
Research Article
A Hierarchical Network with User Memory Matrix for Long
Sequence Recommendation

Jiawei Dong, Fuzhen Sun , Tianhui Wu, Xiangshuai Wu, Wenlong Zhang,
and Shaoqing Wang

School of Computer Science and Technology, Shandong University of Technology, Shandong, Zibo 255000, China

Correspondence should be addressed to Fuzhen Sun; sunfuzhen@sdut.edu.cn

Received 26 September 2021; Accepted 30 December 2021; Published 31 January 2022

Academic Editor: Yingjie Wang

Copyright © 2022 Jiawei Dong et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In many recommendation scenarios, the interactions between users and items are divided into a series of sessions according to the
time interval. ,e traditional Recurrent Neural Network has some shortcomings, such as limited memory ability, inflexible access
to memory data, and obvious deficiency in feature capture for long sequences. To deal with the mentioned issues, we propose a
hierarchical network with user memory matrix, named HNUM2, which utilizes the memory network to store users’ long-term and
short-term interests. ,e memory network is more flexible to access memory data, which can solve the problem of insufficient
capture of long sequence features. ,e proposed model is a hierarchical recommendation algorithm, which consists of two layers.
,e first layer is the session-level GRUmodel, which obtains the sequence characteristics of the current session to predict the next
item. ,e second layer is the user-level memory network model which exploits the attention mechanism and incorporates the
write module and read module. ,e experimental results on two public available datasets show that HNUM2 has achieved
significant performance improvement comparing to the state-of-the-art methods.

1. Introduction

With the development of the big data era, recommender
systems are still an effective means to solve information
overload [1]. Sequential Recommender Systems (SRSs) have
received more and more attention in recent years. ,rough
the interaction between users and items, SRSs understand
and generate user behavior sequences while capturing
changes in users’ interests [2]. Session-based recommender
systems (SBRs) are a branch of sequential recommender
systems, which received considerable attention from in-
dustry and academia [3]. Deep learning technology has set
off an upsurge in academia and industry. More and more
scholars have applied deep learning technology to recom-
mender systems [4]. Deep learning models have powerful
learning ability and can avoid the problem of traditional
recommendation models, such as the manual design model
features [5]. Yap et al. [6] introduced a recommendation
framework based on personalized sequential patternmining,
which used a new score metric to effectively learn user-

specific sequences important for accurate personalized
recommendations. In recent years, similarity-basedmethods
have been applied to session-based recommendations, with
good results on sparse datasets. Hidasi et al. [7] first applied
Recurrent Neural Network to recommender systems, which
designed a parallel session recommendation model
GRU4REC. Experimental results showed that Recurrent
Neural Network has a good performance in session-based
recommendation algorithms. Quadrana et al. [8] proposed a
hierarchical recommendation model. ,e model designed
two levels of RNN: the user-level RNN model and the
session-level RNN model.

RNN has a relatively good performance in the sequential
tasks. It can store limited information and more content as
the memory units. However, it loses more information [9].
In 2014, Weston et al. [10] introduced a new learning model,
memory network. In the same year, the DeepMind team of
Google proposed neural turing machines [11]. Both of them
use external memory for memorization. ,e neural turing
machine was designed with attention-based read and write

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 5457044, 12 pages
https://doi.org/10.1155/2022/5457044

mailto:sunfuzhen@sdut.edu.cn
https://orcid.org/0000-0002-6952-5572
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5457044

operations that allow for more flexible reading of memories.
In 2015, Sukhbaatar et al. proposed end-to-end memory
network [12], where external storage space of the network is
a memory matrix, which is introduced to better capture long
sequence features.

Memory network was initially used in Q&A systems.
Recently, memory network has been widely used in the
recommender systems, which has attracted people’s atten-
tion. Chen et al. [13] stored and updated user’s history by
using external storage matrix in memory network and en-
hanced the expressiveness of the model. Huang et al. [14]
obtained two benefits from the hybrid module by using a
mixture of RNN and key-value memory networks (KV-
MNS). A combination of sequential preference represen-
tation and attribute-level preference representation is used
as the final representation of user preferences. Due to the
addition of knowledge-based information, the model is
highly interpretable [15]. To take full advantage of textual
information and visual information, Ma et al. [16] proposed
new cross-attention memory network to perform multi-
modal tweet reference recommendation, which combined
users’ interests with external memory and uses cross-at-
tention mechanism to extract textual information and visual
information [17].

Based on the above problems, the contributions of this
paper are essentially threefold:

(1) According to previous work, sessions are assumed to
be independent of each other, and historical session
information is ignored. To solve the above problem,
we propose a hierarchical network with user memory
matrix (HNUM2), which considers the interaction
between sessions and historical session information
to read the user’s historical sessions and provides
initial input to the GRU unit within the session.

(2) We proposed a hierarchical recommendation model.
,e first layer is a session-level GRU model for
predicting the next item.,e second layer is the user-
level memory network model, which refers to the
changes in users’ long-term interests. ,e model
consists of two modules: the read module and the
write module.

(3) ,e experimental results show that the proposed
model has better performance improvement than the
current algorithm when the number of user sessions
is large.

,e rest of the paper is organized as follows: In Section 2,
we briefly review the existing research on session-based
recommender systems and Recurrent Neural Network. In
Section 3, we first present the whole structure of the model,
then introduce the two levels of the model and the loss
function, and finally give the algorithm flow of the model.
Section 4 describes and analyzes these assessments, and a
large number of experiments on two real datasets of different
volumes demonstrate the recommender performance of the
proposed model compared to other models. In Section 5, we
summarize our work and propose several future research
directions.

