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When it comes to studies on smart receiver designs, using machine learning and deep learning techniques for the development of
automatic modulation classifiers as well as demodulators which require little to no information about the transmitted signal or the
channel state is an area of interest. Through this study, we have proposed a combined classifier-demodulator system that is
entirely deep learning-based and one that is focused on higher-order quadrature amplitude modulation (QAM) schemes such
as 64QAM and 256QAM that can be used in next-generation mobile technologies. The system was developed by training a
bidirectional long-short-term memory (BiLSTM) and long-short-term memory (LSTM) network for the classifier and
demodulator, respectively, using randomly generated data, demodulated using binary phase shift keying (BPSK), quadrature
phase shift keying (QPSK), 16QAM, 64QAM, and 256QAM transmitted through a simulated additive white Gaussian noise
(AWGN) channel of varying signal to noise ratio (SNR) levels. The classifier was then tested for its prediction accuracy while
the demodulator models were tested against traditional mathematical models while calculating the effective capacity. The
results showcased that the classifier worked extremely well for the QAM schemes across all SNR levels and less so with the
PSK models. Considering the demodulator models’ performance, all schemes except the 256QAM demodulator were able to
reach a zero or near zero bit error rate (BER) level within minimum acceptable SNR ranges.

1. Introduction

Communications technologies of the future will work in
extremely noisy and dynamic radio spectrum environments
where, in a given situation, the exact status of the environ-
ment is unknown or hard to discern. In the of designing
smart receivers, two areas that get widespread attention are
automatic modulation classification and demodulation.
Deep learning provides promising performance when in
the above areas due to its ability to work with data that
would otherwise require complex feature engineering and
because they can be trained using large synthetically gener-
ated datasets which can be easily produced in the communi-
cations sphere [1].

1.1. Demodulation. Traditional demodulators are designed
for theoretical additive white Gaussian noise (AWGN) chan-

nels. Both channel state information and channel noise dis-
tribution are required at the same time [2]. Since the channel
model is not known at the receiver, designing an optimum
demodulator for each channel model is challenging. Fang
and Wu [3] state that the traditional method of demodula-
tion uses an equalizer to equalize multipath effects and inter-
symbol interference before signal detection which increases
the overall computational complexity and causes wastage
of frequency resources. Furthermore, any demodulation type
is highly challenged by the noise condition and fading effects
caused in the path from the transmitter to the receiver.

Previous research conducted by Wang et al. [4] investi-
gated deep learning-enabled signal demodulation methods
including deep belief network (DBN), support vector
machine (SVM), Adaptive Boosting (AdaBoost), and a com-
bination of DBN-SVM. Apart from that, they introduced the
first open dataset of real modulated signals instead of
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synthetic data. The information which is binary phase shift
keying (BPSK) or M–quadrature amplitude modulation
(M-QAM) modulated could be demodulated at the receiver
by these models.

Fang and Wu [3] applied the existing deep learning
methods of DBN and stacked autoencoder (SAE) for signal
demodulation. Apart from that, they also introduced a novel
deep learning method named twice training network (TTN)
with a lower computational complexity compared to SAE
and DBN methods. The models were proposed for binary
phase shift keying (BPSK). Further showed that all the other
methods except the maximum likelihood method can be
used without channel equalization in a multipath channel.

Mohammad et al. [5] compare the performance of the
deep convolutional neural network (DCNN) with other
machine learning classifiers such as support vector machine,
linear discriminant analysis (LDA), multilayer perception
(MLP), and quadrature discriminant analysis (QDA).
Demodulation was performed for a Rayleigh-faded wireless
data signal.

Wu [6] combines the ability of convolutional neural net-
work (CNN) to extract features and recurrent neural net-
work’s (RNN) ability to time series modeling. They
simulated frequency shift keying (FSK), phase shift keying
(PSK), quadrature amplitude modulation (QAM) demodu-
lation over an additive white Gaussian noise (AWGN) and
Raleigh fading channel.

Experimental results of Ma et al. [7] prove that AdaBoost
short for Adaptive Boosting is the best model out of CNN,
DBN, and AdaBoost models for visible light
communication(VLC).

However, no research has been done on producing
demodulators using an LSTM network. Hence, this is the
first research that produced a demodulator using an LSTM
network.

1.2. Modulation Classification. The current method for deal-
ing with unknown modulation schemes at the receiver end is
to use multiple demodulators in parallel which leads to a
wastage of both power and hardware resources [8]. Accord-
ing to Jolly et al. [9], automatic modulation classification in
the early days was done by creating hand-crafted features
from raw temporal signals like statistical moment classifiers
and square law classifiers. These were mostly based on like-
lihood and features and were limited to specific modulation
schemes and signal to noise ratio levels.

