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Computer vision technology began to affect the development of football. There is increasingly high-tech in football broadcast
technology, and many application tools have emerged in the field of football broadcast video analysis. The purpose of this
paper is to study the improvement of target tracking algorithm for football broadcast video and to study the intelligent
optimization algorithm of 3D tracking technology in football player moving image analysis. This paper proposes to select four
models of YOLOv5 to perform target detection experiments in football broadcast videos and analyzes the principle of the Deep
SORT multitarget tracking algorithm. At the same time, it is based on the 3D tracking and 3D pose estimation of players
based on cross-view correlation matching, and to measure the comprehensive performance of the tracker in the football scene,
experiments are carried out on the accuracy and speed of the tracker under the football datasets of four different scenes. The
experimental results in this paper show that the MOTA values corresponding to the 3D tracking results and 2D projection
results obtained in the campus dataset are only 50 and 56.2. This is much lower than the tracking performance when based on
other similarity matrices. The MOTA value of the obtained tracking result (92.6) is very close and significantly outperforms
other methods. CCOT performs better on datasets 28, 29, 31, and 32, ECO stands out on dataset 38, and Siamese also
performs well on datasets 22 and 36.

1. Introduction

The rapid development of the Internet continues to impact
everything, and the television broadcasting industry is no
exception. With the promotion and dissemination of foot-
ball events and the rapid development of big data, football
broadcasting is becoming increasingly technological in
technology. The broadcast of mainstream football leagues
is trying to integrate various high-tech, such as the use of
3D vision to display the starting players, VAR playback
technology, TrueView technology, and Hawkeye technol-
ogy. Taking the Spanish football league as an example, in
2018, it used a series of industry-leading technologies such
as Skycam, True View 360°, and Mediacoach in event
broadcast and event analysis. However, at present, to realize
these technologies requires large investment, and the use
of manual labor is time-consuming and labor-intensive.

Small- and medium-sized competitions simply cannot sup-
port such expenses.

It needs to meet the high-level semantic analysis require-
ments of related players’ technical action playback, video
summary generation, and so on. These contents need to be
completed through target tracking. At this point, the help
of some auxiliary technologies is needed, such as offside pen-
alty, football goal line technical analysis, and foul behavior
recognition. Therefore, target tracking is the basic task for
most practical applications in football at present, which has
research value in both theory and practice.

The innovations of this paper are as follows: (1) it ana-
lyzes the principle of the Deep SORT multitarget tracking
algorithm and finds that the ID increment of the algorithm
is serious in the football scene. It reduces the ID increment
phenomenon caused by intraclass occlusion by introducing
a trajectory scoring mechanism to the matching stage. The
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experimental results show that the improved algorithm has
an obvious inhibitory effect on the ID increment speed.
(2) This paper introduces and analyzes the theoretical
basis of the correlation filtering algorithm and the Siamese
network algorithm. It decomposes the correlation filter into
multiple simple formulas and forms a network structure,
which is fused into the Siamese network model as a correla-
tion filter layer. It deduces the back-propagation formula of
the relevant filter layer for the training of the network model.
(3) It designs the experimental comparative analysis. To
measure the overall performance of the tracker in football
scenarios, it experiments the tracker in terms of accuracy
and speed under four different scenarios of football datasets.
It selects six representative tracking algorithms for horizontal
comparison and conducts detailed thinking and analysis of
the experimental results.

2. Related Work

The use of 3D eye-tracking systems to measure on-screen
gaze is gaining traction. Stapleton and Koo found the
effectiveness of a biokinetic visibility aid for night cyclists
compared to other configurations in an intersubject blind
experiment using 3D eye-tracking technology [1]. Vision-
based technologies have received increasing attention due
to their label-free and inexpensive configurations. Lee and
Park researched various sensing technologies to locate
workers and equipment on construction sites. They also
proposed an efficient camera calibration method for locating
entities tens of meters away from the camera [2]. In real-
time 3D ball tracking for motion analysis in computer vision
technology, complex algorithms to ensure accuracy can be
time-consuming. On the CPU-GPU platform, Hou et al.
proposed dual-stream system flow thread allocation based
on view priority and reweighting for binary search [3]. The
dual-stream system process allocates tasks that do not have
data dependencies to different streams to process each
frame, realizing parallelism at the system structure level.
Predictive visual attention facilitates adaptation to virtual
museum environments and provides context-aware and
interactive user experiences. Zhou et al. designed a deep
learning model. They also tested using EDVAM to predict
the user’s subsequent visual attention based on previous
eye movements [4]. Human skeleton tracking systems often
have difficulty handling lost tracking. Nguyen et al. proposed
a multiview system for 3D human skeleton tracking based
on multicue fusion [5]. Mendicino et al. aimed to develop
and implement a complete integrated tracking system with
very high accuracy both spatially and temporally per pixel
[6]. In computer vision, tracking humans across camera
views remains challenging. Especially to address these chal-
lenges, Liu et al. proposed a stochastic attribute grammar
model for leveraging complementary and discriminative
human attributes to enhance cross-view tracking [7]. For
complex scenes, there are frequent occlusion, obvious light-
ing changes and other difficulties. In this case, most existing
appearance and geometric cues are not reliable enough to
distinguish humans in the camera view.