2. The Related Work

We first review current models of session-based recom-
mender systems and then introduce Recurrent Neural
Network (RNN) and GRU. Finally, we review the latest
research on memory network.

2.1. Session-Based Recommendation Algorithm. Session se-
quences refer to a set of item sequences used by a user in an
interactive transaction or collected over a period of time
[18]. Traditional recommendation algorithms only model
user’s long-term preferences and static preferences and ig-
nore short-term and dynamic transaction patterns of users,
which can lead to missing the transfer of user preferences
over time. In this case, a user’s intention at a past time can
easily be replaced by a new user’s historical behavior,
resulting in poor and unreliable recommendations. In order
to solve the above problems, it is necessary to consider the
affair structure to capture richer information in the rec-
ommendation [19]. ,erefore, session-based recommender
systems are proposed.

Session-based recommendation problem can be
expressed as sequence prediction problems; we define a
session x1, x2, . . . , xs−1, xs x1, x2, . . . , xs−1, xs , where
xi(1≤ i≤ S) denotes the index of the user’s interactive items
in the total number of N items. Define the output as the sort
list y � [y1, y2, . . . , yn] ∈ RN of all possible items in the
session, where yi corresponds to the score of item i. ,e
usual practice is to sort according to the size of yi, taking the
top-K items.

Aghdam et al. [20] introduced a hierarchical hidden
Markov model to capture changes in user preferences, used
the feedback sequence of users to items, modeled users as a
hierarchical hidden Markov process, and used users’ current
content attributes as hidden variables in this model. Gu et al.
[21] proposed using Markov chains to track user purchase
behavior chains, using purchase intervals to improve the
temporal diversity of e-commerce recommendations. ,e
algorithm has a significant improvement in accuracy,
conversion rate, and time diversity. He et al. [22] proposed
Mixture Variable Memory Markov (MVMM) model, which
is a new method of sequential query prediction.,is method
attempts to capture the user’s search intent based on the
user’s past query sequences. Markov model only considers
relatively short historical information, and its representation
ability is minimal [23].

2.2. Recurrent Neural Network. Recurrent Neural Network
(RNN) is a kind of neural network specifically designed for
sequential data. By receiving its own information, RNN
achieves a certain “memory function” and retains a certain
amount of memory for the processed information [24].
Given an input sequence x1, x2, . . . , xt, . . . , xT of length T,
xt represents the input vector of the sequence data at the
moment t. ,e index t is not necessarily the elapsed time in
the real world, and sometimes it only represents the position
in the sequence data. ,e active value ht of the hidden layer
with feedback edge is updated by the following formula:

2 Wireless Communications and Mobile Computing

h1 � f ht−1, xt(, (1)

where h0 � 0. f(·) is a nonlinear function. Figure 1 shows an
example of Recurrent Neural Network.

Assuming that the input to the RNN at moment t is xt,
the hidden layer state ht is not only related to the input xt at
the current moment, but also related to the hidden layer state
ht−1 at the previous time.

zt � Uht−1 + Wxt + b, (2)

ht � f zt(. (3)

where Zt is the net input of the hidden layer, f(·) is the
nonlinear activation function, usually logistic function or
Tanh function, U is the state-state weight matrix, W is the
state-input weight matrix, and b is the bias term. Figure 2
shows the Recurrent Neural Network expanded by time.

ht−1 is a memory feature, which extracts the input fea-
tures of the previous t − 1 moments. Sometimes ht−1 is called
the old state, and ht is the new state. ,erefore, the RNN
model is particularly suitable for sequence problems.
Structurally, the RNN can be regarded as a neural network
model with loops, and it can be expanded into a standard
neural network model, but this neural network is not sep-
arated. In this way, RNN performs the same calculation
process each time, but the inputs are different each time,
which seriously restricts the ability of RNN to capture
features of long sequences.

2.3. Gated Recurrent Unit. Gated Recurrent Unit (GRU) is a
kind of RNN with gated control units. Because the structure
of the GRU unit is simpler and easier to train, the efficiency
of training can be improved by using GRU. ,e GRU unit
not only saves computing costs but also does not cause
performance degradations. At present, there is no relevant
research to point out that the performance of the GRU unit
is worse than other recurrent networks. ,e input and
output structure of GRU are the same as those of RNN.

,e GRU combines the forget gate and the input gate
into one: the update unit. In addition, GRU does not require
additional memory units and introduces a linear depen-
dency directly between the current state ht and the historical
state ht−1. In the GRU network, the current candidate state is
ht.

ht � tanh Whxt + Uh rt ⊙ ht−1(+ bh(, (4)

where rt ∈ [0, 1] is a reset gate, which is used to control
whether the computation of the candidate state ht depends
on the state ht−1 of the previous time.

rt � σ Wrxt + Urht−1 + br(. (5)

When rt � 0, the candidate state ht � tanh(Wcxt + b) is
related to the current input xt, but not related to the history
state. When rt � 1, the candidate state ht � tanh(Whxt +

Uhht−1 + bh) is related to the current input xt and the his-
torical state ht−1, which is consistent with the simple

recurrent network. ,e hidden state ht of the GRU network
is updated in the following way:

ht � zt · ht−1 + 1 − zt(· ht. (6)

z ∈ [0, 1] is the update gate, which controls how much
information is retained by the current state from the his-
torical state and howmuch new information it receives from
the candidate state.

zt � σ Wzxt + Uzht−1 + bz(. (7)

When zt � 0, there is a nonlinear function between the
current state ht and the historical state ht−1. If both zt � 0
and r � 1 exist, the GRU network degenerates to the simple
recurrent network. If both zt � 0 and r � 0 exist, the current
state ht is only related to the current input xt and not to the
history state ht−1.When zt � 1, the current state ht is equal to
the previous state ht−1 and is independent of the current
input xt.

