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Deep neural network-based automatic modulation recognition (AMR) technology has become an increasingly important area due
to the advantages of self-extraction of features and high identification accuracy. Based on the view of security threats to machine
learning classifiers, we investigate the influence of adversarial samples on the AMR model in this paper. The traditional method is
based on label gradient attack without taking advantage of the feature-level transferability, resulting in the attack effect that is not
perfect. So, we exploit the feature-level transferability property that could be met to fulfill realistic imperceptibility and transfer
needs. In this paper, firstly, we proposed an AMR scheme with high recognition accuracy as our attack model. Secondly, we
proposed a transferable attack method based on a feature gradient-based, which increases perturbation to clean signal based on
features space. Finally, we introduce a new attack strategy, in which we select two original and one adversarial target signal
sample as the input of triplet loss to achieve higher attack strength and high transferability. Meanwhile, this paper proposes
indicators of signal characteristics to test the effectiveness of our proposed attack method. Based on experimental results, our
proposed feature gradient-based adversarial attack method outperforms the currently labeled gradient attack methods
regarding attack effectiveness and transferability.

1. Introduction

Deep learning (DL) has been revealed to be successful in
conducting diverse wireless communication tasks like sig-
nal recognition [1] and spectrum prediction [2]. The key
technology of signal detection and demodulation is AMR.
It can effectively solve the increasingly crowded and com-
plex electromagnetic space environment, and it is also an
important premise for alleviating the spectrum resources
shortages. Convolutional neural network (CNN) and
long-short term memory (LSTM) are two methods that
have achieved good recognition accuracy. However, DL
in general has been discovered to be vulnerable to attack
by introducing a subtle perturbation that is imperceptible
to the human eye [3]. This paper investigates the chal-
lenges in signal classification tasks, because signal classifi-
cation is most widely studied in communication tasks.

Actually, the developed methodology is easily transferred
to all other tasks. Studying the threat posed by adversarial
samples is crucial, not only to enable us to create algo-
rithms that are resistant to interference from malicious
samples but also for preventing adversaries from executing
signal recognition tasks through such clever intervention.
It is important to note that the assault, which is a direct
access attack, is started by manipulating the receivers’ sig-
nal modulation classifier. This kind of attack might not be
feasible in the real world because it necessitates the pene-
tration of a target model. Nevertheless, direct access attack
methods remain helpful [4] visualizing adversarial pertur-
bations in modulation recognition by reconstructing the
waveforms, while compared to other forms of attack, they
are more difficult to detect. [5] analyzed direct attack and
physical attack that are closer to hardware requirements
using traditional FGSM methods. Thus, research into such
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direct and digital attacks is of great significance in real
world applications, and direct access attacks with AMR
may play the role of the foundation for more complex
over-the-air attacks [6]. Above all are utilizing the based
label gradient attack method. Feature gradient-based
adversarial methods are already available in the field of
image recognition [7].

To summarize, existing attack methods for signal clas-
sification models typically suffer from the disadvantages
presented below. Firstly, the transferability of adversarial
examples is imperfect in attacking the black-box model,
particularly in the presence of targeted attacks. That is
because the current methods mostly adopt single-layer fea-
tures rather than attacking with taking the use of features
space. In fact, the middle layer of the CNN representation
is transferable. Normally, CNN low-level features have a
lot of granular information, while its high-level features
have a lot of global semantic information. Secondly, the
adversarial sample is difficult to categorize into the stated
target class since the standard label gradient-based assaults
only limit the distance between the adversarial sample and
the target class. Evaluating only the success rate of an
attack does not correspond to the merely evaluation mea-
sure of the effectiveness of an attack in the field of signal
recognition. In the real communication environment, we
know relatively little a priori information, and it is neces-
sary to maintain a certain degree of imperceptible to
achieve the effect of the attack.

To address the abovementioned issues, we propose a
feature gradient-based attack method, which relies on
two basic observations. The first is a deep learning classi-
fier model that predicts mainly on the basis of the signal
samples information and differentiation regions. However,
the presence of such regions weakens the models. The sec-
ond conclusion is that perturbation in the middle layer
features of well-trained networks is transferable [8–10].
Research [8] concluded that feature representations are
universal in neural networks, and that feature representa-
tion can be transferred for learning by transferring to the
target network. Furthermore, features from various levels
exhibit diverse features. [9] improves the evidence, proving
that adversarial examples can be produced through operat-
ing image representations under deep neural networks.
The current work focuses on adding the potential repre-
sentation space of adversarial ingestion to those regions
of the signal sample that are informative and distinguish-
able. This contributions are as follows:

(i) To provide more transferable and efficient adversar-
ial examples, this paper proposed a transferable
attentive method concentrating on the informative
and discriminative feature regions, adding perturba-
tion at the feature level will be more adaptable to
realistic scenarios. The proposed attack methods
are more effective when compared the previous
methods in the modulation recognition scenario

(ii) We have conducted experiments in all metrics of our
method with a new system of indicators that better

suit the signal characteristics. Our method surpasses
that of the traditional label gradient method in most
indexes

The remaining of this paper is arranged as follows:
Section 2 presents the related work of DL in modulation
signal classification and the threat of adversarial examples;
Section 3 of this paper introduces the methodology of
adversarial examples based on feature gradient; Section 4
develops a series of experiments from the perspectives of
white-box attack and black-box attack, explores the exper-
imental results, and verifies the effectiveness. Finally, this
paper is summarized and looks forward to the future.

2. Related Work

2.1. AMR Model. The concept of AMR was first proposed in
[11], as one of the pattern recognition research, and it has
filled everyone’s vision. Machine learning (ML) methods
have been extensively used based on the constant advance-
ment of technology. DL has been developed recently into a
popular technology for breaking through the performance
bottleneck of pattern recognition tasks, and this technology
has also been introduced into the field of AMR. Based on
their perspective of development in the field of AMR, recog-
nition algorithms are classified into two types: classical mod-
ulation recognition methods and deep learning-based
modulation recognition methods [12]. The classical methods
can be divided into recognition methods based on likelihood
function [13] and recognition methods based on feature
extraction [14].