3D motion capture systems have been used to validate
commercial electronic performance and tracking systems.
Aughey et al. aimed to determine the effectiveness of the
VisionKit computer vision system for 3D motion capture
in a stadium environment. Experiments show strong agree-
ment between VisionKit and 3D motion capture in every
activity performed [8]. In professional football, almost every
team today uses tracking technology to monitor perfor-
mance during training and games. By tracking data, Goes
et al. can gain valuable insights into how and why tactics
perform in football matches. Each team has about 500 pass
interactions in a game [9]. Dai and Lu studied an improved
bioimage tracking algorithm for athletes’ cervical spine
health under color feedback. Their aim was to propose a
new algorithm to improve the detection and tracking accu-
racy [10]. To assist football training in colleges and universi-
ties, Zhu proposed an edge computing-based football robot
path planning algorithm and an improved PSO (particle
swarm optimization) algorithm [11]. However, after con-
ducting event detection and player tracking experiments
on the dataset, the results show that the existing content can-
not fully solve the task of video analysis and needs to be
improved. However, 3D motion capture cannot be used for
large capture areas, such as full football fields, because many
fragile cameras need to be placed around the capture space
and these cameras lack the proper depth of field.

3. Three-Dimensional Tracking Technology of
Football Images

3.1. Football Video Analysis. A complete football broadcast
video usually consists of various types of shots such as
close-up shots, medium shots, long shots, and off-field shots.
During the game, with the constant switching of the camera,
it can display the game situation on the field, the cheering
situation outside the field, the personal skills of the players,
and the game atmosphere to the audience in an all-round
way [12]. However, these shot switches will greatly affect
the effectiveness of the target tracking algorithm and will
frequently lose the detected player information, resulting in
the continuous growth of IDs in the video. This is not
conducive to accurate player tracking. The fixed three-shot
dataset is shown in Figure 1.

As shown in Figure 1, the ISSIA dataset, which is cap-
tured by a fixed static lens, has a certain degree of limitation
when applied to full football videos. Generally speaking,
there are three main aspects of football video analysis: detec-
tion of football events, detection and tracking of players and
football, and game analysis [13]. Among them, football event
detection is to detect and locate events such as goals, fouls,
red and yellow cards, penalty kicks, and free kicks, also
known as the generation of video summaries. Detecting
and tracking players or the ball is an intuitive representation
of football video. It has to deal with player occlusions, light-
ing changes, and sudden camera movements.

Then, it gets the coach’s tactical changes and adjust-
ments by analyzing the players’ movements and positions
[14]. The content of the game analysis includes players’ run-
ning distance and speed, heat map, ball possession statistics,
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offside detection, team tactics, etc. And the tactical analysis
requires a big-picture view, which can be obtained by look-
ing at the game from the perspective of God. Often the
content displayed in the video is limited by the lens, which
requires drone shooting and dozens of cameras to shoot
without blind spots [15]. In the establishment of the football
dataset, the available datasets mainly focus on a single anno-
tation or a single static scene shot.

3.2. Sports Video 3D Tracking Technology. The field of sports
video analysis is one of the popular branches in the field of
vision technology research. At present, people have used
vision technology in many sports video analysis tasks, such
as tracking of the ball and players in sports videos, action
recognition for individual or team sports, performance scor-
ing of players or teams, and eagle-eye techniques for judging
whether the ball is out of bounds or whether a goal is scored
[16]. Compared with ordinary surveillance video, the rich-
ness and complexity of sports video content bring greater
challenges to the implementation of visual technology. Many
vision-based solutions cannot meet the application demands
of sports video analysis in terms of speed and accuracy. Up
to now, many sports data analysis companies still rely on
manual annotation. Based on the two-dimensional tracking
of players under a single camera, we will further explore
how to achieve three-dimensional tracking of players under
multiple cameras. This helps to further implement more
advanced semantic tasks such as behavior recognition,
motion capture, virtual scene reproduction, player perfor-
mance scoring, and event detection in sports video analysis.

3.3. Improvement of Single Target Tracker. In football games,
players sometimes move faster, while the size of the search
box is fixed in the single-target tracking algorithm. Tracking
failure occurs if the player moves out of the search box [17].
It uses Kalman filtering technology to estimate the position
of the target in the current frame and adjust the position
of the search box, so that the player can be tracked when
the player moves quickly. Next, it needs to update the
covariance matrix P corresponding to Xðk ∣ k − 1Þ:

P k k − 1jð Þ = Ap k − 1 k − 1jð ÞA′ +Q, ð1Þ

where Pðk ∣ k − 1Þ is the covariance matrix corresponding to
Xðk ∣ k − 1Þ, Pðk − 1 ∣ k − 1Þ is the covariance matrix corre-
sponding to Xðk − 1 ∣ k − 1Þ, A′ represents the transpose
matrix of A, and Q is the covariance matrix of the system
process.