2.4. Memory Network. Generally, memory network can be
regarded as composed of five components. ,e first com-
ponent is a memory module m � m1, m2, m3, . . . , mn used
to store memories, and this module is usually implemented
with mi as the matrix of indexes. ,e other four-module
components are Input module, Generalization module,
Output module, and Response module. ,ese four modules
are usually referred to simply as I, G, O, and R.

Memory network is a general machine learning
framework so that memory network can target different
problems. Due to the use of long-term memory components
for learning performs better than RNN in long-term
memory, so it is called memory network.

,e Input module, Generalization module, Output
module, and Response module can use any existing algo-
rithm in the field of machine learning, such as SVM and
random forest [25]. ,e working process of each of the four
modules is introduced, respectively.

Module I: ,e function of module I is to do a simple
preprocessing of the external input. Usually, the external
input is transformed into a vector that is easier to handle in
machine learning. For example, word2vec technology
converts words into dense vectors.

Module G: ,e implementation of module G is very
flexible. For example, the easiest way is to add the output of
module I directly into the memory space. Literature [26]
uses a first-in-first-out method to add new memories into
the memory space when memory network is applied in the
recommender systems.

mH(x) � I(x), (8)

where H(·) is the function of the selected slot, and I(x) is the
output of module I.

Module O: ,e most important task of module O is
responsible for reading memory and generating outputs.
Both module O and module G can be implemented in the
simplest way, such as reading the memory in order.

Wireless Communications and Mobile Computing 3

Module R: Module R converts the output of moduleO to
the externally requested format.

2.5. Neural TuringMachine. Memory network is a branch of
deep learning. ,e Facebook team’s paper published in 2014
proposed memory network and introduced its application in
Q&A systems [10]. In 2014, the Google DeepMind team used
a similar idea to propose Neural Turing Machines (NTM)
[11].

,e NTM proposed by the DeepMind team refers to the
idea of LSTM and generates an erase vector et and an add
vector at for memory network to control the update of
memory matrix.

,e core of the model is module O and module
R. Assuming that the input question in the Q&A systems is
x, the task of module O is to select the TOP-N related
memory from all the memories according to the input
question vector. ,e specific selection method is first to
select the most relevant memory.

o1 � O1(x, m) � argmax
i�1,...,N

sO x, mi(. (9)

Next, select the memory o2 that is most relevant to both
of them based on the selected o1 and input x together.

o2 � O2(x, m) � argmax
i�1,...,N

sO x, mo1
 , mi . (10)

For equation (10) above, if linear vectors represent both
x and o1, they can be divided into the following way of
addition:

sO x, mi(+ sO mo1
, mi . (11)

Finally, module R needs to generate a text response r.
,e simplest response is to return mok, which is the output of
the previously uttered sentences retrieved, and use the
scoring function to calculate the relevance of all the can-
didate words to the input of module R, with the final word
with the highest score being the correct answer.

r � argmax w∈WsR x, mo1
, mo2

 , w , (12)

where W is the set of all words in the dictionary and sR(·) is
the function that scores the matches.

3. The Proposed Model

3.1. Problem Formulation. Firstly, we introduce the overall
structure of the model and then describe each module,
respectively.

,e hierarchical network with user memory matrix
(HNUM2) is a hierarchical network. ,e overall structure of
the model is shown in Figure 3. ,e model consists of two
layers. ,e first layer is a session-level GRU model, which is
used to describe the sequence characteristics of the current
session and store the user’s short-term interests to predict

Output layer

Hidden layers

Input layer

Delayers

ht-1

ht

ht

xt

Figure 1: Simplified Recurrent Neural Network (RNN) structure diagram. ,e input of the Recurrent Neural Network subject consists of
the xt of the input layer and the hidden state of the previous moment ht−1.

y1 y2 y3 yT

h1 h2 h3 hT

x1 x2 x3 xT

Figure 2: Recurrent Neural Network expanded by time.,e RNN uses the results generated by the previous time step of the hidden layer, as
part of the current time step, and influences the output of the current time step.

4 Wireless Communications and Mobile Computing

the next item. ,e second layer is a user-level memory
network model, which stores the entire user’s historical
information and describes the user’s long-term interests. At
the beginning of a user’s session, the read module reads the
memory vector in the memory matrix M corresponding to
the current user and reads the memory as the user’s pref-
erence vector to initialize the hidden layer of the GRU unit.
At the same time, the user’s hidden state, short-term interest,
and the current stage of the click product are input to the
session-level GRU unit. At the end of each time step, the
output predicts the item clicks by this user in the next phase
and the hidden state of the GRU in the next phase, which is
stored into the memory matrix M by the write module. ,e
same process is performed again when a user’s session ends
and the next session begins.

In Table 1, we introduce some of the notations used in
this paper.

3.2. 0e Formal Description of HNUM2. Define U � u1, u2,

. . . , uN} as the set of all users, V � v1, v2, . . . is a set of
items, and Su � su

1 , su
2 , . . . is the set of the session of user u.

Vs � vs
1, vs

2, . . . is a sequence of interactive items generated
in a user’s sessions s, in which vi is one of the interactive
items in the whole model, and our goal is to predict the user’s
next interactive item vs

i+1.M
u � mu

1 , mu
2 , . . . , mu

K ∈ RD×K is
the memory matrix of user u, and mu

k ∈ RD is the k th
memory vector of Mu, which is used to store the long-term
interests of the user. ,e size of Mu depends on the number
of memory vectors K and the length D of the vectors in the
memory matrix. Among them, K and D are the hyper-
parameters of the model.

