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The multiple Unmanned Aerial Vehicle (multi-UAV) assisted roadside unit (RSU) data acquisition problem considering the
coverage quality is a multiobjective optimization problem, which is a NP-hard problem. Heuristic and hyperheuristic
algorithms are effective to solve problems of this type. These algorithms can find the optimal or suboptimal solution in a
reasonable time. However, such algorithms still have the problems of low convergence accuracy, slow convergence speed, and
being easy to fall into the local optimal solution. In this paper, firstly, according to the specific problem scenarios of roadside
unit data collection, minimum cost and maximum coverage models based on task cost and coverage quality are established.
Then, to solve the optimization model, combined with the update characteristics of the gray wolf optimization algorithm
(GWO) and the whale optimization algorithm (WOA), a hybrid weighted gray wolf and whale optimization algorithm
(HWGWOA) is proposed. Finally, to verify the effectiveness of the proposed algorithm, extensive simulation experiments are
conducted under four different task acquisition scenarios, and the results are compared with those of genetic algorithm (GA),
GWO, and WOA. Simulation results show that the algorithm proposed in this paper not only can get lower task cost and
higher coverage quality but also has faster convergence speed and better robustness. Specifically, in terms of task cost, the
HWGWOA is about 9.54% lower than the GA, about 7.31% lower than the GWO, and about 5.8% lower than the WOA. In
terms of coverage, the HWGWOA is up to about 27.87% higher than the GA, about 15.19% higher than the GWO, and about
9.86% higher than the WOA. Therefore, the algorithm is more suitable for large-scale optimization problems.

1. Introduction

With the development of artificial intelligence, intelligent
transportation has become an important research field. In
this field, it is crucial to collect road and traffic data. Cur-
rently, it mainly relies on roadside units (RSUs) to collect
and transmit data to data center. However, in some remote
areas, poor areas, or some special areas, data collection and
transmission have big challenges [1].

In recent years, unmanned aerial vehicles (UAVs) have
been widely used in military and civilian fields because of
their high flexibility, low risk, low cost, and easy deployment
[2]. At the same time, UAVs are widely used in the field of
intelligent transportation, and they play an important role
in traffic detection, road patrol, data collection, emergency

communications, traffic accident evidence collection, target
tracking, and transportation [3]. Compared with traditional
mobile sensors, UAVs have faster moving speed, wider
deployment range and longer working hours, so they are
more suitable for performing various tasks [4–6]. UAV-
assisted RSUs have become an effective method of data
collection, which have greatly improved the efficiency of
data collection [7].

Currently, most UAVs are powered by batteries and can-
not complete large-scale tasks independently due to energy
consumption constraints. Therefore, it is becoming more
and more common for multiple UAVs to perform tasks
cooperatively. Collaborative planning is an important way
to improve the efficiency of UAVs [8]. At present, most algo-
rithms about UAV task assignment and path planning
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optimize the following indicators given the number of UAV,
such as (1) optimizing the task completion time under the
premise of the given number of drones, (2) optimizing the
task completion energy consumption under the premise of
the given number of drones, and (3) weighing the energy
consumption under the premise of the given number of
drones and time cost. However, in fact, the optimal number
of UAVs to complete tasks is unknown. The optimal num-
ber of UAVs is unknown. Assuming there are enough
UAVs, it is important to find the best number of UAVs for
a given time limit and task set.

In addition, for large-scale data collection scenarios, it
will take a long time to collect data from RSUs, and the
number of employed UAVs will inevitably increase, which
will result in high collection cost. Therefore, in fact, under
the constraints of energy consumption and time, as the col-
lection task increases, we cannot collect all RSU data. At this
time, the data collection problem is transformed into a
sweep coverage problem. At present, for the sweep coverage
problem, the coverage rate is generally expressed by the ratio
of the number of covered target points to the total number of
target points, which is not reasonable in the problem of RSU
data collection. In the RSU data collection problem, the
RSUs deployed in different locations often collect road and
traffic data with different data size and importance at the
same time. Therefore, nodes with different importance need
different data collection frequency. For example, it is neces-
sary to collect more important and complex data informa-
tion from RSUs deployed near scenic spots, urban arterial
road intersections, and near stations. The RSUs deployed
on remote trails carry less important and less data informa-
tion. To this end, this paper proposes a data collection model
based on coverage quality while optimizing time and energy
consumption. We define this problem as a minimum cost
and maximum coverage problem.

In this paper, the problem of multi-UAV cooperatively
assisted roadside unit data acquisition considering coverage
quality is regarded as the problem of minimum cost and
maximum coverage. We need to dispatch a certain number
of UAVs to collect data from RSUs in the target area to
achieve the greatest coverage quality with the smallest task
cost. This problem is a NP-hard problem, which is an exten-
sion of the traveling salesman problem. In order to solve this
problem, this paper proposes a hybrid weighted gray wolf
whale algorithm with the minimum cost and maximum
coverage as the optimization objectives under the constraints
of the task and environment.

