledge of behavioral
cloning comes into play, helping agents using MARL-BC
progress rapidly and maintain a high winning rate. In the
final phase of the experiment, the agent using the MARL
method learns from wrong decisions and keeps updating
the model, and thus the ability of the agent is still growing.
However, for the behavior cloning method, due to the lim-
ited scenarios covered by prior knowledge, the strategies
provided by prior knowledge are not necessarily optimal,
hindering the model’s progress to some certain extent. The
winning rate gap between the two method starts to narrow
down, and finally the winning rate of the agent using the
MARL method surpassed that of the agent using MARL-
BC. If the training continues, the results are not difficult to
predict that the advantage of the agent trained using the
MARL method will become larger, and the winning rates
of the two will converge with a steady difference.

5. Conclusion

In this paper, we evaluate the performance of two multiagent
reinforcement learning based training methods, namely,
MARL and MARL-BC. Two performance evaluation indica-
tors are adopted, i.e., the winning rate and the cumulative
reward. By comprehensive experiments, the following results
are revealed.

(i) To some extent, behavior cloning can help agents
learn strategies quickly to deal with specific oppo-
nents, which enables agents to defeat their opponents
before and during training with extra knowledge and
experience. However, as the number of the training
steps keeps growing, the knowledge and experience
from the behavior cloning may prevent the modeling
from improving compared with the MARL training
method which, for all the training process, keeps
learning from its opponent and the environment

(ii) Because of the limitations of behavioral cloning
training method in the later phase of training, it
should be considered as an auxiliary training method
in the prephase of the training process, rather than a
training method for the whole training process

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

10 Wireless Communications and Mobile Computing



Acknowledgments

This research was funded in part by the National Natural
Science Foundation of China under grant number
62173149, 62276104, and in part by the Guangdong Natural
Science Foundation under grant number 2021A1515012584,
2022A1515011262.

References

[1] C. J. C. H. Watkins, Learning from delayed rewards, King’s
College, Cambridge United Kingdom, 1989.

[2] D. P. Bertsekas and J. N. Tsitsiklis, “Neurodynamic
programming: an overview,” in Proceedings of 1995 34th IEEE
conference on decision and control, vol. 1, pp. 560–564, New
Orleans, LA, USA, 1995.

[3] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in
International conference on machine learning. PMLR, vol. 32,
no. 1, pp. 387–395, Beijing, China, 2014.

[4] C. Huang, S. Lucey, and D. Ramanan, “Learning policies for
adaptive tracking with deep feature cascades,” in Proceedings
of the IEEE international conference on computer vision,
pp. 105–114, Venice, Italy, 2017.

[5] K. Yu, C. Dong, L. Lin, and C. C. Loy, “Crafting a toolchain for
image restoration by deep reinforcement learning,” in Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition, pp. 2443–2452, Salt Lake City, UT, USA, 2018.

[6] H. Xu, S. Feng, Y. Zhang, and L. Li, “A grouping-based
cooperative driving strategy for cavs merging problems,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 6, pp. 6125–
6136, 2019.

[7] M. Tan, “Multi-agent reinforcement learning: independent vs.
cooperative agents,” in Proceedings of the tenth international
conference on machine learning, pp. 330–337, Amherst, MA,
USA, 1993.

[8] S. Bajpai, “Application of deep reinforcement learning for
Indian stock trading automation,” 2021, https://arxiv.org/
abs/2106.16088.

[9] K.-F. Tang, H.-C. Kao, C.-N. Chou, and E. Y. Chang, “Inquire
and diagnose: neural symptom checking ensemble using deep
reinforcement learning,” NIPS Workshop on Deep Reinforce-
ment Learning, 2016.

[10] J. Wang, T. Shi, Y. Wu, L. Miranda-Moreno, and L. Sun,
“Multi-agent graph reinforcement learning for connected
automated driving,” in Proceedings of the 37th International
Conference on Machine Learning (ICML), pp. 1–6, Vienna,
Austria, 2020.