3.3. Memory Reading Module. ,e read module is mainly
responsible for reading the long-term interests of the user in
thememorymatrix, which is used to guide the training of the
session phase. Specifically, set pu to be the preference em-
bedding of user u, and the interaction item vi of the current

session is used as input; pu is obtained by reading the
memory from Mu. pu can be expressed as

p
u

� READ Mu
, vi(. (13)

vi is the embedding vector of the i th interaction item in the
current session. Intuitively, the previous i memory vectors
will have different effects on the current interest, so the
attentionmechanism is introduced to assign weight values to
different memory vectors.

,e specific process of READ(·) operation is shown in
equations (13)–(15).

wi,k � vi · m
u
k, (14)

zik �
exp βwik(

j exp βwij
, (15)

where β is an intensity parameter, which can enlarge or
reduce the degree of focus. When β � 1 is a standard
softmax, zik is used as the attention weight to derive the
preference vector pu for user u.

,erefore, the user’s historical behavior can be accessed
according to the impact of the user’s historical behavior on
the current item.

p
u

�
K

k�1
zik · m

u
k. (16)

3.4. Memory Writing Module. ,e write module is re-
sponsible for updating the GRU hidden state into the
memory matrix after a time step. Neural turing machine
refers to the idea of the update gate of the LSTM:

(1) ,e input gate is used to determine the information
to be added.

(2) ,e forget gate is used to determine the information
to be discarded.

Writer Writer

M M

Session-level

User-level

Reader Reader

v̂1,2 v̂1,3 v̂1,4

v1,1 v1,2 v1,3

v̂2,2 v̂2,3 v̂2,4

v2,1 v2,2 v2,3

Figure 3: ,e overall structure of the model HNUM2, which consists of two layers. ,e first layer is a session-level GRU model, and the
second layer is a user-level memory network model.

Wireless Communications and Mobile Computing 5

(3) ,e update gate is used to add or delete the
information.

Specifically, the neural turingmachine generates an erase
vector and an add vector, in which the values of each element
range from 0 to 1, indicating the information to be added or
removed.

Since the whole process is matrix read and write op-
erations are differentiable, the whole model parameters can
be trained by gradient descent. For the erase vector erasei:

erasei � σ E
T
hi + be . (17)

σ(·) is the sigmoid function, E and b are the erase pa-
rameters, and hi is the current hidden state of the user.

Update feature preference memory by attention weight
and erase vector.

m
u
k←m

u
k · 1 − zik · erasei(. (18)

zik is the attention weight of the write phase.
After erasing, update the feature preference memory

using the add vector addi:

addi � tanh A
T
hi + ba , (19)

m
u
k←m

u
k + zik.addi, (20)

where A and ba are the parameters in the add operation.
,is erase-add updates strategy allows forgetting and

reinforcing the learning process for the user preference
embedding vector. ,e model can automatically learn to
erase parameters and add parameters to determine which
signals need to be weakened or enhanced.

3.5. Loss Function. Classical Bayesian Personalized Ranking
(BPR) is a matrix factorization method using pairwise
ranking loss [27]. BPR compares the scores of positive
samples and negative samples [28]. In the iterative loss
calculation process, the scores of the positive items are
compared with the scores of the next item in the same batch,
and their average value is used as the loss. ,e loss at a
certain point in a session is defined as

Ls � −
1

Ns

Ns

j�1
ln σ rs,i − rs,j , (21)

where Ns is the number of samples, rs,i is the score of the
positive sample, and rs,j is the score of the negative sample.

Both rs,i and rs,j are the output of GRU through the
LeakyReLU activation function, and σ is the sigmoid
function.

3.6. Hierarchical Network with User Memory Matrix

(1) We group sessions by the user set U � u1, u2, . . . ,

uN}, and the sessions of each user u are arranged in
chronological order. ,e sequence of user-item in-
teractions in the session is arranged chronologically.

(2) In the training of the same user, the different sessions
are horizontally stitched together to form a triplet
〈UserId, SessionId, ItemId〉 and sent into the ses-
sion-level GRU.

(3) ,e read module reads the memory matrix M
according to the GRU hidden state hs of the user’s
current session s. ,e memory mu

i read by the read
module is used as the user’s preference vector pu to
initialize the hidden layer unit of the GRU.

(4) ,e memory Write module writes the final state of
the session to the memory network when a time step
of the GRU ends and updates the memory matrix for
training at the user-level.

,e pseudocode of the HNUM2 execution process is
shown in Algorithm 1.

4. Experiments

4.1. Datasets. (1). MovieLens-25M. MovieLens-25M (here-
after referred to as MovieLens) is a dataset provided by the
MovieLens website developed by the GroupLens group at
the University of Minnesota in the United States. Movie-
Lens-25M is a publicly available dataset and is widely used in
movie recommendations [29]. ,e version of the dataset
used in this paper contains about 25 million rating records
on the MovieLens website. To fit the algorithm proposed in
this paper, the rating data for each user is sorted by time, and
then the data is divided by days. We remove sessions with
length less than 5 and we remove users with less than 6. For
each user, 80% of sessions are used as training dataset and
20% as testing dataset.

Table 1: Notations.