The main contributions of this article are as follows:

(i) We propose a multi-UAV assisted RSU data collec-
tion model that considers the coverage quality, that
is, the minimum cost and maximum coverage model.
We considered the different importance of different
roadside units, assigned weights to the roadside units,
and redefined the task coverage. A more suitable
coverage calculation model is constructed

(ii) We modeled the problem of multi-UAV assisted
RSU data collection. An optimization objective is
established to balance task cost and coverage qual-

ity. Make the optimization goal more in line with
the actual task requirements of the problem. A
hybrid weighted gray wolf whale optimization algo-
rithm is proposed to solve the proposed problem
and optimize the multi-UAV collaborative mission
planning scheme

(iii) This paper simulates mission scenarios of different
scales by changing the location and number of road-
side units and conducts sufficient simulation and
comparison experiments to verify the effectiveness
and superiority of the algorithm proposed in this
paper. The experimental results show that under
different scales of task scenarios, the proposed algo-
rithm achieves lower task cost and higher coverage
and has better algorithm stability coverage

The remainder of this paper is organized as follows.
Section 2 summarizes the related work. Section 3 describes
the requirements and constraints of the problem, explains
the meaning of each symbol, and establishes a mathematical
model for a specific problem. Section 4 focuses on the
algorithm proposed in this paper. Section 5 verifies the effec-
tiveness and superiority of the algorithm through extensive
simulations. Finally, Section 6 concludes the paper and
proposes some future research direction in this field.

2. Related Work

At present, there are many papers about UAV mission plan-
ning. In this section, we will review the literature on cooper-
ative task assignment and path planning for multi-UAVs.

Multi-UAV cooperative task assignment is a typical mul-
tiple traveling salesman problem (MTSP), which is a typical
NP-hard problem. Many algorithms have been proposed for
this problem such as branch and bound method, linear
programming, dynamic programming, method based on
Voronoi diagram [9], fuzzy logic [10], and differential evolu-
tion algorithm [11]. However, when the scale of the problem
increases, the computation time will increase exponentially,
and the efficiency is low. Therefore, scholars turn to intelli-
gent methods and begin to develop approximate algorithms
and heuristic algorithms such as auction algorithm [12, 13],
genetic algorithm [14–17], simulated annealing algorithm
[18, 19], ant colony algorithm [20–22], particle swarm algo-
rithm [23, 24], and fruit fly optimization algorithm [25].
However, these algorithms were proposed for specific prob-
lems, and their universality is poor.

UAV task planning is a problem that finds the optimal
path with the minimum cost to complete tasks. These path
planning problems are usually solved based on one or sev-
eral optimization criteria, such as time optimization [3, 6,
15, 18], energy optimization [14, 20], time and energy mix
optimization [13, 22, 25–27], and hybrid optimization based
on coverage [28]. In terms of time optimization, in Refer-
ence [3], a time first immune clonal selection algorithm with
optimization modification was proposed to solve the task
assignment problem of road patrol. The immune clonal
selection algorithm was used to obtain the best sequence of
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task points, and the time first method was used to divide the
sequence of task points. The optimal UAV path was further
optimized and modified. Reference [6] solved the problem of
path planning for multiple UAVs collecting data from RSUs,
and its goal was to find the best time path for multiple
UAVs. An improved evolutionary method based on genetic
algorithm (GA) and harmony search (HS) was used to solve
the problem. Reference [15] pointed out that in the task allo-
cation problem, it is crucial to determine the number of
UAVs and find the mission path of each UAV. Based on this
idea, the author proposes a collaborative optimization algo-
rithm that combines genetic algorithm and clustering algo-
rithm to solve the task assignment and path planning
problems of multiple UAVs for multiple tasks and can find
the best UAV when the task time constraints are met. In
Reference [18], an effective task allocation and route plan-
ning method was proposed to solve the problem of vehicle
planning. This method balanced the tasks between UAVs
and optimized the task time. According to the number of
UAVs, virtual nodes were added to the original model of
the vehicle routing problem (VRP), so it is easier to form a
solution suitable for the heuristic algorithm. The concept
of a universal distance matrix was proposed, which trans-
formed time constraints into space constraints and simpli-
fied the planning model. On this basis, a swap judgment
simulated annealing (SJSA) algorithm was proposed to
improve the generation efficiency of feasible neighbor solu-
tions. In terms of energy optimization, in [14], in order to
optimize the UAV energy, the authors describe the UAV
path planning problem as a traveling salesman problem. A
genetic algorithm is proposed to solve the optimization
problem to minimize the energy consumption of the UAV
to complete the task. Reference [20] introduced an energy
minimization problem of UAV-assisted MEC system and
proposed an algorithm based on the ant colony system
(ACS) to obtain a high-quality near-optimal solution to this
problem, in terms of time and energy mix optimization.

Reference [13] proposed a method based on auction
algorithm to allocate dynamic tasks to UAVs, and designed
a multilayer cost calculation method considering constraints
such as UAV number, time threshold, fuel cost and driving
danger to solve the task assignment problem of multi-UAV
system. Reference [25] proposed a method of finding the
best flight path for UAV to successfully complete the inspec-
tion work in oilfield. Firstly, a novel task assignment method
was proposed, which included initial task assignment and
task assignment with changing tasks to determine the initial
task sequence of each UAV, and quickly reschedule the task
sequence after the task changes. Then, an improved fruit fly
optimization algorithm (ORPFOA) was proposed to solve
the path planning problem in the initial task sequence and
the new task sequence after task change. In [26], for the solu-
tion of task assignment problem, four objectives are simulta-
neously optimized, namely, maximizing the number of tasks
successfully assigned, maximizing task execution benefit,
minimizing resource cost and minimizing time cost. A
multi-UAV task assignment method based on clone selec-
tion algorithm is proposed. In [27], the authors comprehen-
sively consider the problems of minimizing resource

consumption and maximizing task revenue during UAV
task assignment. On the basis of considering constraints
and multiobjective problems, the brute force allocation algo-
rithm, constrained optimization evolutionary algorithm,
particle swarm optimization algorithm, and greedy algo-
rithm combined with constrained evolutionary algorithm
in the process of UAV task allocation are improved and
optimized. And analyze the performance and conclusions
of the above four algorithms under the limited UAV task
assignment scheme. In terms of coverage-based hybrid opti-
mization, in order to solve the scanning coverage problem in
forest fire warning and monitoring, Reference [7] considered
the minimum time maximum coverage (MTMC) problem
of maximum coverage. The authors propose a heuristic
Weighted Targets Sweep Coverage (WTSC) algorithm con-
sidering target weights and UAV performance constraints
to find the optimal path.

