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In distributed computing/storage/machine learning system, the method of encoding and decoding combing shift-and-addition
(SA) and zigzag decoding (ZD) is proposed to solve the problem of high computational complexity. However, in each encoded
packet, one element takes part in the encoding only once, so the obtained overhead is extremely high. In this work, based on
the idea of multidimensional encoding/modulation, we propose to employ one element of the encoding process multiple times
when constructing one encoded packet based on the Cauchy matrix, thereby leveraging the favourable properties of the code
based on Cauchy matrix. The overhead is reduced from square to logarithmic in certain parameters. Compared with the
overhead of the existing square computational complexity, it is greatly reduced.

1. Introduction

In the era of big data [1], the amount of data is growing at a
doubling rate annually. The way of data processing has been
shifted from the centralized data processing to the distrib-
uted data processing. However, in distributed applications,
not all devices are reliable. Some devices may fail to work,
or the performance of the devices is not consistent. In any
task of data processing, there will be some unreliable devices
whose computing speed is slower than the average speed,
which are called stragglers [2, 3]. For example, in a data cen-
ter of Facebook, more than 100 nodes may fail per day [4, 5].
The completion time of data processing is constrained by the
slowest working node. Therefore, how to deal with stragglers
becomes a challenge for data processing. To solve this
problem, network coding techniques have been developed,
and the code with combination property (CP) is proposed:
k original packets are encoded into n packets, where n > k,
and any k out of these n packets are able to recover the
original data. The code with CP has been widely used in
distributed systems, including distributed storage (DS)

[6–10], distributed computing (DC) [11–16], and distrib-
uted machine learning [17].

In distributed systems, linear code is adopted in most of
the coding technologies, but linear code involves a lot of
multiplication and division operations, which greatly
increase the complexity of coding and decoding. For the sake
of low computation complexity, a kind of CP-ZD code
[18–20] with CP is proposed, which combines shift-and-
addition (SA) and zigzag decoding (ZD) [21]. However, for
the case where one element takes part in the encoding only
once when constructing an encoded packet, the overhead is
as high as square of the parameters’ number (nor k).

Multidimensional encoding/modulation promises high
data rate [18, 19], which has been used as promising
technique in communication [20] and distributed systems
[22, 23]. As a result, to further reduce the overhead, based
on the idea of multidimensional encoding/modulation, we
propose the idea of one element taking part in the encoding
process multiple times when constructing one encoded
packet. Using the properties of the code based on Cauchy
matrix in finite field, we design a framework of one element
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taking part in the encoding process multiple times for con-
structing an encoded packet. The overhead of this coding
framework reduces from square to logarithmic with respect
to the parameter. Specifically, the idea that one element takes
part in the encoding only once in each encoded packet can
be interpreted as each source packet being treated as an ele-
ment and occurring at most once in a coded packet. Simi-
larly, the idea that one element takes part in the encoding
process multiple times when constructing one encoded
packet is that each source packet occurs multiple times in
an encoded packet, which is added to its own multiple
distinct shifts.

2. Preliminary

2.1. Definition of Cauchy Matrix. Given x1, x2,⋯xn, y1,
y2,⋯yn, let cði,jÞ = 1/ðxi + yjÞð1 ≤ i, j ≤ nÞ, then the matrix
C = ðci,jÞ is called the Cauchy matrix [24], and its determi-
nant is as follows:

det Cð Þ =
Q

1≤i<j≤n xj − xi
� �

yj − yi
� �

Qn
i=1
Qn

j=1 xi + yj
� � : ð1Þ

Similarly, a Cauchy matrix over a finite field is defined as
follows: let X and Y be two sets of elements in a finite field.
Among them, X = fx1, x2,⋯,xpg and Y = fy1, y2,⋯,yqg. If
for ∀i ∈ f1, 2,⋯, pg, ∀j ∈ f1, 2,⋯, qg, the following is
satisfied:

(1) xi + yj ≠ 0

(2) ∀i, j ∈ f1, 2,⋯, pg, i ≠ j, xi ≠ xj

(3) ∀i, j ∈ f1, 2,⋯, qg, i ≠ j, yi ≠ yj

Then, the following matrix is called a Cauchy matrix over a
finite field:

G =

1
x1 + y1

1
x1 + y2

⋯
1

x1 + yq

1
x2 + y1

1
x2 + y2

⋯
1

x2 + yq

⋮ ⋮ ⋱ ⋮
1

xp + y1

1
xp + y2

⋯
1

xp + yq

2
666666666664

3
777777777775
: ð2Þ

It is straightforward to obtain the following theorem
from the construction rules of the Cauchy matrix:

Theorem 1. When G is a Cauchy matrix, any square subma-
trix Gl of G is nonsingular, where l indicates the number of
rows and columns of the submatrix Gl (1 ≤ l ≤min ðp, qÞ);
then,

det Glð Þ =
Q

1≤i<j≤l x j − xi
� �

yj − yi
� �

Ql
i=1
Ql

j=1 xi + yj
� � ≠ 0: ð3Þ

In other words, every submatrix of the Cauchy matrix is
invertible.

2.2. The Arithmetic Operation in Finite Fields. Finite field is a
field with a finite number of elements, for example, GFð2ωÞ
represents a finite field containing 2ω elements. Before
describing the arithmetic operation in finite fields, we briefly
introduce the concept of the primitive polynomial.

The primitive polynomial is essentially a polynomial that
cannot be factored. When a finite field determines its prim-
itive polynomials, the arithmetic operations in that field are
also determined. In general, the primitive polynomial of a
field can be obtained by looking up the table, and the prim-
itive polynomial of a field is not unique. Take the finite field
GFð23Þ as an example, there is more than one primitive
polynomial over GFð23Þ, and the most common primitive
polynomial is qðzÞ = z3 + z + 1. Table 1 shows some of the
primitive polynomials [25] present in GFð2ωÞ.

The addition and subtraction operation [22] of finite
fields are the XOR operation in polynomial calculation.
The rule for adding and subtracting is to XOR coefficients
of the same order in two polynomials, and there is no differ-
ence between the two operations, such as ðz2 + zÞ + ðz + 1Þ
= z2 + 1, ðz2 + zÞ − ðz + 1Þ = z2 + 1. At present, the multipli-
cation and division operations [23] of finite fields usually
count on the look-up tables. Each field has positive and neg-
ative tables, which are denoted as gf log and gf i log, respec-
tively, on the GFð2ωÞ field. Taking GFð23Þ as an example, its
table gf log and gf i log are generated as shown in Table 2
[16]:

If the multiplication and division operations are per-
formed on the GFð23Þ field, as shown in Table 2, the multi-
plication operation is as follows:

2 × 3 = gf i log gf log 2½ � + gf log 3½ �½ �
= gf i log 1 + 3½ � = gf i log 4½ � = 6,

ð4Þ

and the division operation is as follows:

1 ÷ 5 = gf i log gf log 1½ � − gf log 5½ �½ �
= gf i log 0 − 6½ � = gf i log 1½ � = 2:

ð5Þ

2.3. Transformation from Field GFð2ωÞ to Field GFð2Þ½z�/
qðzÞ. Field GFð2ωÞ is constructed by finding a primitive
polynomial of ω degrees on GFð2Þ and then enumerating
elements (in polynomial form) by using the generating
element z. The addition in this field is performed using
polynomial addition, and multiplication is performed
using polynomial multiplication and modulo the result
with respect to qðzÞ, such field GFð2ωÞ can be written as
GFð2ωÞ =GFð2Þ½z�/qðzÞ [25], which can also be said that
field GFð2ωÞ and field GFð2ωÞ =GFð2Þ½z�/qðzÞ are isomor-
phic [26].
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The conversion rule for field GFð2ωÞ to field GFð2Þ½z�/
qðzÞ [25] is the conversion of numerical form to polynomial
form. Taking GFð2ωÞ as an example, the implementation
steps are as follows:

Step 1. Initialize the set as f0, 1, zg.

Step 2. Multiply the last element of the set by z, such as z,
and modulo the result with respect to qðzÞ if the resulting
degree is greater than or equal to ω.

Step 3. Continue Step 2 until there are 2ω elements in the set,
at which point the last element is multiplied by z and mod-
ulo qðzÞ, resulting in a value of 1.

To better understand the above steps, let us elaborate on
a simple example:

Example 1. Suppose ω = 2; then, the original polynomial is
qðzÞ = z2 + z + 1; to construct GFð22Þ =GFð4Þ, we initialize
the set as f0, 1, zg, so the next element is z2; since the degree
of the element is 2, modulo it with respect to qðzÞ = z2 +
z + 1, which resulting in z + 1. Therefore, four elements are
generated: f0, 1, z, z + 1g, and the corresponding numerical
forms are f0, 1, 2, 3g, which are shown in Table 3. If we
continue, we can get the following:

z + 1ð Þz mod q zð Þ = z2 + z
� �

mod z2 + z + 1
� �

= 1: ð6Þ

According to Step 3, we can end the enumeration.