Symbol Size Description
U 1 × N ,e set of all users
Su 1 × N ,e set of sessions for user u

Vs 1 × N ,e sequence of items that generate interactions in a session s

K ,e number of memory vectors of memory matrix
D ,e length of memory vector in matrix
Mu RD×K ,e memory matrix of user u

mu
k RD ,e k-th memory vector of user u

pu K Preference vector of user u

rs,i R ,e score of positive samples
rs,j R ,e score of negative samples

6 Wireless Communications and Mobile Computing

(2). Adressa. Adressa [30] is a news dataset published in
the RecTech item, which contains the contextual information
about the user and details such as the headline and content of
the news [31]. For registered users in the dataset, their his-
torical behavior records can be obtained based on their IDs.
,e experiment in this paper needs to obtain user’s long-term
historical behavior information, so the registered users in the
dataset can be selected as the experimental data. ,e dataset
provides information such as the type of user’s equipment and
location [32]. ,ere are start symbols and stop symbols of the
session in the dataset, and the session can be divided ac-
cordingly. ,ere are two versions of the dataset, one is a large
dataset with 20 million reading behaviors with 10 weeks of
traffic on the Adresseavisen news portal, and the other is a
small dataset with 2 million reading behaviors with only one
week of traffic. In this paper, we use a large dataset containing
20million reading behaviors and filter out users with at least 5
sessions and at least 6 session lengths. We use 80% of these
users as the training dataset and 20% as the testing dataset.

4.2. Evaluation Standard. Recall@K: Since the recom-
mender systems can only recommend several items si-
multaneously, the actual items that users may choose should
be in the first few items in the list. ,erefore, the first
evaluation metric of this paper is Recall@K, which indicates
the proportion of required items among the top-K items in
all test cases. In some scenarios, Recall does not consider the
actual ranking of the items, while the absolute order is not
important [33]. ,e traditional calculation formula of Recall
is as follows:

Recall �
TP

TP + FN
, (22)

where TP represents the number of positive samples pre-
dicted as positive samples, FN represents the number of
positive samples predicted as negative samples, and Recall

measures that multiple positive samples are divided into
positive samples. In the personalized ranking task of the
recommender systems, the calculation of Recall is defined as
follows:

Recall �
u∈U|R(u)∩T(u)|

u∈U|T(u)|
, (23)

where R(u) refer to the list of N items recommended for
user u and T(u) refer to the set of items preferred by user u

in the testing dataset.
,e work in this paper used the method of calculating

Recall used in [7], which regarded session-based recom-
mendation as a task of the item-by-item recommendation.
,ere is only one target item in the current stage of the
session. ,e final Recall score is the average of all users.

MRR@K: ,e second evaluation metric used in the ex-
periment isMean Reciprocal Rank (MRR), which is the average
of the reciprocal rank of the required items. If the rank is
greater than K, the reciprocal rank is set to 0. MRR considers
the ranking of the items, which is very important in focusing on
recommendations. ,e calculation formula is as follows:

MRR �
1
Q

|Q|

i�1

1
ranki

, (24)

where |Q| indicates the number of items of interest to the
users, and ranki indicates the ranking of items that the users
are interested in, in the recommendation list. When the rank
of the real value is greater than the set cut-off value, the
inverse of the rank is set to 0. MRR better reflects the quality
of the recommendation in the ranking problem, because
people tend to pay more attention to the first few items in the
recommendation list [34]. When the rank of the real value is
very low, even if the real value is in the recommendation list,
it cannot be considered a high-quality recommendation
result.

input: triple < UserId, SessionId, ItemId >,
output: the prediction score V

s
� vs

1, vs
2, . . . , vs

m .
(1) group the session by users into U � u1, u2, . . . , uN .
(2) initialize memory-matrix: M
(3) for i in epoch:
(4) for j in user ui:
(5) //Session-level
(6) read M by reader into mu

k as preference vector pu

(7) if new session
(8) use pu to initialize GRU hidden state hs

(9) zik as the weight of user interest attention
(10) mu

k←mu
k · (1 − zik · erasei), erasei by equation (18)

(11) //User-level
(12) when the end of a time step
(13) write state to M by writer
(14) mu

k←mu
k + zik.addi, addi by equation (20)

(15) computer the loss according equation (21)
(16) end for
(17) end for

ALGORITHM 1: HNUM2.

Wireless Communications and Mobile Computing 7

4.3. ExperimentalDesign. Firstly, we introduce the software
and hardware platform used in the experiment. In this
paper, we use the Tensorflow framework to build the
model, and experiments are carried out on the hardware
platform Tesla P100. During the training process, RMSProp
is used as an optimizer to optimize the model, and the
batch_size is set to 128. For the experimental environment,
the better balance between performance and efficiency can
be achieved when the batch_size is 128. ,e parameters of
the model are initialized by the normal distribution, which
has a mean of 0 and a standard deviation of 0.01. ,e initial
learning rate is 0.001, and the attenuation coefficient of the
learning rate is 0.96. To avoid overfitting, the parameter
keep_prob of dropout is 0.8 and the number of GRU units
is 100. It is found that, due to the complex structure of the
network, the saturation of the activation function often
occurs when using Tanh as the activation function,
resulting in falsely high experimental results. ,erefore,
LeakyReLU is used as the activation function after the
output layer of the GRU unit [35]. ,e formula of Lea-
kyReLU function is as follows:

yi �
xi if xi ≥ 0(

aixi if xi < 0(
,

⎧⎨

⎩ (25)

where ai ∈ (0, 1).,e LeakyReLU function does not produce
saturation and avoids neuron death [36]. In the traditional
memorymatrix, the number of memory vectors is usually set
within 2–15, and its length is set to 100. All hyperparameters
are the optimal choices obtained after adjustment based on
experimental results.