After it has the predicted result, it needs to perform the
optimal estimation in the next step. The optimal estimation
should be performed by combining the predicted value and
the measured value:

X k kjð Þ = X k k − 1jð Þ + kg kð Þ Z kð Þ −HX k k − 1jð Þð Þ, ð2Þ

where KgðkÞ is the Kalman gain:

Kg kð Þ = P k k − 1jð ÞH‘

HP k k − 1jð ÞH‘ + R
: ð3Þ

Now that the optimal estimate has been obtained, the
covariance matrix needs to be updated, and the algorithm
can run autoregressively:

P k kjð Þ = I − Kg kð ÞHp k k − 1jð Þ, ð4Þ

where I is the identity matrix. When the system enters the
k + 1 state, Pðkl ∣ kÞ is Pðk ∣ k − 1Þ by formula (1), and the
algorithm can run autoregressively.

3.4. Feature Extraction of Players in Football Videos. To
effectively distinguish football from other goals on the pitch,
it is necessary to select appropriate features to describe the
football goals. According to the observation, it can be found
that the color of the football target is usually single, so the
color feature can be used to describe the football target
[18]. At the same time, considering that the Histogram of
Oriented Gradient (HOG) feature describes the edge infor-
mation of the image from the local image patch, it can
effectively describe the shape and edge of the football target
and distinguish the football from the target with similar
color. This section first introduces the color feature and
HOG feature extraction method of football.

3.4.1. Color Feature Extraction. Commonly used color
models include RGB color model, HSI color model, etc.
The color of the soccer goal is usually stable as a single color
in the game video, and the brightness change is not obvious.
To reduce computation, the color features of soccer goals are
extracted in RGB space [19]. To reduce the amount of calcu-
lation, it quantizes the grayscales of the three color channels
R, G, and B of the image to U level, respectively, and defines
the quantization function:

b lið Þ: R2 ⟶ 1, 2,⋯,Uf g: ð5Þ

Figure 1: Fixed three-shot dataset.
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The grayscale values of the three color channels at Ii
are, respectively, mapped to U quantization levels. Then,
the single-color channel grayscale distribution of the target
area is

PN = PM
N

� �
, u = 1, 2,⋯,U , ð6Þ

where N = fR,G, Bg represents each color channel and the
value of the u-th interval is calculated according to for-
mula (7):

PM
N = 〠

M

i=1
k

lc − li
h

����

����

� �
σ b lið Þ − u½ �, ð7Þ

where kð·Þ is the kernel function, which adopts the Gaussian
kernel function, so that the pixel gray level near the center
position in the target area obtains a larger weight. h repre-
sents the nuclear window width. For objects with a rectangu-
lar area, h takes half the length of the area’s diagonal. The role
of the delta function is to determine whether the gray value of
I in the target area falls within the uth interval. As shown in
formula (8), it connects the gray distributions of the three
color channels and normalizes them to obtain the target color
feature:

Pcolor = C ∗ PR, PG, PBf g = P Mð Þ
n o

,m = 1, 2,⋯, 3U , ð8Þ

where C represents the normalization coefficient, and the
calculation formula is as follows:

C = 1
3 ∗∑M

i=1k l − lið Þ/hð Þ
: ð9Þ

When only the color feature is used to characterize the
target area, the part of the rectangular area beyond the edge
of the target of interest is also considered. When the propor-
tion of this part increases, it has a greater impact on the fea-
ture extraction results [20]. The color features are weighted
by Gaussian with the position information, and the pixels
close to the center of the target area are given large weights.
The regions far from the center of the target region are
assigned small weights, which weakens the influence of non-
target parts on feature extraction.

3.4.2. HOG Feature Extraction. For each pixel in the image
area, it calculates the horizontal and vertical gradients at that
point. The horizontal gradient and vertical gradient calcula-
tion methods of the image include orthogonal gradient oper-
ator, Roberts operator, Sobel operator, and Prewitt operator.
Experiments show that large templates and smoothing oper-
ations will reduce the performance of feature description. In
this paper, the central orthogonal gradient operator is used,
and the horizontal gradient and vertical gradient are calcu-
lated as follows:

Gx x, yð Þ = I x + 1, yð Þ − I x − 1, yð Þ, ð10Þ

Gy x, yð Þ = I x, y + 1ð Þ − I x, y − 1ð Þ: ð11Þ
In formula (10) and formula (11), Iðx, yÞ represents

the gray value at ðx, yÞ; then, the modulus value and direc-
tion of the directional gradient at the ðx, yÞ point can be
expressed as

p x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x x, yð Þ + G2

y x, yð Þ
q

,

θ x, yð Þ = arctan
Gy x, yð Þ
Gx x, yð Þ :

ð12Þ

3.5. Multitarget Tracking Algorithm. For the multitarget
tracking problem, the current common tracking-by-
detection is to associate the unreliable target detection
results with the existing trackers. Deep SORT (Simple
Online And Realtime Tracking) is a typical hybrid algo-
rithm framework combining deep learning and traditional
methods in the field of multitarget tracking and achieves a
relatively stable tracking effect.

3.5.1. Deep SORT Multitarget Tracking Algorithm. Deep
SORT starts from an input video stream and first achieves
object detection by executing an object detection algorithm
(YOLOv5). It converts the box obtained by the detector into
detections and then uses Deep SORT to implement tracking
based on the detection results, as shown in Figure 2.

As shown in Figure 2, this design can better optimize the
detector or tracker to a certain extent for the tracking effect
and can basically achieve the effect of real-time tracking. The
speed can be adjusted according to the scale of Re-ID.