[11] J. Wu, Z. Huang, W. Huang, and C. Lv, “Prioritized
experience-based reinforcement learning with human guid-
ance: methdology and application to autonomous driving,”
2021, https://arxiv.org/abs/2109.12516.

[12] J. Luketina, N. Nardelli, G. Farquhar et al., “A survey of rein-
forcement learning informed by natural language,” 2019,
https://arxiv.org/abs/1906.03926.

[13] O. Vinyals, I. Babuschkin, W. M. Czarnecki et al., “Grandmas-
ter level in StarCraft II using multi-agent reinforcement learn-
ing,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[14] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Machine learning proceedings
1994, pp. 157–163, New Brunswick, New Jersey, USA, 1994.

[15] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and
I. Mordatch, “Multi-agent actor-critic for mixed cooperative-
competitive environments,” Advances in neural information
processing systems, vol. 30, 2017.

[16] H. He, J. Boyd-Graber, K. Kwok, and H. Daume, “Opponent
modeling in deep reinforcement learning,” in International
conference on machine learning PMLR, vol. 48, pp. 1804–
1813, New York City, NY, USA, 2016.

[17] B. Peng, T. Rashid, C. Schroeder de Witt et al., “Facmac: fac-
tored multi-agent centralised policy gradients,” Advances in
Neural Information Processing Systems, vol. 34, pp. 12 208–
12 221, 2021.

[18] J. Su, S. Adams, and P. Beling, “Valuedecomposition multi-
agent actor-critics,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35no. 13, pp. 11 352–11 360,
2021.

[19] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent
reinforcement learning,” in International conference on
machine learning. PMLR, pp. 2961–2970, Los Angeles, USA,
2019.

[20] P. Peng, Y. Wen, Y. Yang et al., “Multiagent bidirectionally-
coordinated nets: emergence of human-level coordination in
learning to play starcraft combat games,” 2017, https://arxiv
.org/abs/1703.10069.

[21] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and
S. Shakkottai, “Reinforcement learning with sparse rewards
using guidance from offline demonstration,” 2022, https://
arxiv.org/abs/2202.04628.

[22] F. Codevilla, M. Muller, A. Lopez, V. Koltun, and
A. Dosovitskiy, “End-to-end driving via conditional imitation
learning,” in 2018 IEEE international conference on robotics
and automation (ICRA), pp. 4693–4700, Brisbane, QLD,
Australia, 2018.

[23] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game
of Go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[24] F. Codevilla, E. Santana, A. M. Lopez, and A. Gaidon, “Explor-
ing the limitations of behavior cloning for autonomous
driving,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 9329–9338, Seoul, Korea, 2019.

[25] Y. Chen, J. Su, and W. Wei, “Multi-granularity textual adver-
sarial attack with behavior cloning,” 2021, https://arxiv.org/
abs/2109.04367.

[26] A. Cohen, E. Teng, V.-P. Berges et al., “On the use and misuse
of absorbing states in multi-agent reinforcement learning,”
2021, https://arxiv.org/abs/2111.05992.

11Wireless Communications and Mobile Computing

https://arxiv.org/abs/2106.16088
https://arxiv.org/abs/2106.16088
https://arxiv.org/abs/2109.12516
https://arxiv.org/abs/1906.03926
https://arxiv.org/abs/1703.10069
https://arxiv.org/abs/1703.10069
https://arxiv.org/abs/2202.04628
https://arxiv.org/abs/2202.04628
https://arxiv.org/abs/2109.04367
https://arxiv.org/abs/2109.04367
https://arxiv.org/abs/2111.05992

	Performance Evaluation of Multiagent Reinforcement Learning Based Training Methods for Swarm Fighting
	1. Introduction
	2. Environment and Agent Setting
	2.1. Environment Setting
	2.2. Agent Setting
	2.2.1. Motion
	2.2.2. Perception
	2.2.3. Attack Capability

	2.3. Reward Setting

	3. Algorithm
	4. Results
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