2.4. Mathematical Model. We want to construct ðn, kÞ code
that possesses the ðn, kÞ CP. This section adopts the method
in reference [27]. We represent each packet as a polynomial

of GFð2ωÞ, where a number is denoted by several bits within
this packet. Source packet si is represented with the polyno-
mial form, as shown in Formula (7), i ∈ K ≜ f1, 2,⋯, kg,

si zð Þ ≜ si,1 + si,2z + si,3z
2+⋯+si,LzL−1, ð7Þ

where L indicates the length of the source packet and z indi-
cates the right shift by one bit.

For i ∈ K , the i-th encoded packet can be expressed as
ciðzÞ = siðzÞ. Let m ≜ n − k denote the number of parity
packets. For i ∈M ≜ f1, 2,⋯,mg, the polynomial form of
the i-th parity packet is as follows:

ck+i zð Þ ≜ αi,1 zð Þs1 zð Þ + αi,2 zð Þs2 zð Þ+⋯+αi,k zð Þsk zð Þ, ð8Þ

where αi,jðzÞ ≜ zTij , i ∈M, j ∈ K .
Combined with the systematic packets and parity

packets, the final coding expression is shown in the follow-
ing formula:

c zð Þ = A zð Þs zð Þ, ð9Þ

where cðzÞ ≜ ðc1ðzÞ, c2ðzÞ,⋯,cnðzÞÞ, sðzÞ ≜ ðs1ðzÞ, s2ðzÞ,⋯,
skðzÞÞ, and

A zð Þ ≜
IK zð Þ
T zð Þ

" #
, ð10Þ

which is a matrix with dimension of n × k, IkðzÞ is a k × k
identity matrix, and TðzÞ is a m × k shift matrix,

T zð Þ ≜

zT11 zT12 zT13 ⋯ zT1k

zT21 zT22 zT23 ⋯ zT2k

zT31 zT32 zT33⋯zT3k

⋮⋮⋮⋮⋮

zTm1 zTm2 zTm3 ⋯ zTmk

2
666666664

3
777777775
: ð11Þ

The exponent of the element in ðzÞ is indicated by T ,
whose actual meaning is the shifted bits of packets.

3. Encoding Design

The encoding framework that one element takes part in the
encoding process multiple times when constructing one
encoded packet based on Cauchy matrix is mainly con-
structed in three steps, and the detailed rules are as follows:

Table 1: Table of common primitive polynomials.

Finite field Primitive polynomial

GF 22
� �

z2 + z + 1
GF 23

� �
z3 + z + 1

GF 24
� �

z4 + z + 1
GF 28

� �
z8 + z4 + z3 + z2 + 1

GF 216
� �

z16 + z12 + z3 + z + 1

Table 2: gf log and gf i log for GFð23Þ.

i gf log i½ � gf i log i½ �
0 - 1

1 0 2

2 1 4

3 3 3

4 2 6

5 6 7

6 4 5

7 5 -

Table 3: Transformation of GFð4Þ from field GFð2ωÞ to field GF
ð2ωÞ =GFð2Þ½z�/qðzÞ:
Generating element Polynomial form Numerical form

0 0 0

z0 1 1

z1 z 2

z2 z + 1 3
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Step 1. Determine the size of the finite field and the dimen-
sion of the Cauchy matrix according to the relation of cod-
ing parameters ðn, kÞ.

According to the relation of ðn, kÞ, when k < n ≤ 2ω and
ω is a positive integer, we can determine the size of the finite
field to be GFð2ωÞ, where ω = dlog2ne and the sign d e indi-
cates an integer ceiling function. In finite field GFð2ωÞ, the
dimension of Cauchy matrix over GFð2ωÞ is determined as
m × k according to the size of m and k. The specific con-
struction process of the corresponding Cauchy matrix (i.e.,
the coding matrix) is to determine the element set of X
and Y first. The elements of X could be any m elements
in GFð2ωÞ, X = fx1, x2,⋯,xmg, which correspond tom parity
packets. The elements of Y are any k elements in the 2ω −m
elements in GFð2ωÞ finite field, Y = fy1, y2,⋯,ykg, which
correspond to k parity packets. According to the construc-
tion rules of Cauchy matrix in the finite field, the following
relationships should be met between the element sets of X
and Y :