With increasingly complex and diverse communication
systems, wireless signal data is more complex and diverse
than ever, with stronger randomness and heterogeneity. Tra-
ditional modulation recognition requires manual extraction
of features and relies on prior information. The workload
is heavy, and the recognition accuracy is low. Therefore,
the industry applies DNN to the field of signal recognition.
The DNN model requires a large amount of training data,
and the massive features of wireless communication signals
were provided. In comparison to traditional methods,
DNN can automatically extract modulated signal features,
eliminating the errors that may be introduced by the manual
selection of features and the dependence on expert knowl-
edge in the identification process. The most important thing
is that AMR can achieve more accurate results. The present
study investigates the threats specific to the signal classifica-
tion stage and is thus related to adversarial machine learning
[15] which has witnessed an increase in activity in the con-
text of CV [16]. Recently, the search for DL signal recogni-
tion has mainly been based on two perspectives: signal
array and imaged-based. The texture map of the in-phase
and quadrature (IQ) waveform of the communication signal
is applied as the input of the DL model in the signal array
recognition method. According to Rajendran et al. [17],
through the transformation of IQ data into AP (amplitude/
phase) information and adoption of a simple LSTM model,
a perform accuracy was attainable. The model enabled the
extraction of temporal signal traits from the training data,
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where it is unnecessary to extract the expert traits manually.
Attention mechanism (AM), which was originally adopted
for machine translation [18] as a crucial concept in the DL
domain, is currently applied extensively in areas like speech
recognition, NLP (natural language processing), statistical
learning, and computers. Chen et al. [19] put forward a
new attention cooperative framework in which the input fea-
ture maps were made mutually dependent by incorporating
the classifiers with a self-AM and a Squeeze-and-Excitation
block [20]. The validity of AM is proved in AMR. The pres-
ent study is aimed at developing an AMR model based on
DL. The AP information is initially extracted from the IQ
data, and then the classification outcomes are derived using
an AM-based monolayer LSTM model. Our developed
scheme is compared to the existing CNN-AP, LSTM-AP,
and CLDNN-AP schemes. The accuracy of classification
can be less influenced by the signal frequency offset when
using CNN [21]. LSTM is appropriate for obtaining time-
series signal traits [22]. CLDNN (convolution, LSTM, deep
neural network), which integrates the benefits of DNN,
CNN, and LSTM, is proven to be highly competent in clas-
sifying the modulation modes [23, 24].

2.2. Adversarial Evasion Attack. The first step in guarantee-
ing system security is to identify the systems challenges. This
paper firstly characterizes the possible source of challenges,
envisions new challenges, and describes the restrictions in
adversarial attacks under the background of wireless com-
munications. The uninterpretable DNN exposes them to a
variety of security risks. Szegedy et al. discovered that by
adding some carefully crafted tiny human-imperceptible
perturbation to the input samples, the accuracy of DNN
classifiers can be significantly reduced, and such added per-
turbed samples are called adversarial example [25]. Adver-
sarial attacks can be categorized into two categories based
on whether or not the adversarial sample has a target: tar-
geted attacks and untargeted attacks. Targeted attacks are
those where the adversarial sample must misclassify the
input sample into a specific class to deceive the model. For
example, in modulated signal classification, if the attacker
specifies the target class as ASK, 8PSK, QPSK, or any other
class of signals, it will be incorrectly classified as ASK after
being attacked, while targetless attacks are the inverse of tar-
geted attacks, where no specific attack signal class is
required, i.e., the target can be any type of signal other than
its signal.

Untargeted attacks can be classified into white-box
attacks, black-box attacks, and gray-box attacks based on
the knowledge level in the target model. In a white-box
attack, the adversary is aware of the training data, architec-
ture, algorithms, and optimization techniques, which
enables it to fully access the trained model. A black-box
attack neither knows nor has accesses to the training data
and training model, making it a more realistic and practical
scenario that also increases the difficulty of the attack. A
gray-box attack is one in which only a limited amount of
information is known ahead of time.

The majority of the adversarial sample research are
currently focused on image recognition. Goodfellow

et al. presented fast gradient sign method (FGSM) to
attack deep network models, the core idea being to obtain
the adversarial sample by computing the gradient of the
loss function relative to the input sample itself [26]. Kur-
akin et al. put forward the iterative FGSM (basic iterative
fast gradient sign method, BIM), which uses multiple iter-
ations to generate an adversarial sample [27]. Dong et al.
presented momentum into the gradient calculation pro-
cess in the iterative attack and proposes the momentum
iterative method (MIM) method to enhance the stability
of the model at each iteration and the generalization of
the adversarial samples [28]. Moosavi-dezfooli et al. pro-
posed an algorithm called Deep Fool, which replaces the
deep classification model with a linear model for attack
[29]. Lin et al. introduced the Nesterov accelerated gradi-
ent into the iterative attack process and proposed PGD to
increase the adversarial samples migrability [30]. Kurakin
et al. presented an approach to performing adversarial
training on the model to explore the impact of the adver-
sarial samples on the model robustness [31]. Carlini and
Wagner proposed three methods to generate perturbations,
using three different metrics (L1, L2, L∞) to avoid the
robustness of the model [32]. The real-world artifacts
can also be used to trick the classification model [33].

Little work has been done to apply adversarial example
attacks to AMR, and Lin et al. applied the traditional
adversarial method based on label computation gradient
to modulated signal recognition and verified that AMR is
vulnerable to adversarial sample attack [34], However,
the above methods still use the alternative model approach
when performing black-box attacks and do not fully utilize
the features of modulated signal data samples. Moreover,
the recognition accuracy of the target model itself chosen
for modulated signal recognition is not high, only about
70%. Because of the disadvantage of the previous work,
we first propose a target recognition model with high
accuracy, which could attain a top accuracy about 91%.
The adversarial example was then generated using a fea-
ture gradient. Finally, we use a new strategy in which we
select two original samples and one target sample as triplet
loss input.

3. Transferable Attack Methodology

This study proposes a new black-box targeted attack method
for signal classification, named transferable adversarial
attack, which can deceive white-box models. The current
section firstly depicts the methodology of the fundamental
idea of generating adversarial examples. The algorithm flow
is then given. Finally, evaluate the feasibility of the proposed
algorithm.

3.1. Backgrounds. The most of raw IQ signal classifiers
attempt to get a signal snapshot x and output the most con-
fident result class y. In most situations, x denotes a two-
dimensional matrix (IQ, number of samples) that reflects a
single channel of complicated data with little preprocessing.
It employs DNN to learn a mapping from data by solving
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problems, particularly in the domain of communications.

argmin
θ

L f θ, xð Þ, yð ÞÞ, ð1Þ

where x and y denote the training and true labels, respec-
tively, and f denotes the network architecture used. To learn
the network variable θ, a loss function is usually used in
conjunction with an optimizer in DNN training. We
assume that the data set is constant without data augmen-
tation throughout model training, and that it is sampled
from a distribution that is similar to that observed later
in the communication system’s operation. FGSM uses
untargeted adversarial examples to build untargeted adver-
sarial examples.

x∗ = x + ε · sign ∇x J x, y,wð Þð Þ, ð2Þ

where y is the real input label, and ∇x indicates the gradi-
ent of the loss function in terms of the original input x.
The proposed approach in a single step can create adver-
sarial examples x∗ restricted by a distance ε, in the feature
space.