4.4. Analysis of Experimental Results

4.4.1. 0e Effectiveness of the Algorithm. To explore the
recommendation performance of the HNUM2 model, we
compared the proposed model with the HGRU model and
the GRU4REC model for experiments. ,e HGRU model
and GRU4REC model are described below.

,e GRU4REC model [7] is a classic session recom-
mendation model based on deep learning, which uses GRU
to capture the user’s interests in the session and then
generates a recommendation list according to the user’s
interests. ,is model is a common baseline algorithm model
in the field of session recommendation.

,e HGRU model [8] is a hierarchical session recom-
mendation model in which both layers of the model use
GRU units to capture user’s interests. ,roughout the ses-
sion, the model evolves potential hidden states on RNN
endpoints across sessions and uses hidden states on GRU to
represent user’s historical interests.

To compare the parameter settings of the experiments,
the HNUM2 model performs best when the number of
memory vectors is 20 in our experiments, and we set the
number of memory vectors to 20.,eGRU4RECmodel uses
100 GRU units and the batch_size is set to 128. For the
HGRUmodel, the number of GRU units in the session-level

and the number of GRU units in the user-level are both set to
100.

As can be seen in Tables 2 and 3, the HGRU and
HNUM2 models have generally better recommendation
results than the GRU4REC model in the session-based
recommendation algorithm. ,e GRU4REC model does
not consider the user’s historical behavior information
and captures the user’s interests in the current session,
whereas both the HGRU model and the HNUM2 model
utilize the user’s historical behavior, so it has better
recommendation performance. ,e HGRU model pre-
forms weaker than HNUM2 on Recall for the same dataset.
Because the HGRUmodel compresses user’s interests into
the hidden states of GRU units when portraying user’s
long-term interests, this approach is not conducive to the
dynamic of historical states. ,e proposed model using
memory network avoids this situation. ,e experimental
results show that the performance of each algorithm on
the MovieLens dataset is worse than that on the Adressa
dataset. MovieLens is not a dataset for session-based
recommendations, and the dataset does not show that the
chronological sequence of ratings is related to the viewing
order. ,erefore, the performance of the session-based
recommendation algorithm on the MovieLens dataset is
not ideal.

Compared with the baseline algorithms GRU4REC and
HGRU, the HNUM2 algorithm has better performance on
Recall and MRR, which validates the effectiveness of the
proposed algorithm.

4.4.2. Exploration of Long-TermMemory Ability. In order to
explore the memory ability of the model to remember
users’ long-term interests, experiments were designed to
compare the different performances of the model when the
number of sessions was 10 and the number of sessions was
5. ,e two datasets were divided into a dataset with 5
sessions and a dataset with 10 sessions. ,e experiment
compares the performance improvement ratio of the
HGRU model and the HNUM2 model when the number of
sessions increases.

,e main comparison is the memory ability of multiple
sessions before a user, while the GRU4REC model only
considers sessions and not users, so we do not compare
GRU4REC.

Comparing the data in Tables 4 and 5 with the data in
Table 2, it can be seen that both HGRU and HNUM2 show
improvements in Recall and MRR when the number of
sessions is selected as 10, but the degree of improvement is
different. Figures 3 and 4 compare the percentage perfor-
mance improvement of the two models with 10 sessions
versus 5 sessions.

As shown in Figures 5 and 6, it can be seen that the
HNUM2 model can obtain the improvement of recom-
mendation effects when facing longer number of sessions.
,e reason is that the memory network can store long se-
quence of information, and more sessions can bring more
user information, which can be stored in the memory
network.

8 Wireless Communications and Mobile Computing

4.4.3. Effect of Parameter K on the Model. To explore the
effect of different number of vectors K in the memory matrix
on the model performance, a comparison experiment was
designed. ,e experimental dataset was selected as the
Adressa dataset that better fits the session recommendation
model. ,e value of K for fixed TOP-K is constant at 20,
while a dataset with 10 sessions is used. Different memory
vector numbers K were selected to calculate the Recall and
MRR values of the model. As shown in Figures 7 and 8, the
values of Recall and MRR vary continuously with the value
of K. ,e value of K determines the number of memory
vectors, which in turn affects the memory ability of the

model. As the number of memory vectors increases, the
model can capture the user’s long-term interests.

As shown in Figures 7 and 8, the value of K has a certain
influence on the model effect, which shows an increasing
trend followed by a decreasing trend. ,is is because more
memory vectors can store more user information, and the
user’s interests that can be described become more accu-
rate. As shown in Figure 7, the Recall of the model zigzags
up for K values from 2 to 7, reaching an optimal value of
0.4813 at K � 10. As the value of K increases, there is no
corresponding improvement in the recommendation
performance of the model. However, when the number of

Table 2: Results of Recall@K and MRR@K on the Adressa dataset with 5 sessions.

Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
GRU4REC 0.1023 0.1854 0.3074 0.0620 0.0761 0.0846
HGRU 0.1607 0.2897 0.4529 0.0906 0.1104 0.1224
HNUM2 0.1638 0.2935 0.4550 0.0931 0.1129 0.1249

Table 3: Results of Recall@K and MRR@K on the MovieLens-25M dataset.

Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
GRU4REC 0.0213 0.0450 0.0831 0.0090 0.0146 0.0173
HGRU 0.0247 0.0571 0.0958 0.0112 0.0191 0.0298
HNUM2 0.0286 0.0623 0.1034 0.0134 0.0227 0.0326

Table 4: Results of Recall@K on the Adressa dataset with 10 sessions.

Recall@5 Recall@10 Recall@15 Recall@20
HGRU 0.1682 0.3027 0.3976 0.4693
HNUM2 0.1775 0.3146 0.4096 0.4831

Table 5: Results of MRR@K on the Adressa dataset with 10 sessions.