Reference [28] considers finding the optimal path for the
UAV to maximize its coverage in the designated area under
the time constraints and path feasibility. The problem is
modeled as an Epsilon-constraint optimization in which
coverage function has to be maximized, considering the
constraints on the length and the smoothness of the path.
For this purpose, a new genetic path planning algorithm
with adaptive operator selection is proposed to solve such
a complicated constrained optimization problem. In recent
years, autonomous underwater vehicles (UAVs) have been
widely used to assist in information collection in ocean
development and exploration. In [29], the authors embed-
ded a biologically inspired neural network (BINN) into a
self-organizing map (SOM) neural network and divided
the tasks into two layers: task assignment and path planning.
Utilize BINN to update the weights of SOM winners to real-
ize path planning and efficient navigation of AUVs. Aiming
at the problem of information collection in harsh underwa-
ter environment, Reference [30] proposed a heterogeneous
AUV auxiliary information collection system; the AUV path
with low time complexity was obtained by particle swarm
algorithm; Additionally, a two-stage joint optimization algo-
rithm based on Lyapunov optimization is constructed to
strike a trade-off between energy efficiency and system
queue backlog iteratively. In [31], the author considering
both the realistic complex underwater acoustic environment
and the AUVs energy consumptiona limited service M/G/1
vacation queueing model is constructed for describing and
optimizing the age of information(AoI) of the Internet of
underwater things (IoUT). Also, a low-computational algo-
rithm is proposed for adaptively adjusting the upper limit
of the queuing length formulated and reducing the peak
AoI under energy constraints. In order to ensure the efficient
operation of UAV, an intelligent mechanism was developed
in Reference [32], which considered two main factors,
energy consumption and operation time of UAV. Then,
three complementary schemes, energy aware UAV (EAUS),
delay aware UAV (DAUS), and fair exchange UAV (FTUs),
were proposed. These solutions were optimized as linear
integer problems (LIP). EAUS solution aims to reduce the
energy consumption of UAV, while DAUS solution aims
to shorten the operation time of UAV. However, FTUs is a
trade-off between energy consumption and task time
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As mentioned in Reference [32], for different task type,
complexity, constraints and other factors, the optimization
objectives of multi-UAV task assignment are different such
as minimizing mission time, minimizing energy, and mini-
mizing composite indicator of time and energy. In order to
more clearly compare the work done in the existing litera-
ture, Table 1 lists the key information of the related litera-
ture. In this paper, we study the scan coverage problem of
multi-UAV assisted RSU data acquisition. According to the
number of UAVs, the task cost and coverage quality are
considered comprehensively to find an optimal scheme that
can maximize coverage quality and minimize task cost
simultaneously. We conclude it as minimum cost maximum
coverage model with variable number of UAVs.

3. Problem Formulation and
Mathematical Model

A complex urban environment including urban, suburban,
and rural areas is considered in this paper. According to
the needs of intelligent transportation, it is supposed that
several RSUs are deployed in the urban environment to
collect road environment and traffic information. In the
problem of multi-UAV collaborative assistance RSU data
collection, when the number of RSUs is large, it is often
impossible to collect data from all RSUs due to the timeli-
ness of data and limited energy of UAVs. Therefore, this
paper proposes a minimum cost and maximum coverage
model to solve the problem of scanning and coverage. Due
to the different locations of RSUs, the importance and size
of the data collected by them are different. Therefore, this
paper assigns different weight value, a positive integer
between one and five, to each RSU according to its impor-
tance. The schematic diagram of a multi-UAV cooperatively
assisted RSU for data acquisition is depicted in Figure 1.

The problem we considered in this paper can be mod-
eled as a triplet fR,U , Cg, where R = fR1, R2,⋯,RNg is the
set of RSUs that are deployed along roads. Each element Ri
can also be described as a triplet fPi,Di,Wig. Symbol Pi is
the position coordinates of the ith RSU, Di is the data size
collected by the ith RSU, and Wi is the weight value of the
ith RSU. The set of UAVs that are deployed in base station
is described by set U = ðU1,U2,⋯,UKÞ. Each element U j

can be described by the same quadruple fv, s, Lmax, Emaxg,
which means that all UAVs have same flight speed v, trans-
mission speed s, maximum flight distance Lmax, and energy
threshold Emax. Symbol C represents the constraints in task
assignment. The number of UAVs selected to accomplish
the task is k, and the data collection path of the jth UAV is
represented as Xj = ½B, Ra,⋯,Rb, B�. This problem can be
described as a multiple traveling salesman problem. The
main symbols and their definitions used in this article are
listed in Table 2.