The average energy per symbol (Es) of a transmission
can be calculated based on

Es½ � = sps
N

〠
N

i=0
sij j2, ð3Þ

where sps denotes samples per symbol, N is the total num-
ber of samples, and si denotes a particular sample in time.
Without losing generality, the present study assumes the
average energy per symbol of the modulated signal, Es = 1.
As a result, the underlying transmissions power ratio to
the perturbation signal (Ej) can be derived as

Es

Ej
= 1
Ej

= 10−Ej dBð Þ/10, ð4Þ

Since the input of sign (∇x) in (2) is complicated, the
output also remains complicated and is thus a vector with
values [±1,±j]. As a result, the magnitude of each the pertur-
bation sample is computed as

sign ∇xð Þj j = sign zð Þj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
±1ð Þ2 + ±1ð Þ2

q
=

ffiffiffi
2

p
, ð5Þ

Thereby, the energy per symbol of sign (∇x) can be cal-
culated by plugging (5) into (6), leading to

Esign ∇xð Þ =
sps
N

〠
N

i=0
sign ∇xð Þj j2 = 2 × sps, ð6Þ

Since sps is fixed through transmission, a closed form
scaling factor, ε, is deduced to obtain the desired energy ratio

(Es/Ej) by using

ε =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej/Es

Esign ∇xð Þ

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

Ej dBð Þ
2 × sps ,

s
ð7Þ

Plugging ε into (2) allows the creation of adversarial
examples constrained by (Es/Ej) and can be simply
expressed as

x∗ = x +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10Ej dBð Þ/10

2 × sps

s
× sign ∇xL f θ, xð Þ, yð Þð Þ: ð8Þ

Above constraining the power ratio in this way can be
beneficial for assessing system design trade-offs.

min x∗ − xk kp,
s:t, l xð Þ ≠ l x∗ð Þ
x∗ − x ∈ ε,

, ð9Þ

where k·kp suggests the Lp norm. Furthermore, the Lp of δ is
defined as

δk kp = 〠
n

i=1
δk kp

 !1/p

, ð10Þ

where L0, L2, L∞ are the three most common metrics. The L0
is a quantitative metric for the pixel variations in an image,
whereas it quantifies the nonzero vectors of perturbation in
a signal. The L2 metric quantifies the Euclidean distance
between adversarial and original examples as an Euclidean
norm; the L∞ is responsible for the maximum alteration
constraint of all signal vectors/pixels in the adversarial
examples. The power budget of a transmitter is usually con-
stant, and in this research, an adversarial strategy of ML that
is unaware of underlying signal is considered. Hence, the
power applied to the jamming signal is inapplicable to the
underlying transmission.

3.2. Triplet Loss for Adversarial Attack. The traditional label
gradient attack method calculates the gradient using the
sample label y, incorporating the initial clean sample x and
the consistent label y into the target model loss function.
The attack direction can be obtained by computing the gra-
dient and sign function and then multiplied by the perturba-
tion size to realize the adversarial perturbation; finally, then
combine with the original clean sample to form an adversar-
ial example. Currently, the main attack methods based on
label gradient are FGSM, BIM, and MIM. Obviously, failure
to take advantage of fast gradient varies at the feature space
and transferability.

The proposed method is a momentum iterative FGSM
at the feature space level. Thus, we suggest using triple
loss, which can minimizes between an anchor and a posi-
tive, both of which have the same identity, and maximize
the distance between the anchor and a negative of a
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different identity. As a result, the information region and
the discriminative region in the sample may be perturbed
through optimization of the triplet loss on the feature
space. Because of extracting features, we need to truncate
the target model from the L layer to obtain the truncated
model, to ensure that the selected feature space is abun-
dant enough, and this paper uniformly selects the activa-
tion layer as our target layer. Then, put x and y into f L
to obtain the original signal sample feature f LðxÞ. The loss
here uses a triplet pair ð f Lðxai Þ, f Lðxpi Þ, f Lðxni ÞÞ, the anchor,
positive, and negative terms of the triplet loss, respectively,
and signal samples from the same class should be near
together in the embedding space, forming several well-
separated clusters. As a result, triplet loss ensures that
the attack process not only makes the original sample
close to positive sample (target sample) and away from
negative sample (untarget sample).

Triplet loss can be expressed as

Ltri = 〠
N

i

f xaið Þ − f xpi
À Á

 

2

2 − f xaið Þ − f xnið Þk k22 + α
h i

+
,

ð11Þ

where α ∈ R+ denotes a margin between negative and pos-
itive pairs. The triple loss is adopted for adversarial exam-
ple crafting in addition to strengthen the adversarial
robustness [35], and the triple loss is also exploited for
the adversarial example crafting purpose. The present
work is the first attempt to use the triplet loss to craft
the adversarial examples, where a source sample feature
is drawn closer to the target class while being propelled
away from the source class. In contrast to the conventional
triplet loss, the clean signal sample acts as the anchor
example, while the other clean and target class samples
act as the negative and positive examples, respectively.
With our attack, the anchor and positive examples are rea-
sonably separated, while the distance between the anchor
and negative examples is increased. The adversarial exam-
ples are easily misclassified into the target class by our tri-
ple loss-based algorithm. Furthermore, unlike the standard
triplet loss in which every element is a clean sample, our
triplet loss includes an adversarial example term, which
can be found in Figure 1.

3.3. Basic Ideas. This research proposes two methods based
on the aforementioned motivation. This algorithm can sim-
ulate the traditional BIM and MIM attack methods. To
destroy the potential representation space, we propose to
optimize triplet state loss rather than crossentropy loss. Fur-
thermore, this study proposes two methods, with more intu-
itive variants explained in Algorithms 1 and 2.

When AMR is attacked, it is expected to add an imper-
ceptible slight perturbation in the clean original sample,
resulting in an error recognition rate. Suppose the original
signal sample is x, the classification result is y, and the per-
turbation is small enough to meet kηk∞ ≤ ε. So, FGSM was

described below.