If for ∀i ∈ f1, 2,⋯,mg, ∀j ∈ f1, 2,⋯, kg, the following is
satisfied:

(1) xi + yj ≠ 0

(2) ∀i, j ∈ f1, 2,⋯,mg, i ≠ j, xi ≠ xj

(3) ∀i, j ∈ f1, 2,⋯, kg, i ≠ j, yi ≠ yj

Then, the elements in X and Y are different, and a cod-
ing matrix G with dimension m × k can be constructed as
follows:

G =

1
x1 + y1

1
x1 + y2

⋯
1

x1 + yk
1

x2 + y1

1
x2 + y2

⋯
1

x2 + yk
⋮ ⋮ ⋱ ⋮
1

xm + y1

1
xm + y2

⋯
1

xm + yk

2
66666666664

3
77777777775
: ð12Þ

Step 2. Convert the numeric form of elements in the coding
matrix to polynomial form.

Through the arithmetic operation in finite fields and the
transformation from field GFð2ωÞ to field GFð2Þ½z�/qðzÞ in
Section 2.3, the matrix G is transformed into the polynomial
form. Each element of G can be uniquely represented by a
polynomial, that is, G⇒GðzÞ.

In particular, the exponent of z of each polynomial rep-
resents the size of the bit-shifting. For example, z2 + z repre-
sents that a systematic package is shifted to the right by 2

and 1 bits, respectively, and then added over. For example,
the shift value of the source packet s1 of length L = 12 is z2

+ z, as shown in Figure 1.

Step 3. Determine the shift matrix combined with the sys-
tematic code.

Combined with the systematic code, a coding matrix

A zð Þ ≜
Ik zð Þ
G zð Þ

" #
ð13Þ

with dimension n × k is obtained through vertical
connection.

In order to better understand the design rules that one
element takes part in the encoding process multiple times,
we will walk through the coding steps with a concrete
example.

Example 2. If ðn, kÞ = ð8, 5Þ, then the system has k systematic
packages and m parity packages, where k = 5 and m = n − k
= 3.

Step 1. We have k < n ≤ 2ω ⇒ 5 < 8 ≤ 23, ω = dlog28e = 3, so
we can determine that the size of the finite field is GFð23Þ.
For the finite field GFð23Þ, the commonly used polynomial
qðzÞ = z3 + z + 1 is chosen as the primitive polynomial. In
this case, X and Y take 3 and 5 elements, respectively, and
the elements of X and Y are different. Taking X = f5, 6, 7g
and Y = f0, 1, 2, 3, 4g as an example, the coding matrix is
as follows:

G =

1
5 + 0

1
5 + 1

1
5 + 2

1
5 + 3

1
5 + 4

1
6 + 0

1
6 + 1

1
6 + 2

1
6 + 3

1
6 + 4

1
7 + 0

1
7 + 1

1
7 + 2

1
7 + 3

1
7 + 4

2
6666664

3
7777775
: ð14Þ

Step 2. Through the arithmetic operations in the finite field,
the addition operation is converted to the XOR operation,
for example, 5 ⊕ 1⇒ 101 ⊕ 1 = 100 = 4. Multiplication and
division can be calculated by looking up tables. For example,
Table 2 lists the positive and negative tables of GFð23Þ.
Based on the above, we can convert the matrix G into the
following form:

G =
2 7 4 3 1
3 4 7 2 5
4 3 2 7 6

2
664

3
775: ð15Þ

s1, 1 s1, 2 s1, 3 s1, 4 s1, 5 s1, 6 s1, 7 s1, 8 s1, 9 s1, 10 s1, 11 s1, 12

s1, 1 s1, 2 s1, 3 s1, 4 s1, 5 s1, 6 s1, 7 s1, 8 s1, 9 s1, 10 s1, 11 s1, 12

Figure 1: The form of elements taking part in encoding process multiple times
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Through the transformation from field GFð2ωÞ to field
GFð2Þ½z�/qðzÞ in Section 2.3, the elements of coding matrix
G are expressed by polynomials one by one to obtain the
coding matrix GðzÞ:

G zð Þ =
z z2 + z + 1 z2 z + 1 1

z + 1 z2 z2 + z + 1 z z2 + 1
z2 z + 1 z z2 + z + 1 z2 + z

2
664

3
775:

ð16Þ

Step 3. By vertically concatenating 5 systematic codes, we
can obtain the coding matrixAðzÞ:

A zð Þ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
z z2 + z + 1 z2 z + 1 1

z + 1 z2 z2 + z + 1 z z2 + 1
z2 z + 1 z z2 + z + 1 z2 + z

2
666666666666666664

3
777777777777777775

:

ð17Þ

4. Properties of the Code Based on
Cauchy Matrix

4.1. CP Property. Before we prove the CP property of the
code, we will introduce the properties and lemmas men-
tioned in the proof.

Isomorphism property: the mathematical idea of iso-
morphism is to establish a one-to-one mapping of two sets
that have the same properties associated with operations.
For example, assuming that the sets B and �B of algebraic
operations are isomorphic, if one set B has a property that
is only relevant to the algebraic operations of this set, then
the other set �B has exactly similar properties [28].

Lemma 2. Any square submatrix of GðzÞ is invertible.

Proof. According to Section 3, matrix G is a Cauchy matrix,
and the transformation from G to its polynomial form GðzÞ
is equivalent to the transformation from field GFð2ωÞ to field
GFð2Þ½z�/qðzÞ, as shown in Section 2.3. In addition, since
field GFð2ωÞ and field GFð2Þ½z�/qðzÞ are isomorphic [17]
and the isomorphism property indicates that reversibility
in a field will remain reversibility in the isomorphism field,
the reversibility of G in field GFð2ωÞ will be mapped to that
of GðzÞ in field GFð2Þ½z�/qðzÞ. Theorem 1 says that any sub-
matrix of G is invertible, so any submatrix of GðzÞ is also
invertible.

CP property: Any k out of n encoded packets are able to
recover the information of the original k packets.

Proof. First, we use a mathematical model to solve the above
coding and decoding problems. The Cauchy matrix G and
the coding matrix A are constructed from the previous cod-
ing design in Section 3, where

A ≜
Ik

G

" #
, ð18Þ

and Ik represents the matrix

Ik =

0 −∞ ⋯ −∞

−∞ 0 ⋯ −∞

⋮ ⋮ ⋱ ⋮

−∞ −∞ ⋯ 0

2
666664

3
777775 ð19Þ

with the dimension of k × k. For example,

I3 =
0 −∞ −∞

−∞ 0 −∞

−∞ −∞ 0

2
664

3
775, ð20Þ

where element 0 means that the source packet involved in
encoding shifts 0 bit, which means nonshift, and element
−∞ means that the source packet does not participate in
encoding.

According to the mathematical model of Section 2.4, in
the finite field GFð2ωÞ, the matrix above is represented by
polynomial form of z, where z is the radix (assuming that
the modulus of z is greater than 1), and every element of
matrix A is raised to a proper power and then mod the orig-
inal polynomial of the finite field. This process is actually a
transformation from field GFð2ωÞ to field GFð2Þ½z�/qðzÞ.
For example, the identity matrix Ik to IkðzÞ applies the
above transformation to

Ik =

0 −∞ ⋯ −∞

−∞ 0 ⋯ −∞

⋮ ⋮ ⋱ ⋮

−∞ −∞ ⋯ 0

2
6666664

3
7777775
⇒ Ik zð Þ

=

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

2
6666664

3
7777775
,

ð21Þ

where element 1 indicates that the source packet participat-
ing in the encoding is not shifted, and element 0 indicates
that the source packet is not participating in the encoding.
The transformation process of matrix G to GðzÞ is shown

5Wireless Communications and Mobile Computing



in Section 2.3. At this point, the polynomial form of the cod-
ing matrix A is

A zð Þ ≜
Ik zð Þ
G zð Þ

" #
, ð22Þ

which is a matrix with a size of n × k.
Based on the polynomial form of z above and the

mathematical model in Section 2.4, the polynomial cðzÞ
represents the encoded packet and the polynomial sðzÞ
represents the systematic packet. The coding relationship
can be expressed as cðzÞ = AðzÞsðzÞ. Take any k packets from
n coded packets, that is, extract k lines at the same position
from encoded packet cðzÞ and form ckðzÞ, corresponding
to take k lines at the same position from AðzÞ and form
k × k matrix AkðzÞ.The encoding relationship can be
expressed by the expression ckðzÞ = AkðzÞsðzÞ.