The problem presented above is designing a reasonable
scheme of task allocation and path planning for multi-
UAVs to collect data from RSUs based on the number,
location, data size and weight value of RSUs. To solve this
problem, the constraints we considered in this paper are as

follows: Firstly, the energy consumption and total flight
distance of each UAV to accomplish its tasks cannot exceed
its maximum values. Secondly, the number of UAVs used
should not exceed the total number of UAVs stay in base
station, and each RSU can only be visited by one UAV at
most. In addition, UAV should start flying from the base sta-
tion and finally return to it after finishing data acquisition.
These constraints can be expressed as follows:

Ej ≤ Emax j = 1, 2,⋯,kð Þ,
Lj ≤ Lmax j = 1, 2,⋯,kð Þ,

k ≤ K ,

X1 ∩ X2 ∩⋯∩ Xk = B:

ð1Þ

In this paper, a mathematical model is established with
the objective of optimizing the minimum cost and maxi-
mum coverage. Assume that k UAVs are dispatched from
the base station to accomplish data collection tasks. When
the last UAV returned to base station after finishing data
collection, the task is considered as completed. The mission
time is defined as the time interval between the take-off time
of the first UAV and the return time of the last UAV. Energy
consumption is the total energy consumption of k UAVs to
accomplish data collection tasks. Coverage is defined as the
total weight ratio of RSUs collected by UAVs to all RSUs.

The mission time T j includes flight time T j
f and data

collection time T j
c which is described in

T j = T j
f + T j

c: ð2Þ

The flight time T j
f and data collection time T j

c are,
respectively, determined by

T j
f =

Lj

v
, ð3Þ

T j
c =

Cj
total
s

: ð4Þ

The flying distance Lj and total data size Cj are calcu-
lated using

Lj =〠DXj
, ð5Þ

Cj =〠CXj
: ð6Þ

The total energy consumption of UAVs to accomplish
tasks includes flight energy consumption, hovering energy
consumption, and data transmission energy consumption.
Compared with flight energy consumption and hovering
energy consumption, data transmission energy consumption
is negligible. Therefore, the total energy consumption of
UAV Uj is expressed as follows:

Ej = Ej
f + Ej

h: ð7Þ
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Table 1: The key information of the related literature.

Reference Application field
Optimization
objective

Algorithm of UAVs
Number
type

Overlay

[3] Road patrol Time
Immune clonal selection algorithm (ICSA) and time-priority

method
Fixed All

[6] RSU data collection Time Genetic algorithm (GA) and harmony search (HS) Fixed All

[15] Task planning Time GA and cluster algorithm Variable All

[18] Task planning Time Swap-and-judge simulated annealing (SJSA) Fixed All

[14]
Monitoring wildfires

in remote areas
Energy Hybrid gray wolf optimization (HGWO) Fixed All

[20]
Data collection in

mobile edge
computing

Energy Ant colony system (ACS) Fixed All

[22]
Reconnaissance task

allocation
Time and
energy

Grouping ant colony optimization algorithm (GACO) Fixed All

[25] Oilfield inspection Time An improved fruit fly optimization algorithm (ORPFOA) Fixed All

[26] Task allocation
Time and
energy

Clone selection algorithm (CSA) Fixed All

[27] Task allocation
Energy and
revenue

Violence allocation algorithm; constraint optimization
evolutionary algorithm; PSO algorithm; greedy algorithm

combined with a constraint evolutionary algorithm
Fixed All

[7]
Forest fire early
warning and
monitoring

Time and
coverage

Heuristic algorithm weighted targets sweep coverage (WTSC) Fixed Partial

[28]
Coverage-based path
planning (CBPP)

problem
Coverage rate Genetic algorithm with adaptive operator selection Fixed Partial

In this
paper

RSU data collection
Time, energy,
and coverage

Hybrid weighted gray wolf and whale optimization algorithm
(HWGWOA)

Variable Partial

Path 1
Path 2

Figure 1: Multi-UAV cooperatively assisted RSUs for data collection.
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The calculation of flight energy consumption and hover-
ing energy consumption is as follows:

Ej
f = Lj × Pf ,

Ej
h = T j

c × Ph:
ð8Þ

The flight power Pf and hovering power Ph are specific
parameters of UAV, which can be found in its handbook.

In this paper, the optimization objective is the weighted
sum of maximum task time and total task energy consump-
tion, which is expressed as follows:

F = γ〠
k

j=1
Ej + 1 − γð Þ max T1, T2,⋯,Tk−1, Tk

h i
: ð9Þ

Here, γ ∈ ½0, 1� is the weight coefficient reflecting the
importance of task energy consumption in the entire data
collection task.

In this paper, the problem we considered is a problem
of incomplete coverage, which means that not all RSUs
must be visited by UAVs, However, due to the large
number of UAV in this scenario. Therefore, the coverage
ratio is another important optimization indicator, which
is calculated as follows:

P =
W

∑N
i=1Wi

: ð10Þ

The coverage quality W can be calculated by

W = 〠
N

i=1
XiWið Þ: ð11Þ

Here, Xi is a binary variable, which is determined by

Xi =
1, TheUAVpasses by theRi,

0, other:

(
ð12Þ

The main goal of this paper is to achieve maximum
coverage with minimal task energy consumption in the
shortest task time. When the weights of all RSUs are
known, the total weight is a constant. Therefore, the cov-
erage ratio can be substituted by the coverage quality;
then, the optimization objectives are minimizing F and
maximizing the coverage quality W simultaneously. This
problem is a typical multiobjective optimization problem.

To transform the multiobjective optimization problem
to a single objective optimization problem, a utility function
Y as described in (13) is proposed to represent the total
benefit of the task.