η = ε · sign ∇x J x, yð Þð Þ,
x∗ = x + η,

(
ð12Þ

where J is the target models loss function, and ∇x Jðx, yÞ
refers to the derivative of the loss function over sample x.
Because FGSM refers to a one-step attack, it is impossible
to update the adversarial example by querying the model
parameters in multiple times. The basic iterative method
(BIM) denotes an extended FGSM in which adversarial
examples are generated in various iterations. Every iteration
has a small step size, and each step should be within the per-
turbation neighborhood of the original input.

x0 = x,
xn+1 = Clipx,ε xn + ε sign ∇x J xn, yð Þð Þf g:

(
ð13Þ

Clipx,εfg means to limit it to the scope ½x − ε, x + ε�.
MIM is a reduction algorithm iteration technology that

accelerates the speed under the gradient through accumulat-
ing the velocity vector in the gradient direction of the loss
function. It can be denoted as follows:

x∗0 = x, g0 = 0,

gn+1 = μ · gn +
∇x∗n

J x∗n , yð Þ
∇x∗n

J x∗n , yð Þ



 




1

,

x∗n+1 = Clipx,ε x∗n + β · sign gn+1ð Þf g:

8>>>>><
>>>>>:

ð14Þ

gn+1 represents the cumulative gradient generated by the
previous n + 1 iteration, and μ is the attenuation factor.

MIM, same as BIM, incorporates an acceleration gradi-
ent into the iterative attack process and improves the migra-
tion performance of the adversarial examples, which can be
denoted as

x∗0 = x, g0 = 0,
xnesn = x∗n + β · μ · gn,

gn+1 = μ · gn +
∇x∗n

J xnesn , yð Þ
∇x∗n

J xnesn , yð Þ



 




1

,

x∗n+1 = Clipx,ε x∗n + β · sign gn+1ð Þf g:

8>>>>>>>><
>>>>>>>>:

ð15Þ

Among them, xnesn is a Nesterov item, which jointly par-
ticipates in the calculation of gradient.

3.4. Description of Attack Method. In order to perform an
attack on the feature space of the AMR model, it is first
necessary to find a suitable feature space. Meanwhile, to
ensure that the selected feature space is sufficiently infor-
mative, the truncation layer of the target model is chosen
as the final fully connected layer of the model. In order to
ensure that the selected feature space is rich enough, the
truncation layer of the target model is chosen as the
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Figure 1: Schematic diagram of triple loss. The attack process not only makes the original sample close to positive sample (target sample),
and away from negative sample (untarget sample), by pushing and pulling, but also to achieve a better attack effect.

Input: A classifier truncated model f L; original signal sample to be attacked xα; target signal sample xp; clean signal sample xn; Loss
Function JAL.
Parameter: perturbation size ε=0.001, number of iterations T.
Output:the adversarial sample x∗ that satisfy
kx∗ − xTk2 ≤ ε.
α = ε/N .
put xα into f L,obtain feature f LðxαÞ;
put xp into f L,obtain feature f LðxpÞ;
put xn into f L,obtain feature f LðxnÞ;

for t=0 to T-1 do
put x∗n into f L,obtain feature f Lðx∗nÞ
Obtain the gradient ∇xα JAL,
where JAL = Ltrið f Lðxai Þ, f Lðxpi Þ, f Lðxni ÞÞ;
calculate the accumulated gradient,renew the gn+1:

gn+1 = μ · gn + ð∇x∗n
JAL/k∇x∗n

JALk1Þ
update the x∗n+1 with gradient method

x∗n+1 = Clipx, εfx∗n + β · sign ðgn+1Þg
end for

returnx∗ = x∗N

Algorithm 1: AL-BIM.

Input: A classifier truncated model f L; original signal sample to be attacked xα; target signal sample xp; clean signal sample xn; Loss
Function JAL.
Parameter:perturbation size ε=0.001, number of iterations T.
Output:the adversarial example x∗ that satisfy
kx∗ − xTk2 ≤ ε;
α = ε/N
put xT into f L,obtain feature f LðxTÞ;
put xp into f L,obtain feature f LðxpÞ;
put xn into f L,obtain feature f LðxnÞ;
put x∗n into f L,obtain feature f Lðx∗nÞ;

for t =0 to T-1 do
calculate xnesn = x∗n + α · μ · gn
put xnesn into f L,obtain feature f Lðxnesn Þ
Obtain the gradient ∇xα JAL,
where JAL = Ltrið f Lðxai Þ, f Lðxpi Þ, f Lðxni ÞÞ;

gn+1 = μ · gn + ð∇xnesn
JAL/k∇xnesn

JALk1Þ
update the x∗n+1 with gradient method

x∗n+1 = Clipx, εfx∗n + β · sign ðgn+1Þg
end for

returnx∗ = x∗N

Algorithm 2: AL-MIM.
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activation layer before the final fully connected layer.
Therefore, For activation L layer in BIM (AL-BIM), the
attack process is as follows:

JAL xS, xT , xadvð Þ = Ltri,

Ltri = 〠
N

i

f xaið Þ − f xpi
À Á

 

2

2 − f xaið Þ − f xnið Þk k22 + α
h i

+
,

ð16Þ

x∗0 = xS, g0 = 0,

gn+1 = μ · gn +
∇x∗n

JAL xT , x∗n , xadvð Þ
∇x∗n

JAL xT , x∗n , xadvð Þ



 




1

,

x∗n+1 = Clipx, ε x∗n + β · sign gn+1ð Þf g,

8>>>>><
>>>>>:

ð17Þ

where k·k2 is the L2 norm, a similarity measure represent-
ing adversarial sample features and original sample fea-
tures. So, the workflow of the AL-BIM method could be
shown in Algorithm 1.

Activation L layer in MIM (AL-MIM) is similar to the
AL-BIM algorithm; before calculating the gradient, a Nes-
terov xnesn needs to be calculated, and its workflow is shown
in Algorithm 2.