The algorithm input of the multitarget tracking stage is
the target frame information detected by YOLOv5. It per-
forms Kalman filter trajectory prediction based on the input
detection frame and then uses the Hungarian algorithm to
perform cascade matching or IOU matching between the
predicted prediction frame and the detection frame detected
in the current frame. The successful matching is the tracking
success, and finally, it uses the Kalman filter to update.

For the association of motion information, it uses the
square of the Mahalanobis distance between the prediction
result of the Kalman filter and the new detection result for
data association. Its calculation formula is as follows:

d 1ð Þ i, jð Þ = dj − yi
� 	TS−1i dj − yi

� 	
: ð13Þ

For the four-dimensional measurement space, the 0.95th
quantile of the chi-square distribution was used as the corre-
sponding Mahalanobis distance threshold.

It updates this list after each match, such as removing
some target feature sets that have been moved out of the
shot, keeping the newest features, and deleting the old ones.
It computes all appearance description feature vectors
tracked by the i-th object based on the Re-ID. Its calculation
formula is as follows:

d 2ð Þ =min 1 − rTj r
ið Þ
k r ið Þ

k ∈ Ri





n o

: ð14Þ
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The cosine distance threshold is obtained in advance
from the training set. If the cosine distance is less than the
preset threshold, it is considered that the detection frame
and the tracking frame are successfully associated. The final
measure of the matching process is a linear weighting of the
two measures, as shown in

= λd 1ð Þ i, jð Þ + 1 − λð Þd 2ð Þ i, jð Þ: ð15Þ

When parameter Ci,j belongs to the intersection of the
two metric thresholds, it is considered that the two have
completed the association matching. In the experiment, we
try to set λ to 0 and only use the appearance information
because the camera motion of the football video is too large.

Finally, the update stage of Kalman filter updates the
mean square error and saves the feature map of the detector.
The update phase is accompanied by state transitions, as
shown in Figure 3.

As shown in Figure 3, both the detection frame and the
prediction frame are in an uncertain state when they first
enter the matching module. Then, after several matches, if
the number of successful matches is greater than n_init,
the trajectory will be converted from the initial indetermi-
nate state to the deterministic state. If the detection frame
has not been matched, it will directly enter the deletion state.
Deep-in-Deep SORT refers to the introduced Re-ID model,
as shown in Figure 4.

As shown in Figure 4, this is a deep model that extracts
the target appearance information, and the model finally
outputs a 128-dimensional vector. In the current situation,
it seems that the effect of appearance features in Deep SORT
tracking is not obvious.

3.5.2. Improvement Strategy Based on Deep SORT. From a
common intuition, detection and tracking are two comple-
mentary problems, but the detection results are not always
reliable. In crowded scenes, pose changes and occlusions
often lead to detection failures, such as false detection,
missed detection, and inaccurate boundaries. However,
Deep SORT does not consider the problem of unreliable
detection, and it directly deletes the trajectories that have
not been successfully matched. The target association pro-
cess is shown in Figure 5.

As shown in Figure 5, to handle unreliable detection in
online mode, it extends traditional detection tracking by
collecting candidates from the outputs of detection and

tracking. However, combining the outputs of detection and
tracking leads to an excess of candidates. Therefore, it cre-
ates a Regionalization-based Fully Convolutional Neural
Network (R-FCN) classifier that classifies candidate results
in terms of space. Each classified candidate region is defined
as a region of interest (RoI). To explicitly embed spatial
information into the score map, it divides an RoI into
k ∗ kunits. Each unit represents the spatial location informa-
tion of the object, and each score map corresponds to this
unit. During training, the ground truth values are randomly
sampled as positive samples, and the same number of RoIs
is taken from the background as negative samples.

It only uses the information of the last track to formulate
the confidence of the track. It defines Rdetection as the detec-
tion result value associated with the trajectory and Rtrack as
the tracking prediction value after the last detection associa-
tion was successful. The definition of tracking trajectory
confidence is as follows:

contrk = max 1 − log 1 + αRtrack, 0ð Þð · Rdetection ≥ 2ð Þ · μ,
P = p y B, xjð Þ · μ x ∈ Cdetð Þð Þ + contrackμ x ∈ Ctrackð Þ,

ð16Þ

where Cdet represents the detected candidate, Ctrack repre-
sents the candidate from the tracking output, and contrack
ranges from 0 to 1, which represents the penalized candidate
in the uncertain trajectory. It finally filters out reasonable
candidate targets according to nonmaximum suppression
and obtains updated confidence.

3.6. Evaluation Criteria. The evaluation indicators of the
tracker mainly include two aspects: speed and accuracy. In
terms of speed, it uses frames per second (FPS) to evaluate
the tracker, reflecting the real-time performance of the
tracker. The evaluation of accuracy is more diversified, and
the commonly used evaluation standards for image tracking
are as follows: (1) center error, that is, the Euclidean distance
between the tracking result position and the center of the
standard position. However, this method has shortcomings,
one is that it cannot measure the influence of the change of
the target scale, and the other is that the definition of the
center position of the target is not very accurate. (2) Regional
overlap ratio, that is, the intersection ratio between the
tracking result and the standard target frame, which gener-
ally uses the overlap of valid frames as an average. (3)

Train Difference
Detector 

YOLOV5 Detection

DeepSort

Kalman
Predict

Mahalanobis
distance

Deep
Appearance
Descriptor

Hungarian
assignment

Association
metrics 

Input Video Sequence Object Detection
Muti-object Tracking

Figure 2: Principle of Deep SORT.