MRR @5 MRR@10 MRR@15 MRR@20
HGRU 0.0954 0.1159 0.1240 0.1271
HNUM2 0.1018 0.1225 0.1307 0.1353

Input Generalization

Output Response

1 2 3 …… N

Input
Text

Feature
Vector

Memory Slots

Feature
VectorQuestion

Text
Answer

Text

Figure 4: ,e general structure of the memory network, which consists of 5 components: Memory module, Input module, Generalization
module, Output module, and Response module.

Wireless Communications and Mobile Computing 9

memory vectors increases to more than 10, the recom-
mendation performance of the model begins to decline
slightly. ,e reason is that the memory matrix generates
more noise when the number of memory vectors is large.
Figure 8 shows that the MRR achieves the optimal value of
0.1353 when the value is 10. ,erefore, we can conclude
that appropriately increasing the number of memory
vectors can improve the memory ability of the memory
matrix but also brings problems such as noise. Appropriate
control of the number of parameters and the priority of the
more important influencing factors is an important way to
improve the recommendation performance.

5. Conclusion

In order to solve the problem of the insufficient memory
ability of traditional recurrent neural networks, we
proposed a hierarchical network with a user memory
matrix (HNUM2). In the proposed model, we use a
memory network, which can capture the user’s long-term
interests and combine user’s long-term and short-term
interests to generate recommendations, which in turn
improves the overall recommendation effectiveness of the
algorithm. ,e experimental results show that the pro-
posed model has better performance in session recom-
mendation and better recommendation for problems
with long sequences.

With the continuous improvement of information
technology, the form of data has changed greatly, from the
traditional scoring data to multisource heterogeneous in-
formation including images, text, and labels. ,e following
work can further explore the fusion of multisource het-
erogeneous information. ,e current graph neural network
as a new method for long sequence recommendation has
opened up a new direction for sequence recommendation,
and future work can apply memory networks to graph
neural networks to improve the long sequence memory
capability of the model.

10 15 205
Top-K

0

1

2

3

4

5

6

7

8

9
Re

ca
ll

Li
ft

Ra
te

 (%
)

HNUM2

HGRU

Figure 5: Comparison of long sessions on Recall improvement.

HNUM2

HGRU

0

1

2

3

4

5

6

7

8

9

10

M
RR

 L
ift

 R
at

e (
%

)

10 15 205
Top-K

Figure 6: Comparison of long sessions on MRR improvement.

0.470

0.475

0.480

0.485

0.490

Re
ca

ll

3 4 5 6 7 8 9 10 11 12 13 14 152
K

Figure 7: ,e influence of K on Recall.

3 4 5 6 7 8 9 10 11 12 13 14 152
K

0.130

0.132

0.134

0.136

0.138

0.140

M
RR

Figure 8: ,e influence of K on MRR.

10 Wireless Communications and Mobile Computing

Data Availability

All data included in this study are available upon request by
contact with the corresponding author.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported by Shandong Provincial Natural
Science Foundation, China (ZR2020MF147).

References

[1] P. He, H. Wu, C. Zeng, and Y. Ma, “Truser: an Approach to
service recommendation based on trusted users,” Chinese
Journal of Computers, vol. 42, no. 4, pp. 851–863, 2019.

[2] S. Wang, L. Hu, Y. Wang, L. Cao, Q. Sheng, and M. Orgun,
“Sequential recommender systems: challenges, progress and
prospects,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI-19),
pp. 6332–6338, Macao, China, July 2019.

[3] S. Wang, Y. Wang, Q. Sheng, M. Orgun, L. Cao, and D. Lian,
“A survey on session-based recommender systems,” ACM
Computing Surveys, vol. 9, no. 4, 2021.

[4] L. Huang, B. Jiang, S. Lv, Y. Liu, and D. Li, “Survey on deep
learning based recommender systems,” Chinese Journal of
Computers, vol. 41, no. 7, pp. 1619–1647, 2018.

[5] G. Lu and W. Zhang, “Survey of deep learning applied in
recommendation system,” Software Engineering, vol. 23, no. 2,
pp. 5–8, 2020.

[6] G.-E. Yap, X.-L. Li, and P. S. Yu, “Effective next-items rec-
ommendation via personalized sequential pattern mining,”
Database Systems for Advanced Applications, vol. 7239,
pp. 48–64, 2012.

[7] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-
based recommendations with recurrent neural networks,” in
Proceedings of the International Conference on Learning
Representations (ICLR), Vancouver, Canada, April 2016.

[8] M. Quadrana, A. Karatzoglou, and B. Hidasi, “Personalizing
session-based recommendations with hierarchical recurrent
neural networks,” in Proceedings of the Conference on Rec-
ommender Systems, pp. 130–137, Como, Italy, August 2017.

[9] J. Liu, Y. Wang, and X. Luo, “Research and development on
deep memory network,” Chinese Journal of Computers,
vol. 43, no. 2, pp. 1–52, 2020.

[10] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in
Proceedings of the International Conference on Learning
Representations (ICLR), Vancouver, Canada, November 2015.

[11] A. Graves, G. Wayne, and I. Danihelka, “Neural turing ma-
chines,” arXiv preprint arXiv:1410.5401, 2014.

[12] S. Sukhbaatar, A. Szlam, and J. Weston, “End-to-end memory
networks,” Advances in Neural Information Processing Sys-
tems, vol. 28, pp. 2440–2448, 2015.

[13] X. Chen, H. Xu, and Y. Zhang, “Sequential recommendation
with user memory networks,” in Proceedings of the Interna-
tional Conference on Web Search and Data Mininghttp,
pp. 108–116, Melbourne, Australia, February 2018.