3.5. Feasibility Analysis of Attack Methods

(1) The amount of information in the spectrum signal
sample is small compared with the high-
dimensional data of the image. If a classification
model with an AM is used to extract the effective fea-
tures of the attack object, it may improve the attack
precision and intensity. The maximum misclassifica-
tion effect is achieved with minimum perturbation of
intensity. At the same time, after training different
AMR models, the feature of the samples is
transferable

(2) Based on the above considerations, this paper uses
signal samples to extract effective features in the
model, calculates the gradient from the feature level,
and then attacks the proposed AMR model, which
may achieve a higher misclassification rate with less
fewer disturbances. Furthermore, from the feature
level, it may better reflect the migration of the attack
effect. Recently, the research material of the adver-
sarial attack method has not been seen, which is
based on the AM to extract effective features, and
then adds disturbances by gradient calculation from
the feature level

(3) Different from the traditional label gradient attack
method, we must truncate the target model from
the L layer because of the extracting features to
obtain the truncated model and put x, xt , and xadv
into f L to obtain the original signal sample features
f LðxÞ, f LðxtÞ, and f LðxadvÞ, and the gradient of the
feature is calculated

(4) Following the perturbation imposition, the modula-
tion signal is sent into the target CNN for identifica-
tion and classification. Given the high attack
susceptibility of CNN, the classifier can be deceived
by crafty perturbations, resulting in highly confident
misclassifications. Section 4 will investigate how dif-
ferent parameters like perturbation levels and SNRs
influence the CNN attacks and validate the attack
feasibility and effectiveness by using the waveform
and accuracy assessment methodologies. Figure 2
displays the block diagram for the adversarial attack
assessment in modulation identification

Based on the advantages of the above feature level and
the ternary loss function to reduce the Euclidean distance,
we can propose the above algorithm with better transferable
and concealment.

4. Experiment and Result Analysis

To test the effectiveness of adversarial ML on raw IQ-based
AMR, the models we proposed are applying the model
trained on Radio-ML2016.10a.

4.1. Experimental Data Set. Radio-ML2016.10a is a publicly
available modulated signal data set from Bradley University,
which is a data set used during the experiments in this
research that employs GNU Radio to synthesize I/Q signal
samples containing 11 modulation types, with signal-to-
noise ratios ranging from -20 dB to 18dB, uniformly distrib-
uted at 2 dB intervals. There are 128 complex floating point
time samples in each signal. The data set is 220,000 × 128 × 2
in size. The I and Q paths hold the real and imaginary parts
of the 128 signal points, respectively.

In this research, we selected the signal in the data set
with a high SNR greater than or equal to 10 dB. Further-
more, the number of samples in the training set is 35200,
and test set data were classified by the proposed model to
obtain 91.01%.

4.2. AMR Model. We should value the model we want to
attack. If an AMR model recognition effect is poor, the effect
of the attack may not be properly reflected considering that
the spectrum signal and image have different characteristics
and parameters. Aiming white-box attack, in the study, we
develop a LSTM-AP model with an AM that performs per-
fect in modulation recognition. Aiming black-attack, to con-
firm the transfer for the attack, we present two AMR models,
one is LSTM-AP, and another is CLDNN-AP; the specific
model parameters will not be described. Figure 3 depicts
the LSTM-AP model with attention mechanism for AMR.
The signal embedding module is covered in the first section.
Besides, the data format in RML2016.10a is 2 × 128, and it
can be used as an input to LSTM, as IQ data input to LSTM.
A learnable matrix is used in the fully integrated process of
signal embedding to multiply data. Signal embedding is
adopted because of the quite universal features of low-
dimensional data, which necessitates the strengthening of
the model’s robust field through the continuous rise of the
data dimensions. Variations in data dimensionality are
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derived via persistent model learning, and the best dimen-
sion for extracting features is sought ultimately. As a result
of the embedding, the modulation information included by
the input matrix will be larger and more accurate. The sec-
ond part is the monolayer LSTM, which is excellent in
acquiring temporal features like the time-series data of mod-
ulated signals and the information about phase and ampli-
tude that varies by the mode of modulation. The final
component is the AM module. The amplitude and phase
information of a partial piece of data can be used by the
AM to focus on the mode of modulation of a modulated sig-
nal sequence. Assume our input consists of T points of
sequential signal data.

4.3. Evaluation Indicators. To assess the efficiency and trans-
ferability of the attack method in the current work, the fol-

lowing evaluation metrics are defined for the generated
adversarial examples such as imperceptibility and signal
properties.

(1) Attack success rate (ASR):

ASR = ACCori −ACCadv
ACCori

: ð18Þ

ASR calculates the attackers percentage of misclassifica-
tion, ACCori is the classification accuracy of the original sig-
nal sample, and ACCadv is the classification accuracy
obtained by the adversarial sample using the same classifica-
tion model. The attack success rate can show an attack
methods potential to cause misclassification.

Adversarial ML

Gradient
calculation

Channel
model

Data packaging
Modulation

Signal classification

Time slice

Signal to be modulated
Modulated signal

Adversarial signal
Others

Perturbation signal

Effect
evaluation

Symbol
encoder

Whitened
source bits RRC filter

Sign
function

ε

Figure 2: In this paper, the flow chart of modulation identification against attacks, the modulated signal is first data encapsulated, then the
network gradient is obtained through the target network, and perturbation is added to the gradient to form an adversarial sample, which
leads to the model recognition error.
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Figure 3: The proposed LSTM-AP model with attention mechanism for AMR.
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Imperceptibility is as follows: L0 norm and L2 norm.

L0 =
Cc

N
: ð19Þ

L0 can be calculated as the proportion of the total num-
ber of points that a signal sample changes after an attack. Cc
is the number of modified points in a sample (128 × 2
points), N refers to the number of data points in a signal
sample, and the N value of the data set used in this paper
is 256 (128 × 2).

L2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

i=1
Voi −Vaij j2

vuut : ð20Þ

L2 calculates the numerical Euclidean distance between
an original signal sample and an adversarial sample. Voi
indicates the value of the ith data point of the original sam-
ple, Vai represents the value of the ith data point of the
adversarial sample, and N is 256 (128 × 2).

(2) Signal characteristics: since the unique characteris-
tics of the signal, we verify three indicators: ACR
(amplitude change rate), APD (average phase differ-
ence), and PSR (perturbation signal rate)

ACR (amplitude change rate) is as follows:

A =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 +Q2

p
, ð21Þ

ACR = 1
n
〠
n

i=1

Aoi − Aai
Aoi

����
����: ð22Þ

ACR calculates the amplitude change rate of the sig-
nal before and after the attack. In the procedure of signal
processing, different from the independent pixels in the
image, there is a one-to-one correspondence between
the I/Q channels in the signal data set, which are the
sampling values of the real part and the imaginary part
of the complex signal, if the reference is the same as
the image, the calculation method ignores the correlation
of the I/Q two-way. A represents the signals effective
amplitude, while I and Q are the coefficients of the real
and imaginary parts of the signal, respectively. Aoi is
the effective amplitude of the ith sampling point of the
original signal, Aai denotes the effective amplitude of the
ith sampling point of the signal after the attack, n repre-
sents the number of sampling points in a signal sample,
and the value of n in the data set used in this study
reaches 128. Different from each independent pixel in
the image, for the 128 × 2 sample in the signal, it is more
accurate to describe a signal sampling point by the
matching I channel and Q channel than to regard it as
256 independent points.