Y = λF − 1 − λð ÞW: ð13Þ

Here, λ ∈ ½0, 1� is a weight coefficient, which reflects the
importance of the task cost in the entire data collection task,
and its value will be given in the simulation experiment part.
Finally, the optimization problem in this paper is written as

min Yð Þ
S:t:

C1 : E
j ≤ Emax j = 1, 2,⋯,kð Þ

C2 : Lj ≤ Lmax j = 1, 2,⋯,kð Þ
C3 : k ≤ K

C4 : X1 ∩ X2 ∩⋯∩ Xk = B:

ð14Þ

Constraint C1 ensures that each UAV has enough energy
to complete its missions. Constraint C2 ensures that the
flight distance of each UAV does not exceed its maximum
flight distance. Constraint C3 ensures that the number of

Table 2: Symbols and their definitions used in this paper.

Parameters Definition

N Number of RSUs

K Number of UAV base stations

k Number of UAVs selected

B xB, yBð Þ Base station coordinates

Ri xi, yið Þ Coordinates of the RSU Ri

Ci Size of data collected by RSU Ri

Dij Distance from RSU Ri to RSU Rj

Lmax Maximum flying distance of UAV

Emax Energy consumption threshold of UAV

v Flying speed of UAV

s Data transmission rate of UAV

Xj = B, Ra,⋯, Rb, B½ � Data collection path of UAV U j

T j
f Flight time of UAV U j

T j
c

Data collection time of UAV U j

T j Task time of UAV U j

Lj Flying distance of UAV Uj

Cj
total

Size of data collected by UAV Uj

Ej
f Flight energy consumption of UAV U j

Ej
h

Hovering energy consumption of UAV U j

Ej Task energy consumption of UAV U j

Pf Flying power of UAV Uj

Ph Hovering power of UAV Uj

Wi Weight of RSU Ri

F Task cost

W Coverage quality

P Coverage
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UAVs selected does not exceed the number of UAVs in the
base station. Constraint C4 ensures that the data of each RSU
is collected by only one UAV.

The solution of multi-UAV coassisted RSU data collec-
tion is the grouping and combination sorting of some RSUs
in the target area, so the problem is a combinatorial optimi-
zation problem. Combinatorial optimization problems are
NP-hard problems. When the problem become large, it is
difficult to find the optimal solution in a short time. In
addition, the strong coupling of multi-UAV collaborative
task assignment also increases the difficulty of solving the
problem. Therefore, an effective solution for multi-UAV
coassisted RSU data collection is to design heuristic or
hyperheuristic algorithms to find the optimal solution or
suboptimal solution in a reasonable time.

4. Algorithm Design

In order to solve the problems of slow convergence speed,
low convergence accuracy, and being easy to fall into local
optimal solution of bionic learning algorithm in solving
combinatorial optimization problems, in this paper, we
propose an improved hybrid weighted gray wolf and whale
optimization algorithm to optimize the task assignment
scheme of multiple UAVs. Firstly, the grey wolf optimization
algorithm (GWO) [33] is improved and further mixed with
the whale optimization algorithm (WOA) [34], which is
called hybrid weighted grey wolf and whale optimization
algorithm (HWGWOA). The specific improvement ideas
of the algorithm are as follows.

(a) Tent map initialization

Bionic learning algorithm uses random initialization to
generate initial population, each individual in the population
is a feasible solution, and then the solution is updated to the
optimal solution or suboptimal solution step by step through
iteration. It can be seen that the quality of the initial solution
will greatly affect the convergence speed and final results of
the algorithm. However, random initialization can’t guarantee
the diversity and ergodicity of the initial solution, especially
when the population size is small; it will lead to uneven distri-
bution of the initial solution, which is not conducive to the
updating and optimization process of the algorithm.

In order to ensure the uniformity and diversity of the
initial feasible solution in the solution space, a tent map
[35] is used to initialize the population. The chaotic
sequence has the characteristics of inner randomness, ergo-
dicity, and boundedness, but the ergodic uniformity of
chaotic sequence generated by different maps is different,
which will have different effects on the optimization speed
of the algorithm. At present, most of the research uses the
chaotic sequence generated by logistic mapping. However,
the uniformity of the chaotic sequence generated by logistic
mapping is poor, and most of the values are in the interval
[0, 0.1] and [0.9, 1] [36]. Tent mapping has a simple struc-
ture, better ergodic uniformity, and faster iteration speed,
and the chaotic sequences generated by it are evenly distrib-
uted in [0, 1]. Therefore, in this paper, tent mapping is

selected to initialize the population. The mathematical
expression of tent mapping is

x n + 1ð Þ =
xn
a

xn ∈ 0, a½ Þ,
1 − xn
1 − að Þ xn ∈ a, 1½ �:

8>><
>>:

ð15Þ

(b) Weighted update mechanism

The GWO algorithm uses the three solutions, alpha (α),
beta (β), and delta (δ), with the highest fitness value to guide
other individuals to update towards the optimal solution. In
the original GWO algorithm, the guidance strength of the
three best solutions is the same, whichwillmake the algorithm
easily fall into the local optimal solution area. In order to
increase the diversity and randomness of the updates, we use
the weighted update mechanism. Each update randomly gen-
erates three weight coefficients added to the three solutions.