5Wireless Communications and Mobile Computing



Tracking length, which is the number of frames from the
start of tracking until the center error drops below the
threshold. (4) Tracking failure rate, that is, the center error
is greater than a certain threshold or the area overlap rate
is less than a certain threshold, and the tracking failure rate
is determined.

In the process of football video tracking, different
trackers may produce two situations. One is that the tracking

does not cause loss; that is, the target player can be located in
each frame, but the area overlap is not high. The second is
that the tracking loss is more serious, but the overlapping
degree is high in the correct number of frames being tracked.
To take into account the performance of the tracker in both
cases, it adopts two indicators of accuracy and robustness to
evaluate the tracker. Moreover, among several accuracy indi-
cators of image tracking, the correlation between accuracy

Delete state Deterministic

Indeterminate state

Initialization

No detection matched Hits > n_init matches
successfully n init times 

Time since update > max age
unmatched successful max age times

Figure 3: Three state transitions.

Extract features

Re-ID Embeddings

Figure 4: Re-ID model.
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c
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C
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New New

Disappear

K frame

T frame detection target

K+1 frame

K+1 frame detection target

Association

Figure 5: Target association process.
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and robustness is the weakest, which can comprehensively
reflect the performance of a tracker. Accuracy is used to eval-
uate whether the tracking results are accurate. The higher the
value, the higher the accuracy. The accuracy is borrowed from
the definition of the area overlap ratio, as shown in

Accuracy = 1
Nvalid

〠
Nvalid

i=1
φ ið Þ, ð17Þ

where Nvalid represents the number of valid frames and ðiÞ
represents the tracker’s accuracy on the i-th frame in the k
-th repetition. Each tracker runs repeatedly in a sequence.
φðiÞ is defined as

φ ið Þ = 1
Nrep

〠
Nrep

k=1
φ i, kð Þ, ð18Þ

where Nrep is the number of repetitions and φði, kÞ is the
intersection ratio, as shown in

φ t, kð Þ = At i, kð Þ ∩ Agt i, kð Þ
At i, kð Þ ∪ Agt i, kð Þ , ð19Þ

whereAt represents the result box output by the tracking algo-
rithm and Agt represents the standard box in groundtruth.
Robustness is used to evaluate the stability of the tracker,
which represents the proportion of tracking failures in multi-
ple tracking results. The larger the value, the worse the stabil-
ity. Here, we use FðkÞ to denote the number of times the
tracker fails to track in the k-th repetition. Robustness is
defined as

Robustness = 1
Nrep

〠
Nrep

k=1
F kð Þ: ð20Þ

Tracking failure means that the overlap between the
tracker output and the area of the standard box is 0.

4. Algorithm Research in 3D Tracking Image
Analysis of Football Players

4.1. Player 3D Tracking and 3D Pose Estimation Based on
Cross-View Correlation Matching

4.1.1. 2D Detection, Tracking, and 2D Pose Estimation of
Players. Technologies such as visual object detection, track-
ing, and human pose estimation have developed rapidly in
recent years. This chapter looks at the players in sports
videos as the application of these techniques. First, it uses
the proposed multitarget tracking method based on the con-
text graph model to obtain the two-dimensional tracking
trajectory of the player (the player detection result is pro-
vided by the ground truth). It then uses the CPN pose estima-
tion method to estimate the 2D pose of the players in each
tracking box on the trajectory. In this way, the two-
dimensional trajectory information and two-dimensional atti-

tude information of the players in each camera plane can be
obtained. This facilitates further implementation of cross-
view player matching, 3D pose estimation, and 3D tracking.

4.1.2. Cross-View Player Association Matching. The main
task of this section is to obtain the two-dimensional trajec-
tory and attitude information of players in each camera
plane based on the previous section. It combines epipolar
geometry constraints and depth appearance features for each
player to match players across camera perspectives.

Inspired by this, this section intends to build a cross-
view player relationship graph with players on each camera
plane as nodes (player appearance features as node features)
and connections of players on different camera planes as
edges. It uses a multilayer graph convolutional neural net-
work to supervise and learn the similarity relationship
between each node (player) in the graph. The cross-view
player appearance similarity learned based on the graphical
model is more robust and discriminative than the similarity
obtained directly by calculating the cosine distance. The
cross-view player appearance similarity learning based on
the graph model is shown in Figure 6.

As shown in Figure 6, it assumes that the multiview
scene contains a total of 3 camera views and 3 target players.
Among them, 3, 2, and 3 players can be seen in cameras 1, 2,
and 3, respectively. After 2D detection and tracking of
players in each camera plane, it renumbers all players. Then,
it builds the graph with these 8 players as nodes. Each node
is represented by the player’s appearance feature vector
(here, a pretrained Re-ID model is used to extract its appear-
ance feature for each player). The edges in the graph repre-
sent connections between players. It should be pointed out
that there is only connection between players located on dif-
ferent camera planes, and there is no connection between
players on the same camera plane. Next, it introduces a
graph convolutional neural network and uses it for similarity
learning between players.