APD (average phase difference) is as follows:

APD = 1
n
〠
n

i=1
arctan Qoi

Ioi
− arctan Qai

Iai

����
����: ð23Þ

APD calculates the average phase difference at each
sample point in a signal sample. The phase is an impor-
tant factor to evaluate the signal attack. As an important
measure to describe the change of the signal waveform,
the delay of the phase can completely change a signal, thus
making it impossible to extract the real message. Ioi is the
real part coefficient of the i-th sample point of the original
signal, and Qoi indicates the imaginary part coefficient of
the ith sample point of the original signal. Iai indicates
the real coefficient of the ith sampling point of the signal
after the attack, and Qai refers to the ith sampling point
of the original signal imaginary.

PSR (perturbation signal rate) is as follows:

P = ∑n
i=1Ai

2

n
, ð24Þ

PSR = PP

Ps
: ð25Þ

PSR analyses the power ratio of the disturbance craft
adversarial sample to the signal P, where P is the signal
power and Ai denotes the effective amplitude of the ith sam-
pling point of the signal.

(3) TR (transition rate): in order to evaluate the transi-
tion of the attack, it is assumed that all signal sam-
ples are correct classification of white model f w,and

black model f w. The original data set is Dorig = fð
xð1Þ, yð1ÞtrueÞ,⋯, ðxðNÞ, yðNÞ

trueÞg, and each attack method
would generate an adversarial data set Dadv = fðx1adv
, y1target, y1trueÞ,⋯, ðxNadv, yNtarget, yNtrueÞg. The data xadv
and ytarget are obtained by the target attack per-
formed by the original data set on the white-box
model f b. The mobility of adversarial examples
refers to the number of samples that could deceive
both the white-box model f w and the black-box
model f b in the adversarial data set Dadv and the
number of successfully deceived white box model
f w. Define the data set of successful deceiving white
box model as Dfw ⊆Dadv. Then, mobility can be
defined as follows:

1
Df b

��� ��� 〠
xadv ,ytrueð Þ∈Df b

1 f b xadvð Þð Þ ≠ ytrue½ �: ð26Þ

This evaluation method intuitively shows the possibil-
ity that the adversarial examples generated in the white-
box attack may potentially play a role in the black-box
model.
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4.4. Experimental Result

4.4.1. Training and Results of Target Model. The number of
iterations, learning rate, and other major parameters is con-
sistent during the model training stage, to manage the effi-
ciency and consistency of training. The number of
iterations is set to 500, the learning rate is 0.001, and an
automatic update mechanism is set: if the loss value of the
test set does not drop for five consecutive times, the learning
rate is decreased by halved. Additionally, considering that
the modulated signal data set is composed of 20 SNRs, the
data for each SNR has a different number. The characteris-
tics suggest that the model be trained by combining all
SNR data as a data set for training and then verifying its rec-
ognition accuracy on each SNR independently during
verification.

Figure 4 compares the recognition accuracy of the pro-
posed model to other three schemes: CNN-AP, CLDNN-
AP, and LSTM-AP. CNN-AP has relatively low classification
accuracy, demonstrating that CNN performs poorly when
extracting features from time series data.. The efficiency is
insignificant even when the CNN training data used is the
IQ signal information about phase and amplitude, with mere
maximum accuracy of 83.4% for the CNN-AP. Meanwhile,
where the input of CLDNN-AP is the information about
phase and amplitude, 85.2% accuracy of classification is
attained. As displayed in Figure 4, when the LSTM input is
the IQ data, the accuracy of classification is low. The reason
is that the displayed phase and amplitude traits vary among
modulation schemes, which are not reflected by the IQ data.
The accuracy of classification is 87.13% at a SNR of 0 dB,
and the average accuracy is 90.69% at a 0 dB SNR of 18 dB,
showing a superior accuracy over the CNN-IQ design where
training is accomplished based on the IQ data. The accuracy
of classification with the present scheme is 89.2% at a SNR of
0 dB. Besides, the average accuracy at 0 dB SNR of 18dB is
92.87%, and the maximum accuracy is up to 93.091%. As
demonstrated by the simulations, our scheme outperforms
the controls regarding classification accuracy.

4.4.2. White Attack. To investigate and analyze the impact of
the attack on the modulation classification, this study com-
pared the attack effect of the white-box methods in
Figure 5. To demonstrate the effectiveness of our attack
method, this paper selects the optimal recognition model
proposed in this paper, uniformly selects the sample signal
with a SNR of 18dB, and then gives the recognition accuracy
of the model under different signal-to-interference ratios
(ES/E0). Figure 5 shows the results of the white-box attack.
When the signal-to-interference ratio is insignificant, that
is, the disturbance power is relatively large, and the accuracy
of the FGSM method can be reduced to about 18% while the
method proposed in this paper AL-MIM can be reduced to
0. In the range of 0-10 dB, we still attack the model to make
its accuracy 0. From the overall trend, our proposed method
is better than FGSM, and FGSM is superior to adding
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ordinary white noise. The accuracy of about 90% of the
training is reduced accordingly.

Furthermore, the modulation signal has the characteris-
tic of different SNR values; so, we are carrying out the adver-
sarial attack, and it is necessary to carry out the attack one by
one for different SNR with Es/EpEp = 30 dB. At the same
time, the iterative attack is considered to achieve the best
attack effect. Figure 5 shows the changes in the accuracy of
the AMR scheme model based on the three attacks at -20-
18 dB. According to Figure 6, with the SNR value added,
the accuracy of the model’s output shows an initially pro-
gressively improving trend and afterwards fluctuating
around a specific value. As the only noniterative one-step
attack algorithm, FGSM vary is fast, but the attack effect is
not satisfactory. We could see that the two attack methods
we proposed are better than FGSM and MIM. To deeply
analyze the adversarial attack, Figure 7 presents a confusion
matrix of the target model after yielding adversarial exam-
ples based on AL-MIM with SPR = 10 dB. It can be clearly
found that there is an obvious chaotic impact on the type
of modulation signals.

4.4.3. Black Attack. In contrast to the ideal experimental
environment, the target model in the actual modulation sig-
nal recognition and communication adversarial environ-
ment is often invisible to the attacker, resulting in a black-
box attack. That is, there are high requirements for the

mobility of adversarial examples. Usually, the traditional
attack uses alternative models to replace the target black-
box model, and the black-box attack applied in the present
work is a direct way to transfer the adversarial samples gen-
erated from the proposed scheme white-box attack to exe-
cute the attack with the purpose of better verifying the
transferable of the adversarial example. Apart from that,
the black-box attack is tested on two different network
models, LSTM-AP and CLDNN-AP, respectively, and the
experimental results are illustrated in Figures 8 and 9.