The main motivation behind the development of modu-
lation classifiers is to facilitate the accurate demodulation of
signals without prior knowledge of their state at transmis-
sion [10]. Studies conducted by O’Shea and Hoydis [11]
and Kulgod et al. [8] introduced modulation classifiers based
on convolutional neural networks (CNNs). Furthermore,
Kulgod et al. followed two approaches training over both
positive and negative signal-to-noise ratios (SNRs) and
training over positive SNRs only. Hence, they experimen-
tally proved that the model trained for positive SNRs has
higher peak accuracy. However, the other model performs
better at low SNRs.

Tekbıyık et al. proposed an interesting approach where a
multitier deep learning network for modulation classifica-
tion with the first tier recognizes the general modulation
family (Analog, FSK, QAM, etc.) and then passes on the data
to the second tier to identify the specific scheme (BPSK,
QPSK, 64QAM, etc.) [12].

Besides them, multiple other types of research have been
done based on the topic [9, 13–15] and all of them reached
an accuracy of around 80% alone with considerable com-
plexity. However, neither of them tried an LSTM network
for the purpose.

1.3. Motivation and Contributions. Adaptive modulation
and coding allow for the selection of a modulation scheme
that provides the highest throughput and spectral efficiency
for a given channel state which includes selecting a higher
order scheme when higher bits per symbol rate are required
as well as reverting to a lower order scheme when a high
level of noise is present [16]. Our research will focus on
developing a system that can receive and demodulate sig-
nals transmitted using adaptive modulation with no chan-
nel state information or indication from the transmitting
device.

Hence, the main contributions of our study are:

(1) Evaluation of an LSTM-based network architecture
as an effective modulation classifier and demodula-
tor. This will include higher-order 64QAM and
256QAM schemes

(2) Propose a combined classifier-demodulator model
using the said LSTM networks

Throughout the remainder of this paper, we discuss the
basic model of the classifier-demodulator system as well as
the methodology we followed during synthetic data genera-
tion and the development and performance evaluation of
the said system in Section 2, the results of the performance
evaluation are reported in Section 3, and the conclusions
reached based on said results are presented in Section 4.

2. System Model and Methodology

2.1. System Overview. An overview of the proposed classifier-
demodulator system is as follows (Figure 1).

A summary of the operation of the above system is as
follows. There are two trained deep learning-based compo-
nents, i.e., the modulation classifier and the demodulator
models for each considered modulation scheme, i.e., BPSK,
quadrature phase shift keying (QPSK), 16QAM, 64QAM,
and 256QAM in a demodulator library. The input data is
modulated and transmitted via a simulated AWGN channel
with a given SNR level. The classifier takes in the received
signal as a sequence input and outputs its prediction. Based
on the prediction, the correct demodulator is selected from
the library and is used to demodulate the received signal.
An example of the vector transposition that takes place
between the classifier and the demodulator is as follows:
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e.g.,

43:9025 116:5765 −47:0877 ⋯,
48:9890 31:9539 −44:6110 ⋯,

ð1Þ

⟶

43:9025 48:9890,
116:5765 31:9539,
−47:0877 −44:6110,

⋮ ⋮

ð2Þ

The demodulator then outputs the demodulated data
which, if done correctly, will be equivalent to the input data.
In the performance evaluation stage, the input and output
data bits will be used to perform a bit error rate (BER)
calculation.

The above system was entirely developed and tested on
MathWorks® MATLAB R2020b.

2.2. Data Representation. The modulated signals were repre-
sented numerically as a series of complex numbers for each
symbol. The real part represented the in-phase (I) compo-
nent of the signal expressed by:

A tð Þ∙sin 2πf tð Þ∙cos φ tð Þ½ �: ð3Þ

The imaginary part represented the quadrature compo-
nent of the signal expressed by:

A tð Þ∙sin 2πf t + π

2
� �

∙sin φ tð Þ½ �, ð4Þ

where f is the carrier frequency, AðtÞ is the message signal,
and φðtÞ is the carrier signal.

If we were to consider a 16QAM modulation as an
example, the matrix transformation of the input data under-
gone during modulation is as follows:

e.g.,

1 0 1 1
0 1 1 1
0 1 0 0
⋮ ⋮ ⋮ ⋮

⟶

−3:0000 + 1:0000i,
−1:0000 − 3:0000i,
−1:0000 + 3:0000i,

⋮

ð5Þ

2.3. Deep Learning Models: Long-Short-Term Memory
(LSTM) Networks. LSTM networks (Figure 2) improve on
recurrent neural networks (RNN) and were chosen for our
purpose due to them being a popular and well-performing
choice when it comes to sequential or time-series data [17].
Furthermore, bidirectional LSTM (BiLSTM) layers were uti-
lized specifically in the classifier model for their ability to
“learn from the complete time series at each time step” [18].