[14] J. Huang, W. Zhao, and H. Dou, “Improving sequential
recommendation with knowledge-enhanced memory net-
works,” in Proceedings of the 41st International ACM SIGIR

Conference on Research & Development in Information Re-
trieval, pp. 505–514, Ann Arobor, MI, USA, June 2018.

[15] Z. Cai, Z. He, X. Guan, and Y. Li, “Collective data-sanitization
for preventing sensitive information inference attacks in
social networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 4, pp. 577–590, 2018.

[16] R. Ma, Q. Zhang, and J. Wang, “Mention recommendation for
multimodal microblog with cross-attention memory net-
work,” in Proceedings of the 41st International ACM SIGIR
Conference on Research & Development in Information Re-
trieval, pp. 195–204, Ann Arbor, MI, USA, June 2018.

[17] Z. Sun, Y. Wang, Z. Cai, T. Liu, X. Tong, and N. Jiang, “A two-
stage privacy protection mechanism based on blockchain in
mobile crowdsourcing,” International Journal of Intelligent
Systems, vol. 36, no. 5, pp. 2058–2080, 2021.

[18] X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang, “Self-
supervised hypergraph convolutional networks for session-
based recommendation,” Association for the Advancement of
Artificial Intelligence, https://arxiv.org/abs/2012.06852, 2020.

[19] X. Yue, Y. Liu, and C. Yu, “Session-based multi-rate RNN
recommendation model,” Journal of Shanxi University,
vol. 42, pp. 332–339, 2019.

[20] M. Aghdam, N. Hariri, and B. Mobasher, “Adapting rec-
ommendations to contextual changes using hierarchical
hidden Markov models,” in Proceedings of the 9th ACM
Conference on Recommender Systems, pp. 241–244, Vienna,
Austria, September 2015.

[21] W. Gu, S. Dong, and Z. Zeng, “Increasing recommended
effectiveness with Markov chains and purchase intervals,”
Neural Computing & Applications, vol. 25, no. 5, pp. 1153–
1162, 2014.

[22] Q. He, D. Jiang, and Z. Liao, “Web query recommendation via
sequential query prediction,” in Proceedings of the 2009 IEEE
25th International Conference on Data Engineering,
pp. 1443–1454, Shanghai, China, April 2009.

[23] Z. Cai and X. Zheng, “A private and efficient mechanism for
data uploading in smart Cyber-Physical systems,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 2,
pp. 766–775, 2020.

[24] M. Gao and B. Xu, “Recommendation algorithm based on
recurrent neural network,” Computer Engineering, vol. 45,
no. 8, pp. 198–202+209, 2019.

[25] Y. Zhan, X. Luo, and Y. Wang, “Supervised hierarchical deep
hashing for cross-modal retrieval,” in Proceedings of the ACM
International Conference on Multimedia, pp. 3386–3394,
Seattle, WA, USA, August 2020.

[26] Y. Song and J. Lee, “Augmenting recurrent neural networks
with high-order user-contextual preference for session-based
recommendation,” 2018, https://arxiv.org/abs/1805.02983.

[27] Y. Wang, Z. Cai, Z.-H. Zhan, B. Zhao, X. Tong, and L. Qi,
“Walrasian equilibrium-based multiobjective optimization
for task allocation in mobile crowdsourcing,” IEEE Trans-
actions on Computational Social Systems, vol. 7, no. 4,
pp. 1033–1046, 2020.

[28] Y. Zhan, Y.Wang, Y. Sun, X.Wu, X. Luo, and X. Xu, “Discrete
online cross-modal hashing,” Pattern Recognition, vol. 122,
Article ID 108262, 2021.

[29] Z. Cai and Z. He, “Trading private range counting over big IoT
data,” in Proceedings of the 39th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS), pp. 144–153,
Dallas, TX, USA, July 2019.

[30] J. Gulla, L. Zhang, and P. Liu, “,e Adressa dataset for news
recommendation,” in Proceedings of the International

Wireless Communications and Mobile Computing 11

https://arxiv.org/abs/2012.06852
https://arxiv.org/abs/1805.02983

Conference on Web Intelligence, pp. 1042–1048, Leipzig,
Germany, August 2017.

[31] Y. Wang, Z. Chen, X. Luo, and X. Xu, “High-dimensional
sparse cross-modal hashing with fine-grained similarity
embedding,” in Proceedings of the Web Conference 2021,
pp. 2900–2909, New York, NY, USA, April 2021.

[32] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards
multiple parties in industrial IoTs,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 5, pp. 968–979, 2020.

[33] Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan,
“Generative adversarial networks: a survey towards private
and secure applications,” ACM Computing Surveys, vol. 37,
no. 4, 2020.

[34] Y. Wang, Y. Gao, Y. Li, and X. Tong, “A worker-selection
incentive mechanism for optimizing platform-centric mobile
crowdsourcing systems,” Computer Networks, vol. 171, no. C,
2020.

[35] T. Liu, Y. Wang, Y. Li, X. Tong, L. Qi, and N. Jiang, “Privacy
protection based on stream cipher for spatiotemporal data in
IoT,” IEEE Internet of 0ings Journal, vol. 7, no. 9,
pp. 7928–7940, 2020.

[36] Z. Lu, Y. Wang, X. Tong, P. Wang, C. Mu, and Y. Li, “Data-
driven many-objective crowd user selection for mobile
crowdsourcing in industrial IoT,” IEEE Transactions on In-
dustrial Informatics, vol. 99, 2021.

12 Wireless Communications and Mobile Computing