According to Figure 8, it can be observed that for the
black-box model of LSTM-AP, the original adversarial sam-
ples that can bring down the target model in the white-box
model have a significant decrease in the attack success rate
when they are migrated to the LSTM model, especially for
the label gradient-based attack method FGSM. In contrast,
AL-FGSM, AL-BIM, and AL-MIM can still achieve better
adversarial attack effect, reducing the accuracy rate of LSTM
model drop to about 30%. A similar conclusion can be
drawn from Figure 9, and the adversarial examples based
on feature gradient can still maintain a good attack effect
after transfer to the CLDNN-AP black box model even
though it is not as efficient as the white-box attack.

Figure 10 represents the comparison of the transfer rate
of the adversarial samples on the two black box models,
where the FGSM method is not included in the comparison
methods because of its poor attack. From Figure 10, it could
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be seen that the black-box transfer rates of the two feature-
based attack methods are higher than the traditional label-
based methods for both LSTM-AP and CLDNN-AP models,
which indicates that the feature-based attack methods have
excellent attack transfer performance.

4.4.4. Analysis of the Effectiveness of the Attack. First, we
make sure that the perturbation we introduce is small
enough not to be recognized by the human eye with check-
ing the effect of the perturbation on the signal fluctuations.
The following modulation carrier formula is presented as

S tð Þ = I cos 2πf tð Þ +Q sin 2πf tð Þ: ð27Þ

Furthermore, to the criterion of the success rate of the
sample’s attack on the model, the magnitude and intensity

of the perturbation of the modulated signal adversarial sam-
ple compared with the original sample are also important
evaluation criteria. I represents the in-phase component, Q
indicates the quadrature component, and f represents the
carrier frequency. Subsequently, a primitive SðtÞ signal can
be yielded. By visualizing the SðtÞ, we could obtain the time
domain waveform of the modulation signal. The time
domain plots of the adversarial samples generated from the
QPSK signal samples and their original signals are presented
in Figures 11(a) and 11(b), while the plots of the adversarial
samples generated from the QAM16 signal samples and
their original signals are presented in Figures 11(c) and
11(d). Figures 11(a) and 11(c) show the signal perturbation
based on the traditional label gradient method, while
Figures 11(b) and 11(d) show the signal perturbation images
based on the feature gradient AL-MIM method. It can be
seen that for the same signal sample, the disturbance gener-
ated by the label gradient-based attack method often has
continuous and violent jitter, which often does not suit to
the image characteristics of a high signal-to-noise ratio mod-
ulated signal and is easily detected, and for the adversarial
sample signal image of the feature gradient transferable
attack, since the introduced perturbation is less in magni-
tude and jitter, it is more difficult to detect.

Then, to further analyze the adversarial attack approach,
we selected high SNR value signals in the data set above or
equal to 10 dB, with 32,000 samples in the training set. The
results of the attack evaluation metrics will be presented, as
shown in Table 1.

The attack method from misclassification and feature
gradient attack outperform iterative attack and single step
attack, and our method outperforms the traditional
method from two metrics of imperceptibility. A signal is
a physical quantity that representing a message, for exam-
ple, an electrical signal can stand for different messages via
changes in parameters such as amplitude, frequency, and
phase. The signal is the carrier of the message, and in
the process of signal attack, the variation of signal
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amplitude, phase, and other characteristics is extremely
significant, and excessive distortion will make it difficult
to extract the correct information. Four indicators (ACR,
APD, PSR, TR) are used in this research to measure the
distortion and migration rate of the signal. Based on
Table 1, these performance indicators outperform the tra-
ditional attack methods.

5. Conclusion and Future Work

This paper addresses the security issues of the deep neural
network model for AMR that is vulnerable to gradient
attacks, and we propose a new adversarial attack method
based on feature gradient transferability and design two
attack algorithms, namely, AL-BIM and AL-MIM. These
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Figure 11: Modulation samples with 18 dB before and after adding adversarial perturbation.

Table 1: Attack indicator results.

Type Misclassification Imperceptible Signal characteristics
Attack methods ASR (%) L0 L2 ACR APD PSR TR

FGSM 95.46 0.85 5.14 1.41 0.30 -12.98 0.15

BIM 96.80 0.78 0.88 0.08 0.11 -23.38 0.40

MIM 97.45 0.70 1.01 0.11 0.14 -22.01 0.46

AL-BIM 98.90 0.50 0.95 0.07 0.10 -25.63 0.70

AL-MIM 99.97 0.32 0.22 0.06 0.03 -27.45 0.75
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methods aimed at feature attacks, which can extract and run
regional attacks on the feature region of the original example
captured by the neural network model by optimizing the
triplet loss. The proposed scheme is more effective at attack-
ing stable features in AMR-extracted signals, compared to
the traditional label-based adversarial attack methods. Com-
prehensive experiments on public data sets show that the
proposed feature gradient-based attack method in terms of
attack method surpasses the traditional label gradient-
based attack method in terms of attack success rate and
transferability methods in both black-box attack and
white-box attack scenarios. Additionally, the perturbation
crafted using the feature gradient-based attack method is
smoother and less perceptible. At the same time, four signal
character indicators (ACR, APD, PSR, TR) are used in this
research to measure the distortion and migration rate of
the signal, and these performance indicators outperform
the traditional attack methods. Further, decreasing the
attack disturbance and narrowing the attack range are also
our further research.

Data Availability

The simulation data used to support the findings of this
study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported in part by the National Natural Sci-
ence Foundation of China (Grant No. 62101594, No.
61901520) and the Natural Science Foundation on Frontier
Leading Technology Basic Research Project of Jiangsu under
Grant BK20212001.

References

[1] T. J. OShea, J. Corgan, and T. C. Clancy, “Convolutional radio
modulation recognition networks,” in Engineering Applica-
tions of Neural Networks, C. Jayne and L. Iliadis, Eds.,
pp. 213–226, Springer International Publishing, Cham, 2016.

[2] O. Omotere, J. Fuller, L. Qian, and Z. Han, “Spectrum occu-
pancy prediction in coexisting wireless systems using deep
learning,” in IEEE Vehicular Technology Conference (VTC-
Fall), Chicago, IL, USA, 2018.

[3] M. Sadeghi and E. G. Larsson, “Adversarial attacks on deep-
learning based radio signal classification,” IEEE Wireless Com-
munications Letters, vol. 8, no. 1, pp. 213–216, 2019.