Based on the above model, satisfying CP property is
equivalent to the invertibility of AkðzÞ. We claim that AkðzÞ
is invertible due to the following reasons:

In

A zð Þ ≜
Ik zð Þ
G zð Þ

" #
, ð23Þ

take any k rows from AðzÞ and form k × k matrix AkðzÞ. In
this case, AkðzÞ to be decoded can be formed in two ways:
First, AkðzÞ does not contain any rows of IkðzÞ; from Lemma
2 above, we know that every square submatrix of GðzÞ is
invertible, so AkðzÞ is invertible. Second, AkðzÞ is composed
of α rows in IkðzÞ and β rows in GðzÞ, where IαðzÞ repre-
sents α rows in IkðzÞ and GβðzÞ represents β rows in GðzÞ,
and α + β = k. Since the matrix IαðzÞ is a known systematic
packet, substituting it into GβðzÞ is equivalent to deleting α

columns from it. The deleted GβðzÞ is equivalent to extract-
ing the β × β submatrix from GðzÞ, where k − α = β, as
shown in the following Example 3. Similarly, Lemma 2
shows that any square submatrix of GðzÞ is invertible, so
AkðzÞ is also invertible.

To sum up, AðzÞ is invertible, so this coding framework
can meet the CP property.

Example 3. Following Example 2, if ðn, kÞ = ð8, 5Þ, the system
has 5 systematic packets, m parity packets, where m = n − k
= 3. The matrix GðzÞ has been constructed as

G zð Þ =
z z2 + z + 1 z2 z + 1 1

z + 1 z2 z2 + z + 1 z z2 + 1
z2 z + 1 z z2 + z + 1 z2 + z

2
664

3
775:

ð24Þ

Combining the identity matrix I5ðzÞ,

A zð Þ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
z z2 + z + 1 z2 z + 1 1

z + 1 z2 z2 + z + 1 z z2 + 1
z2 z + 1 z z2 + z + 1 z2 + z

2
666666666666666664

3
777777777777777775

:

ð25Þ

ðzÞ is composed of some parts of I5ðzÞ and GðzÞ, let

A5 zð Þ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
z z2 + z + 1 z2 z + 1 1

z + 1 z2 z2 + z + 1 z z2 + 1

2
666666664

3
777777775
,

ð26Þ
and then, it can be seen from the matrix A5ðzÞ that the
known systematic packets are s1, s2, s3, so A5ðzÞ can be
simplified as

A5 zð Þ′ =
z + 1 1
z z2 + 1

" #
, ð27Þ

which is equivalent to the 2 × 2 submatrix of GðzÞ. Accord-
ing to Lemma 2, any submatrix of GðzÞ is invertible, so A5
ðzÞ′ is invertible.
4.2. Zigzag Decodability (ZD) Property. The ZD property of
one element which takes part in the encoding process multi-
ple times when constructing one encoded packet can be
proved by experiment that it cannot be fully zigzag decod-
able. Starting from the experiment, we set several groups of
parameters to obtain the probability of zigzag decodability
of one element which takes part in the encoding process

Table 4: Success/failure for different ðn, kÞ parameters.

n, kð Þ Success Failure Total

5, 3ð Þ 8 2 10

8, 5ð Þ 46 9 56

12, 8ð Þ 405 90 495

15, 10ð Þ 2408 595 3003
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multiple times. Through experimental simulation, we set
several sets of parameters ðn, kÞ as ð5, 3Þ, ð8, 5Þ, ð12, 8Þ,
and ð15, 10Þ, respectively, and the conditions of zigzag
decodable and not are shown in Table 4.

It can be seen from Figure 2 that the encoding frame-
work that one element takes part in the encoding process
multiple times when constructing one encoded packet based
on the Cauchy matrix has about 80% probability of ZD
decoding, which means that there is about 20% probability
that zigzag decoding will not be possible. The following

two examples illustrate the case that the encoding frame-
work is able or unable to perform zigzag decoding.