4.1.3. 3D Pose Estimation and 3D Tracking of Players. Two-
dimensional tracking ID2D of players in each camera plane
and cross-camera player matching results are obtained. In
fact, the correlation matching of each player in time and
space is completed, respectively. Next, this section will fur-
ther implement 3D pose estimation and 3D tracking of
players. On the one hand, for the cross-camera player
matching group obtained by correlation matching in space,
the three-dimensional pose information of each group of
players can be obtained by using the triangulation algorithm
or the 3DPS algorithm, respectively. On the other hand,
combined with the two-dimensional tracking ID2D and
cross-camera matching, according to the algorithm, the cor-
relation matching of each player in the three-dimensional
space can be realized naturally.

4.2. Experimental Results of Player 3D Tracking and 3D Pose
Estimation. Since the two core problems mainly solved in
this chapter are 3D pose estimation and 3D multitarget
tracking, the experiments in this chapter will also be carried
out on these two tasks, respectively.
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4.2.1. Experimental Results of 3D Pose Estimation. The
results obtained by each 3D pose estimation method in the
campus dataset are shown in Table 1.

Table 1 shows the improvement effect of the method
proposed in this chapter. Since the improvement of the
method in this chapter is mainly reflected in the two cross-
camera matching similarities (geometric similarity and
appearance similarity), several sets of comparative experi-
ments are mainly conducted for different similarities.

4.2.2. 3D Tracking Results. This chapter also projects the 3D
tracking results back into each 2D camera plane to further
verify the tracking effect. The comparison of the 3D tracking
results of players in the APIDIS dataset is shown in Table 2.

As shown in Table 2, it can be seen from the comparison
results that no matter in the 3D space or in the 2D camera
plane, the tracking results obtained by the method based
on the improved similarity matrix are clearly better than
the tracking method based on the improved similarity. Espe-
cially for the appearance similarity, the original method
based on the simple cosine similarity measure is almost dif-
ficult to complete the target matching across perspectives.
The method based on graph model similarity metric learn-
ing proposed in this chapter can significantly improve the
tracking effect. The comparison of pedestrian 3D tracking
results in the campus dataset is shown in Table 3.

As shown in Table 3, when the cross-view similarity
matrix is A, the MOTA values corresponding to the 3D
tracking results and 2D projection results obtained by this
method in the campus dataset are only 50 and 56.2. This is
much lower than the tracking performance when based on
other similarity matrices. The MOTA value of the obtained
tracking result (92.6) is very close and significantly outper-
forms the other methods. Similarly, the improvement effects
of the methods proposed in this chapter are similar to the
campus dataset. It is worth mentioning that geometric sim-
ilarity performs better on the campus dataset. The main
reason for this is that the campus dataset contains only 3
people, so it is easy to distinguish. While the APIDIS dataset
includes up to 10 individuals, the discriminativeness of geo-
metric similarity decreases compared to the campus dataset,
which includes only 3 individuals.

4.3. Motion Recognition Algorithm for Football Players. In
the previous two chapters, the extraction and processing of
features, that is, the tracking algorithm of Siamese-

correlation filter fusion, were introduced. In this chapter,
to test its comprehensive performance, after introducing
the football tracking dataset and tracking evaluation indica-
tors, it conducts experiments and compares it with other
existing trackers.

The specific data are shown in Table 4.
As shown in Table 4, the dataset divides football videos into

four scenes according to the different environments of the tar-
get players, namely, unoccluded scenes, occlusion scenes of
players in the same team, occlusion scenes of players from dif-
ferent teams, and mixed dense scenes. The dataset contains a
total of 80 video sequences and a total of 19908 video images.
The resolution of each frame image is 624∗352. Player posi-
tions for each video sequence are represented in the text file
groundtruth.txt. The first line in the text represents the start
frame number and the end frame number of the tracking
sequence, and each subsequent line represents the rectangular
box position of the tracking target, which is represented by a
quadruple (x, y, width, height). The number of occlusions in
a single video sequence in the dataset ranges from 1 to 7 times.
Occlusion can be divided into complete occlusion and partial
occlusion according to the degree of occlusion.

4.4. Comparative Analysis of Tracking Accuracy

4.4.1. Experimental Environment. The hardware environ-
ment is as follows: Intel Core CPU i7 @ 2.8GHz and
MEM 16G. The operating system used is macOS 10.14.4.
The programming tools used are PyCharm 2017.1.4 and
MATLAB R2017a.

4.4.2. Contrast Tracker. In the experimental part, in addition
to the SiamCF (Siamese and correlation filter tracker) pro-
posed in this paper, six tracking algorithms are selected for
comparison. These six algorithms are all tracking algorithms
for general fields. To reflect the performance differences of
trackers of different methods, the algorithms selected in this
comparative experiment include deep learning algorithm,
correlation filtering algorithm, and Siamese network algo-
rithm. The six tracking algorithms are DLT algorithm,
MOSSE algorithm, KCF algorithm, CCOT algorithm, ECO
algorithm, and Siamese algorithm. The DLT algorithm
belongs to the deep learning algorithm; MOSSE, KCF,
CCOT, and ECO belong to the correlation filtering algo-
rithm; and Siamese belongs to the twin network algorithm.
To avoid the influence of different experimental parameters,
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Figure 6: Cross-view player appearance similarity learning based on graph model.
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it tries to keep the related parameters in different algorithms
consistent, and the parameters of the same algorithm in dif-
ferent scenarios remain unchanged.