Dα = C1Xα − Xtj j
Dβ = C2Xβ − Xt

�� ��
Dδ = C3Xδ − Xtj j

8>><
>>:

, ð16Þ

X1 = Xα − A1 ·Dα

X2 = Xβ − A2 ·Dβ

X3 = Xδ − A3 ·Dδ

8>><
>>:

: ð17Þ

Xt+1 =
J1X1 + J2X2 + J3X3ð Þ

3
, ð18Þ

where equations (16) and (17) define the update direction
and step length of other individuals in the wolf pack towards
α, β, and δ. J1, J2, and J3 are weight coefficients, and they are
calculated by

J1 =
j1

j1 + j2 + j3ð Þ , ð19Þ

J2 =
j2

j1 + j2 + j3ð Þ , ð20Þ

J3 =
j3

j1 + j2 + j3ð Þ , ð21Þ

where j1, j2, and j3 are random numbers of ½0, 1�.

(c) Hybrid spiral renewal mechanism

In this paper, we propose a new hybrid algorithm
composed of the improved GWO algorithm and WOA.
In this hybrid algorithm, the WOA is adopted at the
exploration stage due to its good global search ability,
which is achieved by its logarithmic spiral update. In addi-
tion, the location of the best solution found by the GWO
algorithm is replaced by the location of the whale. The
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location of the whale is the same as that of the gray wolf,
but it can quickly move to the optimal solution. The WOA
guides the wolves to converge to the optimal solution, and
reduce the calculation time.

In a word, combining the best characteristics of GWO
algorithm and WOA makes the probability of finding the
global optimal solution higher, and the algorithm stagnation
or falling into local optimization is avoided. The HWGWOA
combines the advantages of the GWO algorithm at the
exploitation stage and the WOA at the exploration stage to
obtain the global optimal solution. The mathematical model
of HWGWOA is as follows:

According to the hierarchical system, the GWO algo-
rithm preserves three solutions with the highest fitness value
in each iteration, which are named α, β, and δ, respectively.
In order to improve the convergence performance of the
GWO algorithm, the spiral update equation of the WOA is
used to update the positions of alpha, beta, and delta as
described by

Dα = C1 · Xα −Qj j
Dβ = C2 · Xβ −Q

�� ��
Dδ = C3 · Xδ −Qj j

8>><
>>:

, ð22Þ

Q = Xt +D′ebl cos 2πlð Þ, ð23Þ

where D′ = jX∗
t − Xt j denotes the distance from an

individual to the prey, b is a constant that defines the shape
of the logarithmic helix, and l is a random number in [-1, 1].

To sum up, the updating mechanism of HWGWOA is
described by (24)–(31).

Xt+1 = X∗
t − A ·D Aj j ≤ 1P < 0:5, ð24Þ

Xt+1 =
J1X1 + J2X2 + J3X3ð Þ

3
Aj j ≤ 1p ≥ 0:5, ð25Þ

Xt+1 = Xrand − A ·Drand Aj j > 1, ð26Þ
where

D = C · X∗
t − Xtj j, ð27Þ

A = 2 × a · r1 − a, ð28Þ

C = 2 × r2, ð29Þ

a = 2 × cos
π

2
×

t
T

� �
, ð30Þ

Drand = C · Xrand − Xtj j, ð31Þ
where t is the current number of iterations, T is the max-

imum number of iterations, p,r1,r2 are random numbers in
[0, 1], Xt is the current position of a individual, and X∗

t is
the optimal solution of the current iteration.

Input: R,U ,C
Output: Y ,X∗

1. Initialize the population:X = ðX1, X2,⋯,XmÞ;
2. Initialize the parameter: a,A,C,l,T , p,t = 0;
3. Calculate the fitness of each search agent;
4: X∗

t = Xα =the best search agent;
5. Xβ =the Second best search agent;
6. Xδ = the Third best search agent;
7. While ðt < TÞ
8. For (every search member)
9. Update a,A,C,l,T and p;
10. If1ðjAj ≤ 1Þ
11. If2ðp < 0:5Þ
12. Update the position of the current search agent by the Equation (24);
13. Else if2ðp ≥ 0:5Þ
14. Update the position of the present search agent by the Equations (25);
15. End if2
16. Else if1ðjAj > 1Þ
17. Select a random search agent Xrand
18. Update the position of the current search agent by the Equation (26);
19. End if1
20. End for
21. Calculate the fitness of each search agent;
22. Update X∗, Xα,Xβ and Xδ ;
23. t = t +1;
24. End while
25. Return X∗ ;

Algorithm 1: HWGWOA.
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In the whole iterative process, by controlling the
parameters of a, A, C, l, and p, the algorithm makes full
global search at the early stage and accelerates convergence
at the later stage. The pseudocode of the HWGWOA is
shown in Algorithm 1.

In the HWGWOA, we set the number of populations as
N , taking one iteration as an example. N calculations are
needed to initialize the population, calculate the fitness of
each individual, and update the individual position. The first
three individuals selected by us need 3N − 3 calculations at
most. The update parameter is constant time, and the calcu-
lation in the iterative process is serial. Therefore, the time
complexity of the algorithm is OðNÞ.

5. Simulation and Result Analysis

In this section, simulation results are provided to evaluate
the performance of the HWGWOA. Specifically, we com-
pare the HWGWOA with the genetic algorithm (GA) [17],
GWO [37], and WOA [38]. As a classical algorithm to solve
TSP and MTSP, the GA has good stability. GWO algorithm
and WOA, as two bionic learning algorithms proposed in

recent years, show good performance in solving optimiza-
tion problems and are also widely used in various optimiza-
tion problems. All simulations in this section are carried out
in MATLAB. All experimental data are rounded to 2 deci-
mal places. The detailed experimental results are as follows.