Example 4. Following Example 2 where ðn, kÞ = ð8, 5Þ, we
assume that there are encoded packets c1, c2, c6, c7, c8, where
c1 = s1 and c2 = s2. Based on the above, the remaining prob-
lem is to use the encoded packets c6, c7, c8 to decode the
three source packets s3, s4, s5. The corresponding coding
matrix is as follows:

0.2

0.4

0.6

0.8

1.0

(5, 3) (8, 5) (12, 8) (15, 10)

D
ec

od
in

g 
pr
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Figure 2: Decoding probability for different ðn, kÞ parameters.

s4, 1 s4, 2 s4, 3 s4, 4 s4, 5 s4, 6 s4, 7 s4, 8 s4, 9 s4, 10 s4, 11 s4, 12

c7

c6

c8

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s5, 1 s5, 2 s5, 3 s5, 4 s5, 5 s5, 6 s5, 7 s5, 8 s5, 9 s5, 10 s5, 11 s5, 12

s4, 1 s4, 2 s4, 3 s4, 4 s4, 5 s4, 6 s4, 7 s4, 8 s4, 9 s4, 10 s4, 11 s4, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s4, 1 s4, 2 s4, 3 s4, 4 s4, 5 s4, 6 s4, 7 s4, 8 s4, 9 s4, 10 s4, 11 s4, 12

s5, 1 s5, 2 s5, 3 s5, 4 s5, 5 s5, 6 s5, 7 s5, 8 s5, 9 s5, 10 s5, 11 s5, 12

s5, 1 s5, 2 s5, 3 s5, 4 s5, 5 s5, 6 s5, 7 s5, 8 s5, 9 s5, 10 s5, 11 s5, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s4, 1 s4, 2 s4, 3 s4, 4 s4, 5 s4, 6 s4, 7 s4, 8 s4, 9 s4, 10 s4, 11 s4, 12

s4, 1 s4, 2 s4, 3 s4, 4 s4, 5 s4, 6 s4, 7 s4, 8 s4, 9 s4, 10 s4, 11 s4, 12

s4, 1 s4, 2 s4, 3 s4, 4 s4, 5 s4, 6 s4, 7 s4, 8 s4, 9 s4, 10 s4, 11 s4, 12

s5, 1 s5, 2 s5, 3 s5, 4 s5, 5 s5, 6 s5, 7 s5, 8 s5, 9 s5, 10 s5, 11 s5, 12

s5, 1 s5, 2 s5, 3 s5, 4 s5, 5 s5, 6 s5, 7 s5, 8 s5, 9 s5, 10 s5, 11 s5, 12

Figure 3: An example of able to perform ZD.
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G =
z2 z + 1 1

z2 + z + 1 z z2 + 1
z z2 + z + 1 z2 + z

2
664

3
775: ð28Þ

Assuming that the length of the encoded packets is L = 12,
we can obtain the decoding diagram of Figure 3 through
shift-and-addition encoding by row. In this condition, the
coding framework can be zigzagged: s4,1 can be obtained
directly from the first exposed bit of c8. Substitute s4,1 into
the first bit of c6 to obtain s5,1 through shift-and-addition,
and then, substitute s5,1 into c7 to obtain s3,1. In this manner,
the first bit of each source packet has been obtained. The
decoding of the second bit of each source packet is similar
to the decoding of the first bit. Substitute s3,1, s4,1, s5,1 into
c6, c7, c8, respectively, so that s4,2 can be obtained. Substitute
s4,2 into the second bit of c6, and s5,2 can be obtained by XOR
operation. Finally, substitute s5,2 into c7, and then, s3,2 can be
obtained.

Example 5. Following Example 2 where ðn, kÞ = ð8, 5Þ, we
assume that there are encoded packets c4, c5, c6, c7, c8, where
c4 = s4 and c5 = s5.Therefore, the remaining problem is to use
the encoded packets c6, c7, c8 to decode the three source
packets s1, s2, s3 to form the encoding matrix,

G =
z z2 + z + 1 z2

z + 1 z2 z2 + z + 1
z2 z + 1 z

2
664

3
775: ð29Þ

Assuming the length of the encoded packets is L = 12,
through shift-and-addition encoding by row, we cannot per-

form zigzag decoding in this case. From the first bit of each
coded packet, only s2,1 is exposed bit. When it is substituted
into the second bit of c6, c8, respectively, no new exposed bit
can be obtained. The whole decoding process is locked, so
the zigzag decoding cannot proceed, as shown in Figure 4.