4.4.3. Tracking in Four Different Scenarios

(1) Unobstructed Scene. An unobstructed scenario is one
where there are no other players around the tracked target
player. This scene is the simplest set of scenes in a football

video. However, in an unobstructed scene, the target player
usually has a faster speed and a larger shape change.
Although the ability to discriminate between the target and
the background is not high, the tracker needs to respond
in time to the changes of the object. The accuracy of the
tracker in this scenario is shown in Figure 7.

It can be seen from Figure 7 that the KCF, CCOT, ECO,
Siamese, and SiamCF algorithms can handle unoccluded
scenes well and have good performance in accuracy. The

Table 1: Comparison of player 3D pose estimation results in campus dataset.

Player 1 Player 1 Player 1 Average value

Geometric similarity
69.18 87.57 94.06 83.60

89.18 79.89 94.78 87.95

Appearance similarity
83.47 53.23 40.07 58.92

89.18 80.53 87.10 85.60

True similarity 90.00 87.57 94.78 90.78

Geometry + appearance 90.82 79.89 94.79 88.50

Table 2: Comparison of player 3D tracking results in APIDIS dataset.

Similarity type
3D 2D

MOTA FP FN FM MOTA FP FN FM

Geometric similarity
73.6 1952 1993 111 86.6 1456 2586 633

74. l 1364 2512 426 87.9 2047 1798 251

Appearance similarity
-46.5 8171 13510 572 11.8 8443 15336 3845

76.4 1576 1946 305 88.7 1579 1938 523

True similarity 79.1 1402 1729 228 89.0 1647 1828 391

Geometry + appearance 100 0 0 0 92.6 FP 1133 227

Table 3: Comparison of player 3D tracking results in campus dataset.

Similarity type
3D 2D

MOTA FP FN FM MOTA FP FN FM

Geometric similarity
89.8 19 19 6 92.6 45 38 16

96.5 1 12 8 96.2 8 34 22

Appearance similarity
50 31 156 24 56.2 52 420 73

84.8 25 27 10 91.1 40 39 26

True similarity 89.6 19 20 7 92.1 45 41 19

Geometry + appearance 100 0 0 4 99.4 7 0 12

Table 4: Soccer dataset distribution.

Serial number Scenes Video sequence number Number of video sequences Frame number

1 Unobstructed scene 1-20 20 5385

2 Teammates block the scene 21-40 20 3954

3 Players from different teams block the scene 41-60 20 5060

4 Mixed dense scenes 61-80 20 5509

Total Scenes Video sequence number 80 19908
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performance of DLT and MOSSE is less stable, and DLT
completely loses the target in dataset 7 and dataset 18.
SiamCF can achieve more than 80 accuracies on 9 datasets.
Compared with the separate correlation filter ECO and the
Siamese network Siamese algorithm, it shows high accuracy.

(2) Players on the Same Team Block the Scene. Teammate
occlusion scenarios are very challenging scenarios. Players
on the same team often have the same jersey and have very
similar characteristics under long-range lenses. This is easy
to cause a tracking drift, and once the tracking drifts to a
player on the same team, it is often difficult to retrieve it.
This scenario requires the tracker to have a strong ability
to discriminate the subtle features of the tracked target and
to have a strong error correction capability for the drifted
target, so that the tracker can relocate after drifting. The
accuracy of the tracker in this scenario is shown in Figure 8.

As can be seen from Figure 8, CCOT, ECO, Siamese, and
SiamCF outperform the other three trackers in accuracy.
Among them, CCOT performs better on datasets 28, 29,
31, and 32. ECO performed well on dataset 38, and Siamese
also performed well on datasets 22 and 36. Overall, SiamCF
outperforms other algorithms in comprehensive perfor-
mance and in most dataset scenarios. For example, on data-
set 37, other trackers have more or less offset.

(3) Players from Different Teams Block the Scene. The occlu-
sion scene of different team players is the most common
scene in football videos. Players from different teams are
highly confrontational and prone to conflict. One or more
players from different teams often appear around the target
player. Players from different teams have different uniforms
and have large differences in characteristics, which are easier
to discriminate than players on the same team. However,
due to the high probability of occlusion by players from
different teams and many video sequences, the tracking

accuracy in this scene has a greater impact on the final track-
ing accuracy. The accuracy of the tracker in this scenario is
shown in Figure 9.

It can be seen from Figure 9 that the occlusion of players
from different teams is easier to discriminate than the occlu-
sion of players from the same team. However, on dataset 50,
the accuracy of all trackers is not high due to the situation
where the target player is completely occluded. After the
occlusion is over, all trackers have tracking drift phenome-
non. However, continue to track, it is found that SiamCF is
able to relocate to the target player after tracking drift due
to the introduction of the tracking result correction strategy.
Overall, SiamCF has the best accuracy performance on 10
datasets, and its comprehensive performance is better than
other trackers. Secondly, CCOT’s performance in accuracy
is also very good and better than the Siamese network algo-
rithm. The performance of the KCF algorithm is very unsta-
ble, and the accuracy is high when the tracking is correct, but
the drift is serious.