2.4. Optimization. For the optimization of hyperparameters,
we performed an exhaustive search with the learning rate as
well as tested two separate optimization algorithms: adaptive
moment estimation (Adam) and stochastic gradient descent
with momentum (SGDM), and the results are depicted in
Figure 1.

2.5. Combined Model. The final network design for the clas-
sifier model consisted of dual BiLSTM layers of 100 units

AWGN
Data matrix

transformation

Tx signal Rx signalChannel Modulation
classifier

Modulator

Input data Output dataBER calculation

Identified
modulation

scheme

Training data

Training dataDemodulator
library

Figure 1: Classifier-demodulator system diagram.
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Figure 2: LSTM block diagram.
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each, 5 neurons fully connected layer, a softmax function
layer, and a classification layer as depicted in Figure 3.

The demodulator model (Figure 4) consists of two LSTM
layers with the number of hidden units tweaked for perfor-
mance (usu. 256 or 512), batch normalization, and rectified
linear unit (ReLU) activation layer followed by a dropout
layer with a 0.5 dropout probability to reduce overfitting, a
fully connected layer with several neurons corresponding
to the specific modulation scheme’s M-ary number, and a
softmax function layer.

2.6. Training. The classifier model was trained for a total of
100 epochs with a minibatch size of 8. The demodulator
module was trained for a minibatch size of 8 and was man-
ually monitored and stopped when training accuracy
saturated.

2.7. Performance Evaluation

2.7.1. Classifier Evaluation. The ability of the classifier model
to distinguish between the different modulation schemes was
evaluated through the generated confusion matrices for both
a dynamic range between -10 dB and 20 dB SNR as well as
specific SNR values within that range.

2.7.2. Demodulator Evaluation. The demodulator model was
evaluated by obtaining the BER vs. SNR plots for an SNR
range between -20 dB and 20 dB and comparing its perfor-
mance against the pskdemod and qamdemod MATLAB
functions. The effective capacity was also calculated by
recording the time elapsed for the demodulation of a given
number of bits.

2.7.3. Combined System Evaluation. The performance of the
combined classifier-demodulator model as an adaptive
demodulator was analyzed statistically.

Feature input layer

So�max layer

Classification layer

LSTM layer (512)

Fully connected layer (M)

Figure 4: Demodulator layers.
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Figure 5: 64QAM signal received at various SNR levels through an
AWGN channel.
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3. Results and Discussion

3.1. Channel Simulation. The generated I/Q signals were fur-
ther distorted through the introduction of AWGN noise. An
example of how AWGN at various SNRs affect the signal is
represented by the constellation diagrams in Figure 5.

3.2. Training Results. The QAM models were also trained
using datasets consisting of both negative and positive SNR
samples as well as only positive SNR samples and compared.
We observed that for the lower order 16QAM and 64QAM
schemes, the positive SNR trained models performed better
while in the higher-order 256QAM scheme, the model
trained over the broader SNR range performed better as pre-
sented in Figure 6.

3.3. Modulation Classifier Performance. The classifier when
trained for an SNR range from -10 dB to 20dB showcased
exceptional performance (Figure 7). In the test, it was able
to correctly identify all data sequences, 16 sequences per
modulation scheme. Note that, here, A =16QAM, B =
64QAM, C =256QAM, D = BPSK, and E = QPSK.

Next, we tested the same network for different SNR
levels. A sample of results produced when tested is presented
in Figures 8–10.

When observing the above matrices, we can see that the
QAM modulation schemes show a good level of perfor-
mance across all SNR levels. The same cannot be said, how-
ever, of the BPSK and QPSK schemes.

3.4. Statistical Evaluation Results of the Combined Model.
Here, only the QAM models were considered to give a fairer
representation of the system’s practical promise due to the
classifier’s poor performance with PSK schemes. The mean
BERs, sample standard deviations, and margins of error for
SNR levels from 10 to 40 dB are reported (Table 1).

3.5. Hyperparameter Tuning Results. The results showcased
that both optimizers with Adam and SGDM optimizers per-
form similarly for negative SNR levels. However, for positive
SNR levels, Adam optimizer performed better. The perfor-
mance by the Adam optimizer at 0.001 and 0.01 was similar.
Hence, we chose the Adam optimizer with a learning rate of
0.01. The overall hyperparameter tuning results are pre-
sented in Figure 11.

3.6. Demodulator Model Performance. The BER vs. SNR
plots obtained for the BPSK, QPSK, 16QAM, 64QAM, and
256QAM demodulator models are presented in
Figures 12–16, respectively.