(A) Simulation model

The parameters in the simulation are set as follows. We
consider a 10 km Ã-10 km urban area and randomly deploy
multiple RSUs. Four different scenarios are chosen for simu-
lation experiments, whose number of RSUs is set to 30, 50,
70, and 100, respectively. The total number of UAVs in the
base station is 5. The base station location of UAV is B ð1,
1Þ. It is assumed that the configuration of each UAV is the
same; that is, the UAV flies at a constant speed of 60 km/h
when performing tasks, and the data transmission speed of
UAV is 1.5mbps/s.

(B) HWGWOA performance evaluation

Here, we study the influence of system parameters on the
performance of HWGWOA. In order to achieve the goal of

Table 3: The main parameters symbols in this paper.

λ 0.1 0.3 0.5 0.7 0.9

N = 30 Task cost coverage rate
45.96
0.90

42.70
0.97

43.80
0.93

43.65
0.95

43.84
0.89

N = 50 Task cost coverage rate
63.70
0.93

57.36
0.83

53.94
0.91

55.64
0.92

60.20
0.88

N = 70 Task cost coverage rate
80.93
0.77

77.52
0.79

70.51
0.79

75.73
0.72

77.95
0.69

N = 100 Task cost coverage rate
95.65
0.68

91.95
0.72

87.10
0.76

82.53
0.78

94.96
0.69

Table 4: Task cost and coverage rate under different scenarios.

RSU number UAV number Total weight Task cost Coverage rate

30

2

78

51.33 0.86

3 42.81 0.93

4 43.80 0.94

5 45.98 0.97

50

2

127

68.17 0.79

3 63.01 0.84

4 53.94 0.91

5 57.47 0.93

70

2

180

91.88 0.67

3 78.97 0.72

4 70.51 0.80

5 72.83 0.86

100

2

226

117.86 0.64

3 96.87 0.69

4 87.10 0.73

5 79.92 0.78
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minimum cost and maximum coverage, the weight of task
cost and coverage quality should be considered in task
planning. Here, we assign equal weights to task time and
task energy consumption in task cost; that is, γ in formula
(9) is fixed at 0.5.

In formula (13), we use the adjustment parameter γ to
balance the weight between task cost and coverage quality.

We adjust it from 0.1 to 0.9 and set the number of UAVs
to 4 for simulation. Algorithm 1 shows the change of task
cost and coverage rate with parameter γ when the number
of RSUs is 30, 50, 70, and 100, respectively. Because the
algorithm uses random initialization, in order to better show
the convergence effect, this paper uses the average of 30
convergence results as the convergence value.
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Figure 2: Task cost under different numbers of RSUs.
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Figure 3: Coverage rate under different numbers of RSUs.
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Figure 4: Continued.
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Simulation results show that the algorithm is better
when γ is between 0.3 and 0.7, as shown in Table 3; we
can get lower acquisition cost and higher coverage quality.

Then, we investigate the optimal number of UAVs with
different numbers of RSUs. When the parameter γ is set to
0.5, that is, the task cost and the coverage quality weight
are equal, the change of task cost and coverage rate with
the number of RSUs and UAVs is tested. The number of
UAVs is changed from 2 to 5, and the numbers of RSUs
are 30, 50, 70, and 100, respectively. Similarly, the average

of 30 convergence results is used as the convergence value.
The total cost of each case is shown in Table 4.

It can be seen from Algorithm 1 that when the number
of RSUs is 30 and the number of UAVs is 3, the total cost
is the smallest and the coverage rate is high. When two
UAVs are selected, each UAV needs to collect more RSUs,
which makes the task cost maximum. Due to the constraint
of energy consumption, the path will ignore more nodes,
resulting in lower coverage rate. However, when there are
more UAVs, individual UAVs will collect less RSUs and
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Figure 4: Convergence results of the four algorithms.
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return to the base station, which greatly increases the energy
consumption, resulting in higher task cost, but lower cover-
age rate. Similarly, when the number of RSUs is 50 and the
number of UAVs is 4, the minimum task cost and high
coverage rate will be obtained. When the number of RSUs
is 70 and the number of UAVs is 4, the mission cost is
the lowest and the coverage rate is higher. When the
number of RSUs is 100 and the number of UAVs is 5,
the mission cost is the lowest and the coverage rate is the
highest. Therefore, with the increase in the number of tasks,
increasing the number of UAVs appropriately can get lower
task cost and higher coverage.

(C) Algorithm convergence comparison

In order to verify the performance of the algorithm, this
paper compares the task cost and coverage of genetic algo-
rithm, gray wolf optimization algorithm, and whale optimiza-
tion algorithm for multi-UAV coassisted RSU data collection.
The convergence of the four algorithms in 1000 iterations was
tested in the following four scenarios: (1) 30 RSUs and 3
UAVs, (2) 50 RSUs and 4 UAVs, (3) 70 RSUs and 4 UAVs,
and (4) 100 RSUs and 5 UAVs. Similarly, the average value
of 30 simulations of the algorithm is used as the convergence
result. The task cost comparison is shown in Figure 2, and
the coverage comparison is shown in Figure 3.