(4) Mixed Dense Scenes. Mixed-intensive scenarios usually
occur when the confrontation is very intense, such as scoring
a penalty area or a free kick in the front court. In this scene,
the tracking target will change drastically whether it is
occluded or deformed, such as alternative occlusion by
players of the same team and different teams and players
falling. Robust performance of the tracker in this scenario
is a very big challenge. The accuracy of the tracker in this
scenario is shown in Figure 10.

As can be seen from Figure 10, the tracker exhibits lower
accuracy values on many datasets. In dataset 64, the accu-
racy values of CCOT and ECO are lower than 50, and the
tracking accuracy is very low. SiamCF accuracy values per-
form better than the rest of the trackers. KCF performs best
on datasets 61, 68, and 80 but is unstable. It is almost at the
bottom of datasets 74, 79, etc. Siamese is more prominent on
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Figure 7: Tracking accuracy in unobstructed scene.
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63, 65, 71, and 76. SiamCF has the best performance on 11
datasets and far outperforms other trackers in the accuracy
of this scene. Especially on dataset 66, the deformation and
occlusion of the target player are serious, and SiamCF still
does not lose the target.

4.5. Comparative Analysis of Tracking Speed. In terms of
temporal performance, the average frame rate (FPS) is used
as the evaluation index, indicating the number of video
frames that can be tracked per second. According to their
performance in time performance, the order is MOSSE>
KCF>DLT> Siamese>ECO> SiamCF>CCOT. When the
FPS of the tracker exceeds 20 frames, the tracker can be con-
sidered to meet the real-time requirements. From this point
of view, except MOSSE and KCF, the other trackers do not

meet the real-time requirements. The average frame rate of
each tracker is shown in Table 5.

As shown in Table 5, the MOSSE algorithm has the fast-
est tracking speed because it only extracts a traditional single
feature, and the convolution operation in the correlation fil-
ter is converted to the frequency domain through Fourier
transform to perform point multiplication, and no other
redundant operations are caused. Although KCF introduces
a variety of features and tracks in high-dimensional space, its
method of constructing samples using circulant matrices
greatly reduces the amount of sample computation. The cal-
culation of all samples can be completed by only calculating
one generated sample, which is also very prominent in frame
rate performance. CCOT introduces multifeature fusion
including deep features, and extending the features to the

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19

A
cc

ur
ac

y

Dataset number

DLT MOSSE
KCF CCOT

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19

A
cc

ur
ac

y

Dataset number

ECO
Siamese
SiamCF

Figure 8: Tracking accuracy in the scene of teammate occlusion.
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continuous domain increases the computational load. Accu-
racy has improved, but framerate drops are noticeable. ECO
performs acceleration operations such as dimension reduc-
tion and sample clustering on the basis of CCOT, and the
frame rate performance is better. Siamese is a Siamese
network tracker, and its two input branches perform two
feature extraction operations on the template image and
the detection image, respectively, which increases its compu-
tational load, and its speed decreases compared to the
standard network model DLT tracker. SiamCF combines
correlation filtering and Siamese network, adding filter
layers to the Siamese network. Although it performs the best
in terms of accuracy and robustness, the tracker does not
perform as well as a single Siamese network or correlation
filtering algorithm in terms of average frame rate due to
the introduction of a new amount of computation.

5. Conclusions

This paper compares and analyzes the tracking results and
time performance experiments of multiple trackers. In addi-
tion to the tracking algorithm proposed in this paper, it also
selects six other comparison algorithms. Tracking experi-
ments were conducted under four different scenarios in
football videos. It explains the characteristics of these four

scenarios, respectively, analyzes the various performances
of different trackers in these four scenarios, and compares
these trackers in terms of time performance. Experimental
results show that different trackers perform differently in
different scenarios. However, in general, SiamCF integrates
correlation filtering and Siamese network structure and
makes improvements to the characteristics of the football
field. It has the highest average accuracy and average robust-
ness and average frame rate performance under the current
football dataset. The speed of SiamCF does not meet the
requirements of real-time performance, and it is stretched
in real-time tracking scenarios. Due to a series of operations
such as extraction of multiple sets of features, feature conti-
nuity, dimensionality reduction, correlation, filtering, and
fusion of twin networks, the tracking algorithm has a large
amount of computation, which affects the tracking speed.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by "The 13th 5-year Plan" of the
Chinese National Education Science Program (ELA170479)
which is "The construction of the dynamic mechanism
model for the development of new campus football for Chi-
nese teenagers."

1 3 5 7 9 11 13 15 17 19
Dataset number

DLT MOSSE
KCF CCOT

1 3 5 7 9 11 13 15 17 19
Dataset number

ECO
Siamese
SiamCF

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y

Figure 10: Tracking accuracy in mixed dense scenes.

Table 5: Tracker average frame rate.

Tracker Average frame rate (FPS)

DLT 7.31

MOSSE 169.9

KCF 134.72

CCOT 0.95

ECO 3.37

Siamese 6.28

SiamCF 1.69
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