Considering the above, we can see that all demodulators
except for 256QAM reach a 0 BER level at functional SNR
levels [16].
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The effective capacities of the demodulator models in
bits s-1 are given below in Table 2. The effective capacities
were calculated by timing the total amount of time taken
to demodulate the allocated number of bits. According to
the effective capacities, for higher modulation schemes like

256 QAM, the data throughput is at its highest. This value
however is very much hardware constrained.

Hardware note: the above tests were carried out on a
2.4Ghz single-core CPU.

When the demodulation accuracy is compared with the
data throughput, a deviation from the general behavior is
observed. The results showcased that even with higher mod-
ulation schemes like 64QAM which results in higher
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Table 1: Confidence levels.

SNR (dB) x (BER) s (BER) 1:960s�x (BER) 95% conf. level

10 0.0529 0.1475 ±0.0289 (±54.61%)
15 0.0530 0.1499 ±0.0294 (±55.46%)
25 0.0383 0.1290 ±0.0253 (±65.93%)
40 0.0423 0.1338 ±0.0262 (±61.86%)
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throughput and a better accuracy level compared to other
lower modulation schemes.

3.7. Statistical Analysis of the Combined System. The perfor-
mance of the combined system is an adaptive demodulation
system in simulated AWGN channels at SNR = 10 dB, 15 dB,

25 dB, and 45 dB [5] The PSK schemes were omitted due to
their poor performance with the modulation classifier. The
results are given in Table 1.

According to the statistical analysis, it is observable that
at higher SNRs, the BER decreases increasing the confidence
level.

There are two main reasons for the errors we see in the
statistical analysis:

(1) Errors are caused by the erroneous classification of
QAM schemes as PSK

(2) The nonzero BER of the 256QAM demodulator
model

Despite these errors, our testing shows that at acceptable
SNR levels, the system can demodulate, adapting across the
different QAM schemes, oftentimes with zero-bit errors with
no coding whatsoever.

All demodulator models, at this stage of development, do
not show a significant advantage over traditional mathemat-
ical models. However, we also observe that, except for
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Figure 14: 16QAM demodulator—BER vs. SNR. 0 BER level was
reached at SNR = 12 dB.
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Figure 16: 256QAM demodulator—BER vs. SNR. 0 BER level was
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Table 2: Effective capacities of demodulator models.

Demodulator model Effective capacity (bits s-1)

BPSK 1240

QPSK 3985

16QAM 3844

64QAM 3616

256QAM 4650
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256QAM, all other models show zero or close to zero BER
performance within minimum acceptable SNR levels for
radio telecommunication usage(around > 15 dB) [16].

4. Conclusion

Through this study, we proposed a combined classifier-
demodulator system based on LSTM network deep-
learning models and tested the performance of its compo-
nents across five different modulation schemes.

The modulation classifier showed exceptional perfor-
mance when it comes to identifying the different QAM
schemes across all SNR levels but less so with the PSK
schemes. Furthermore, the proposed model showed higher
accuracy at higher throughputs. Proving the fact that using
deep learning-based methods for adaptive demodulation will
provide a solution to the tradeoff between modulation accu-
racy and data throughput.

The tradeoff between the demodulation accuracy and the
effective capacity is a universal truth when it comes to tradi-
tional methods of demodulation where deep learning is not
involved. However, the results showcased that the proposed
deep learning-based model showed a deviation from this
behavior, which is a good sign. This proves that we can go
with a deep learning-based models like this when it comes
to demodulation of higher modulation schemes.

This, combined with the other pragmatic advantages of
using a software-based deep learning model, such as the abil-
ity to function without prior knowledge of the transmission
signal state and channel state, the flexibility to be easily mod-
ified and retrained, etc., seems to suggest that such models
would have viable use cases in the future with some
improvement, and this is the only model which does both
modulation classification and demodulation using a deep
learning algorithm allowing adaptive modulation.

5. Future Works and Limitations

When it comes to improvements, major areas include
improving performance for 256QAM and possibly higher-
order modulation schemes as well as improvements to the
effective capacity of the models. While a low effective capac-
ity may suggest that this model, at this stage, is not ready for
general telecommunications, it may be used for signals
intelligence-related applications. A comparison of the com-
plexity of the existing deep learning based models cannot
be done since the system is modeled only for an AWGN
channel. Furthermore, it is worth exploring how channel
coding can be integrated into the system to improve demod-
ulation accuracy and reduce bit errors.

Future studies may include replicating the system using
software-defined radio (SDR) modules as well as testing
may be done for additional types of noise (e.g., exponential
noise distributions) and propagation effects (e.g., Rayleigh
fading), thus, allowing a genuine comparison between the
existing deep learning-based models with the proposed
model regarding the complexity.
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