5. Performance Analysis

In the case of one element takes part in the encoding only
once in shift-and-addition encoding, the overhead of several
existing CP-ZD codes is the square of k or n. As can be seen
from Section 3, the overhead of the encoding framework that
one element taking part in the encoding process multiple
times when constructing one encoded packet is related to
the size of the finite field; if the size of the finite field is GF
ð2ωÞ, then ω = dlog2ne. Therefore, the maximum overhead
of this encoding framework is determined by the number n
of encoded packets, and the overhead is OHcauchy = dlog2ne
− 1. Therefore, the overhead OH has a logarithmic relation-
ship with the number n of encoded packets, which has a
huge advantage over the existing zigzag codes. However,
due to the existence of multiple encodings, a source packet
may be encoded once or more, which is more complex than
the case of single encodings, leading to the possibility of
decoding failure during zigzag decoding, as shown in Exam-
ple 5. As can be seen from Figure 2, the ZD decoding rate of
the encoding framework that one element takes part in the
encoding process multiple times when constructing one
encoded packet based on Cauchy matrix in shift-and-
addition is about 80%.

In general, compared with the encoding framework of
one element taking part in the encoding only once in shift-
and-addition, the encoding framework of elements’ multi-
participation based on the Cauchy matrix has a good

c7

c6

c8

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s1, 1 s1, 2 s1, 3 s1, 4 s1, 5 s1, 6 s1, 7 s1, 8 s1, 9 s1, 10 s1, 11 s1, 12

s1, 1 s1, 2 s1, 3 s1, 4 s1, 5 s1, 6 s1, 7 s1, 8 s1, 9 s1, 10 s1, 11 s1, 12

s1, 1 s1, 2 s1, 3 s1, 4 s1, 5 s1, 6 s1, 7 s1, 8 s1, 9 s1, 10 s1, 11 s1, 12

s1, 1 s1, 2 s1, 3 s1, 4 s1, 5 s1, 6 s1, 7 s1, 8 s1, 9 s1, 10 s1, 11 s1, 12

s2, 1 s2, 2 s2, 3 s2, 4 s2, 5 s2, 6 s2, 7 s2, 8 s2, 9 s2, 10 s2, 11 s2, 12

s2, 1 s2, 2 s2, 3 s2, 4 s2, 5 s2, 6 s2, 7 s2, 8 s2, 9 s2, 10 s2, 11 s2, 12

s2, 1 s2, 2 s2, 3 s2, 4 s2, 5 s2, 6 s2, 7 s2, 8 s2, 9 s2, 10 s2, 11 s2, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s3, 1 s3, 2 s3, 3 s3, 4 s3, 5 s3, 6 s3, 7 s3, 8 s3, 9 s3, 10 s3, 11 s3, 12

s2, 1 s2, 2 s2, 3 s2, 4 s2, 5 s2, 6 s2, 7 s2, 8 s2, 9 s2, 10 s2, 11 s2, 12

s2, 1 s2, 2 s2, 3 s2, 4 s2, 5 s2, 6 s2, 7 s2, 8 s2, 9 s2, 10 s2, 11 s2, 12

s2, 1 s2, 2 s2, 3 s2, 4 s2, 5 s2, 6 s2, 7 s2, 8 s2, 9 s2, 10 s2, 11 s2, 12

Figure 4: An example of failure in ZD.
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constraint on the overhead and can reduce the overhead
from the existing square level to the logarithmic level. How-
ever, it has some losses in ZD properties and cannot guaran-
tee ZD decoding.

6. Conclusions

Aiming at the problem of high overhead in CP-ZD codes,
in this paper, we design a coding framework based on the
idea of elements taking part in encoding multiple times in
constructing an encoded packet based on Cauchy matrix
and shift-and-addition. It is proved here that the frame-
work has CP properties, but not completely with ZD prop-
erties. Experimental results show that the ZD decoding
rate of this code is about 80%. However, the overhead is
OHcauchy = dlog2ne − 1, which is reduced from the existing
square level to the logarithmic level. The coding frame-
work confirms the advantage of the element participating
in the encoding for multiple times and lays a foundation
for future research.

7. Future Works

The new coding framework proposed in this paper satisfies
the CP property, but not the ZD property. At present, there
is no mature encoding framework with one element taking
part in encoding process multiple times. Aiming at the idea
of elements taking part in encoding multiple times, it is
obviously of prospective academic and application value to
design a feasible ZD decoding framework. What is more, it
is also necessary to study the closed form expression of
CP-ZD code, which can be used to describe the necessary
and sufficient conditions of CP-ZD code that elements
taking part in encoding process multiple times.
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