As shown in Figures 2 and 3, HWGWOA achieves lower
task cost and higher coverage in the above four scenarios.
Specifically, as for task cost, HWGWOA is 9.54% lower than
the genetic algorithm, 7.31% lower than the gray wolf algo-
rithm, and 5.8% lower than the whale algorithm; in terms
of coverage, HWGWOA is 27.87% higher than the genetic
algorithm, 15.19% higher than the gray wolf algorithm,
and 9.86% higher than the whale algorithm. In a word,
HWGWOA has low task cost compared with the other three
algorithms, and it can get more coverage. When the number

of RSUs increases, this advantage is more obvious. In order
to more intuitively compare the convergence speed and con-
vergence results of the four algorithms, the convergence
trends of task cost of the four algorithms in four scenarios
are shown in Figure 4.

As shown in Figure 4, in the four scenarios, the
HWGWOA acquires a lower task cost and a faster conver-
gence speed. When the task scale is small, this advantage is
more obvious. As the task scale increases, it becomes more
difficult to solve the problem, and the advantage of the
HWGWOA decreases a little.

(D) Stability comparison of four algorithms

Robustness is an important index to evaluate the perfor-
mance of this kind random search algorithm. Therefore, the
robustness of four algorithms is tested in this section. To this
end, each algorithm runs for 30 times, and the optimal solu-
tion, the worst solution, the average solution, and the vari-
ance of the task cost are recorded as shown in Table 5.

As shown in Table 4, the convergence accuracy of genetic
algorithm is the worst, but the variance is small, that is, the
robustness of the algorithm is good; the convergence
accuracy and stability of gray wolf optimization algorithm
and whale optimization algorithm are general; HWGWOA
is better than the gray wolf optimization algorithm and whale
optimization algorithm in convergence accuracy and robust-
ness. When the task scale is small, the robustness is slightly
worse than that of the genetic algorithm; with the task size
increasing, the robustness of HWGWOA is better when the
number of RSUs reaches 100 with the increase in modulus.
It can be seen that HWGWOA has better convergence speed
and accuracy than the other three algorithms in solving the
data acquisition problem of multi-UAV coassisted RSU,
and it also has better algorithm robustness, which is more
suitable for solving large-scale optimization problems.

Table 5: Stability comparison of the four algorithms.

GA GWO WOA HWGWOA

Scene 1

Worst 47.82 47.40 47.81 45.58

Best 44.40 43.73 43.83 41.90

Mean 45.41 44.89 44.62 42.81

Std 0.77 1.02 0.99 0.84

Scene 2

Worst 61.46 62.17 60.56 55.71

Best 57.92 56.25 54.93 51.82

Mean 59.62 58.19 57.26 53.94

Std 0.96 1.36 1.51 1.04

Scene 3

Worst 76.25 76.41 75.89 74.49

Best 70.95 69.23 67.36 67.51

Mean 73.51 72.53 71.37 70.51

Std 1.43 2.14 2.10 1.69

Scene 4

Worst 87.29 85.93 84.45 82.41

Best 81.70 78.96 78.87 77.68

Mean 84.37 82.95 81.57 79.92

Std 1.38 1.58 1.49 1.18
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6. Conclusion and Further Work

This paper investigated the data acquisition of multi-UAV
coassisted RSU in a large-scale scene. First of all, according
to the physical constraints and collaborative constraints of
UAV, considering the two factors of mission cost and
mission coverage quality, a maximum cost minimum cover-
age model was proposed to seek the solution to obtain the
maximum coverage benefit under the premise of minimum
mission cost. Then, the HWGWOA was proposed for
UAV mission planning. Finally, the HWGWOA was
compared with the genetic algorithm, gray wolf optimization
algorithm, and whale optimization algorithm. The experi-
mental results show that the HWGWOA has faster conver-
gence speed, better stability, and higher convergence
accuracy, and it is more suitable for large-scale optimization
problems. In the future work, we are committed to further
research from the following aspects: on the one hand, we will
solve the real-time replanning problem of multi-UAV coop-
erative task planning according to the actual constraints; on
the other hand, we will consider the multi-UAV cooperative
task planning problem under rechargeable conditions.

Data Availability

The raw/processed data required to reproduce these findings
cannot be shared at this time as the data also forms part of
an ongoing study.

Additional Points

This article is a further expansion based on conference
papers. Conference papers consider a smaller task environ-
ment and fewer roadside units. In the conference papers,
the task distribution and path planning schemes are mainly
formulated according to the task set to realize the complete
collection of roadside unit data. On this basis, this article
considers more realistic large-scale scenarios. In a large-
scale data collection scenario, it will take a long time to
collect data from all roadside units. Therefore, the number
of drones selected will inevitably increase, which will result
in high collection costs. In actual scenarios, there are energy
consumption and time constraints. As the collection tasks
increase, we cannot collect all roadside unit data. At this
time, we need to perform partial collection, and the problem
is transformed into a scan coverage problem, that is, an
incomplete coverage problem. At present, for the scan cover-
age problem, the coverage rate is generally expressed by the
ratio of the number of target points covered to the total
number of target points. This is not reasonable in the data
collection problem of the roadside unit. In the problem of
roadside unit data collection, roadside units deployed in
different locations often collect road and traffic information
of different data sizes and different degrees of importance in
the same time period. This leads to different data collection
needs for each node. For example, roadside units deployed
near scenic spots, urban main road intersections, near
stations, etc., will collect more important and complex data
information. On the contrary, a roadside unit deployed on

a remote trail will carry less important and less data infor-
mation. Therefore, this paper proposes a data collection
model based on coverage quality while optimizing time
and energy consumption. We define it as the minimum cost
and maximum coverage problem.
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