[4] Y. Lin, H. Zhao, X. Ma, T. Ya, and M. Wang, “Adversarial
attacks in modulation recognition with convolutional neural
networks,” IEEE Transactions on Reliability, vol. 70, no. 1,
pp. 389–401, 2021.

[5] R. Bryse Flowers, M. Buehrer, and W. C. Headley, “Evaluating
adversarial evasion attacks in the context of wireless commu-
nications,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 1102–1113, 2020.

[6] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus,
“Over-the-air adversarial attacks on deep learning based mod-
ulation classifier over wireless channels,” in 2020 54th Annual
Conference on Information Sciences and Systems (CISS), Prin-
ceton, NJ, USA, 2020.

[7] L. Gao, Z. Huang, J. Song, Y. Yang, and H. T. Shen, “Push &
pull: transferable adversarial examples with attentive attack,”
IEEE Transactions on Multimedia, vol. 24, pp. 2329–2338,
2021.

[8] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transfer-
able are features in deep neural networks?, I. P. S. Neur, Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K.
Q. Weinberger, Eds., pp. 3320–3328, 2014.

[9] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, “Adversarial
manipulation of deep representations,” ICLR, Y. Bengio and
Y. LeCun, Eds., 2016.

[10] N. Inkawhich, W. Wen, H. H. Li, and Y. Chen, “Feature space
perturbations yield more transferable adversarial examples,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7066–7074, Long Beach, CA,
USA, 2019.

[11] C. S. Weaver, C. A. Cole, R. B. Krumland, andM. L. Miller, The
Automatic Classification of Modulation Types by Pattern Rec-
ognition, 1969.

[12] Z. T. Huang, J. Yang, X. Wang, X. Cui, and F. Y. Wang, “A sur-
vey of modulation recognition algorithms in noncooperative
communication,” Science & Technology Review, vol. 37, no. 4,
pp. 55–62, 2019.

[13] J. L. Xu, W. Su, and M. Zhou, “Likelihood function-based
modulation classification in bandwidth-constrained sensor
networks,” in 2010 International Conference on Networking,
Sensing and Control (ICNSC), Chicago, IL, USA, 2010.

[14] P. Ghasemzadeh, S. Banerjee, M. Hempel, and H. Sharif, “Per-
formance evaluation of feature-based automatic modulation
classification,” in 2018 12th International Conference on Signal
Processing and Communication Systems (ICSPCS), Cairns,
QLD, Australia, 2018.

[15] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the
4th ACM workshop on Security and artificial intelligence,
pp. 43–58, New York, NY, USA, 2011.

[16] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: a survey,” IEEE Access, vol. 6,
pp. 14410–14430, 2018.

[17] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and
S. Pollin, “Deep learning models for wireless signal classifica-
tion with distributed low-cost spectrum sensors,” IEEE Trans-
actions on Cognitive Communications and Networking, vol. 4,
no. 3, pp. 433–445, 2018.

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” 2015,
https://arxiv.org/abs/1409.0473.

[19] S. Chen, Y. Zhang, Z. He, J. Nie, andW. Zhang, “A novel atten-
tion cooperative framework for automatic modulation recog-
nition,” IEEE Access, vol. 8, pp. 15673–15686, 2020.

[20] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 7132–7141, Salt Lake City,
UT, USA, 2018.

[21] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in Proceedings of 2010

14 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1409.0473


IEEE international symposium on circuits and systems,
pp. 253–256, Paris, France, 2010.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] T. N. Sainath, A. W. Senior, O. Vinyals, and H. Sak, “Convolu-
tional, long short-term memory, fully connected deep neural
networks,” 2020, U.S. Patent No. 10, 783,900.

[24] Y. Chen, W. Shao, J. Liu, L. Yu, and Z. Qian, “Automatic mod-
ulation classification scheme based on LSTM with random
erasing and attention mechanism,” IEEE Access, vol. 8,
pp. 154290–154300, 2020.

[25] C. Szegedy,W. Zaremba, I. Sutskever et al., “Intriguing proper-
ties of neural networks,” 2013, https://arxiv.org/abs/1312
.6199.

[26] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” 2014, https://arxiv.org/abs/
1412.6572.

[27] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial
examples in the physical world,” in Artificial intelligence safety
and security, pp. 99–112, Chapman and Hall/CRC, 2018.

[28] Y. Dong, F. Liao, T. Pang et al., “Boosting adversarial attacks
with momentum,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, Salt Lake City, UT,
USA, 2018.

[29] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool:
a simple and accurate method to fool deep neural networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, Las Vegas, NV, USA, 2016.

[30] J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft, “Nesterov
accelerated gradient and scale invariance for adversarial
attacks,” 2019, https://arxiv.org/abs/1908.06281.

[31] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial
machine learning at scale,” 2016, https://arxiv.org/abs/1611
.01236.

[32] N. Carlini and D.Wagner, “Towards evaluating the robustness
of neural networks,” in 2017 IEEE symposium on security and
privacy (sp), San Jose, CA, USA, 2017.

[33] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing
robust adversarial examples,” in International conference on
machine learning, Stockholm, Sweden, 2018.

[34] Y. Lin, H. Zhao, Y. Tu, S. Mao, and Z. Dou, “Threats of adver-
sarial attacks in DNN-based modulation recognition,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communica-
tions, Toronto, ON, Canada, 2020.

[35] A. Jeddi, M. J. Shafiee, M. Karg, C. Scharfenberger, and
A. Wong, “Learn2perturb: an end-to-end feature perturbation
learning to improve adversarial robustness,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 2020.

15Wireless Communications and Mobile Computing

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1908.06281
https://arxiv.org/abs/1611.01236
https://arxiv.org/abs/1611.01236

	Transferable Adversarial Attacks against Automatic Modulation Classifier in Wireless Communications
	1. Introduction
	2. Related Work
	2.1. AMR Model
	2.2. Adversarial Evasion Attack

	3. Transferable Attack Methodology
	3.1. Backgrounds
	3.2. Triplet Loss for Adversarial Attack
	3.3. Basic Ideas
	3.4. Description of Attack Method
	3.5. Feasibility Analysis of Attack Methods

	4. Experiment and Result Analysis
	4.1. Experimental Data Set
	4.2. AMR Model
	4.3. Evaluation Indicators
	4.4. Experimental Result
	4.4.1. Training and Results of Target Model
	4.4.2. White Attack
	4.4.3. Black Attack
	4.4.4. Analysis of the Effectiveness of the Attack


	5. Conclusion and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments



