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The COVID-19 pandemic has severely impacted various aspects of life, where countries closed their borders, and workplaces and
educational institutions shut down their premises in response to lockdowns. This has adversely affected the lives of everyone,
including millions of students worldwide, socially, mentally, and physically. Governments and educational authorities
worldwide have taken preventive measures, such as social distancing and mask wearing, to control the spread of the virus. This
paper proposes an AI-powered autonomous robot for deep mask-wearing detection to enforce proper mask wearing in
educational settings. The system includes (1) Simultaneous Localization and Mapping framework to map and navigate the
environment (i.e., laboratories and classrooms), (2) a multiclass face mask detection software, and (3) an auditory system to
identify and alert improper or no mask wearing. We train our face mask detector using MobileNetV2 architecture and
YOLOv2 object detector classification. The results demonstrate that our robot can navigate an educational environment while
avoiding obstacles to detect violations. The proposed face mask detection and classification subsystem achieved a 91.4%
average precision when tested on students in an engineering laboratory environment.

1. Introduction

The COVID-19 epidemic, which the World Health Organi-
zation (WHO) has labelled a global pandemic, has severely
impacted people’s lives. This highly infectious disease has
caused a rapid increase in COVID-19 incidents around the
world and triggered the need for immediate countermea-
sures [1]. Countries enforced strict laws and regulations to
reduce the transmission of the virus and prevent its spread
[2], especially following the lift of the nationwide lockdown.
For instance, some counties have made wearing face masks
in public mandatory [3, 4], including the United Arab Emir-

ates (UAE), as it is an efficient way to limit the spread of the
virus [5, 6].

The pandemic disrupted teaching and learning in
schools and universities. It has been necessary for educators,
students, institutions, and parents to adapt, implement mea-
sures, and make optimal use of the resources, technologies,
and instructional methodologies that are currently accessible
[7]. Many universities in the UAE have already implemented
alternative educational methods such as online, hybrid, and
blended learning, making teaching and learning more adapt-
able and accessible to students’ needs. While blended learn-
ing incorporates elements of online course delivery,
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alternative approaches include the hybrid model, which
combines online course delivery with in-person sessions.
Additionally, the hybrid approach in some universities
includes the need for students to attend online and other
face-to-face lab sessions and assessments while adhering to
the COVID-19 guidelines of face mask wearing and social
distancing. However, the lack of awareness and failure to
comply with such rules allows for the disease’s unrestricted
spread. Currently, the implementation techniques for mask
enforcement are primarily human-monitored, making them
challenging to enforce successfully in highly populated
venues [8].

Researchers and manufacturers constantly aim to
develop systems that can aid in pandemic preventive mea-
sures, specifically robotics. With a total market share of 27
billion USD, the prominence of service robots at this day
and age is unwavering [9], especially with estimations point-
ing towards the imminent integration of service robots in
our daily lives [10]. Moreover, the pandemic has encouraged
the development of systems designed to identify recurring
violations relating to social distancing measures such as
mask detection or the distance between two individuals.
Such systems or robots can also approach the violators and
notify them to adhere to the set measures [11]. Furthermore,
there is a strong emergence of tracking systems that can
track social distancing metrics. Most of these systems are
efficient, accurate, and easily applicable to any CCTV sur-
veillance camera in any environment, regardless of visual
challenges such as occlusion [12]. In addition to service
robots and detection systems, the pandemic has also trig-
gered the development of tracing applications used on
smartphones; such applications allow the identification of
any person in contact with an infected person prior to them
knowing about the infection [13]. Whereas privacy concerns
regarding such applications have risen, they remain effective
and highly used in countries such as the UAE [14]. Such
developments in the field will aid us in developing an auto-
mated mask detection monitoring system capable of detect-
ing mask violations and notifying the violator. Various
factors make face mask detection algorithms challenging.
This includes various mask types, differing degrees of
obstruction, varying angles, implementation of detection
models on machines with limited computing capabilities,
poor-quality images, facial expressions, and lack of real-
world image database [4].

Deep learning artificial intelligence approaches are being
widely used for face mask detection algorithms. Authors of
[15] developed a hybrid model that consists of a feature
extraction component using Resnet50 followed by a classifi-
cation component using Support Vector Machine (SVM).
The AI model was trained and tested on three different data-
sets and achieved a reasonable accuracy. Another implemen-
tation based on deep learning face mask detection is
presented in [2], where the authors have used the YOLOv3
model along with a novel data augmentation technique to
detect face masks. Their data augmentation methodology
involves filtering images through greyscale and Gaussian
blurring. In [5], the authors utilize YOLOv4 to detect
whether pedestrians adhere to the rules of face mask wearing

or not, especially at night time. Alok et al. [16] proposed
CNN and VGG16 model to detect people not wearing a
mask. Their work utilizes data augmentation, normalization,
and transfer learning to build the model. They train their
model on Google Colab using Tensorflow. For the dataset,
the public domain Simulated Masked Face Dataset (SMFD)
is used. The dataset included 1315 images, 657 for no mask
and 658 with mask, which were included for the training set,
142 for validation, and 194 for testing. Other studies that
deploy deep learning-based models for the detection of face
masks are presented in [4, 8, 17, 18].

In [19], the authors presented a face mask-wearing con-
dition identification method that addresses a classification
problem for three categories based on unconstrained 2D
facial pictures by merging image super-resolution and classi-
fication networks (SRCNet). They train and test the model
using the Medical Masks Dataset, which includes images of
people without face masks, people wearing face masks incor-
rectly, and others wearing them correctly. However, one of
the study’s limitations is that the dataset utilized is quite lim-
ited, limiting the study’s ability to cover all postures and
situations.

A two-stage real-time face mask detection and classifica-
tion is proposed in [3]. In the face detection step, the detec-
tor filters out nonfaces and divides the facial areas into two
groups based on their location on the face. The authors
trained and tested both models using benchmark datasets.
Thus, the proposed detector performs well and has a good
level of accuracy compared to other detectors.

Authors of [20] developed a real-time face mask detec-
tion model. They use a Haar cascade classifier and YOLOv3
for face and mask detection, respectively. This system has
been built as a safety solution for office entrance. The DL
model has been trained on 7000 samples, 5000 training,
1000 validation, and 1000 testing. The algorithm achieved
up to 83% precision. This proposed algorithm can work in
real time with 30fps, and it uses image enhancement tech-
niques to improve accuracy.

Several approaches proposed in the literature include
robots designed to navigate and automate the process of face
mask detection autonomously. In [21], a TurtleBot3 robot
was used alongside a LiDAR sensor for obstacle detection.
The sensor scans and maps the environment using a 3D
visualization software available in the ROS environment.
Authors of [22] designed and built a robot that will assist
authorities in preventing the transmission of COVID-19
and its outbreaks. With biosensors and temperature detec-
tors, the robot can check for the virus. It also deploys a deep
learning artificial intelligence-based face mask detection. In
[23], the authors built a mobile robot called Thor that clas-
sifies people wearing masks from those who are not. This
robot is trained using ResNet50 to primarily detect
unmasked people and provide them with a mask to limit
the virus spread. The model’s accuracy was reasonable
despite the challenging nature of the dataset.

To the best of our knowledge, none of the existing mask-
wearing systems has catered primarily for students’ health
nor tested in educational settings. This research work pro-
poses an AI-powered self-driving robot to enforce student
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mask wearing through automated face mask detection and
classification techniques to address these limitations. We
design our robot to autonomously navigate an educational
environment using Simultaneous Localization and Mapping
(SLAM), especially in laboratories and classrooms, while
avoiding obstacles. The face mask detection and classifica-
tion system uses MobileNetV2 and YOLOv2 to detect stu-
dents with or without face masks and classify them into
three categories. The system uses bilingual auditory alerts
to notify students who are not wearing their masks or wear-
ing their masks incorrectly. This proposed system aims to
limit the spread of the COVID-19 virus in educational insti-
tutions, especially in laboratories and classrooms.

The remainder of the paper is structured as follows. The
Materials and Methods section presents the methodology of
our proposed research work, while the Results and Discus-
sion section discusses the results of our proposed system
and subsystems. We conclude our work in the Conclusions
section.

2. Materials and Methods

2.1. Proposed System Overview. We propose an AI-powered
self-driving robot to enforce student mask wearing that con-
sists of face mask detection and autonomous navigation sub-
systems as shown in Figure 1. The autonomous navigation
subsystem consists of a TurtleBot3 robot and a LiDAR sen-
sor. This subsystem allows the robot to navigate the educa-
tional environment autonomously, determining the
optimum path, mapping its surroundings, and avoiding
obstacles. The face mask detection subsystem simulta-
neously gets activated while navigating a laboratory or a
classroom. We train a machine learning model to detect
and classify students into three main categories: wearing
masks, not wearing masks, and wearing masks incorrectly.
The proposed system deploys auditory alerts to warn stu-
dents without masks or wearing them incorrectly. Through
such preventive measures, our approach ensures that stu-
dents are wearing their masks correctly at all times, control-
ling the transmission of the disease.

2.2. Robot Design. Our autonomous robot consists of a Tur-
tlebot3 Burger base with a built-in 360 degree LiDAR for
obstacle detection, SLAM and navigation, a gyroscope, and
an accelerometer. The robot is equipped with a Raspberry
Pi 3, an OpenCR control board to configure and control
the sensors and motors, respectively, and a battery. The
robot also consists of a camera for real-time video capturing,
a Bluetooth speaker for alerts, and an NVIDIA Jetson Xavier
for running the face mask detection algorithm. The robot
design, including the camera and other components’ posi-
tions, is illustrated in Figure 2.

2.3. Autonomous Navigation Subsystem. The proposed robot
navigates the educational premises autonomously using the
ROS framework as illustrated in Figure 3. The robot begins
by creating a static map of the surroundings using the SLAM
method, fed with 360 LiDAR sensor data. We first use a joy-
stick to drive the robot around manually. The ROS Naviga-

tion stack’s Gmapping [24] SLAM method is then used to
create the map of the environment accordingly, where the
map’s accuracy depends on the accuracy of the localization.
The LiDAR sensor’s odometry data and the data from the
motor encoders and gyroscope are used for localization.
The navigation algorithm then takes the odometry data,
the LiDAR sensor stream, and the static map of the sur-
roundings and outputs the velocity commands accordingly
to the motor driver, where they are then input to the naviga-
tion stack.

While the robot is navigating a laboratory or a class-
room, it may encounter various static and dynamic obstacles
that may obstruct its path. The robot performs a cautious
reset in the first recovery behavior, clearing the barriers
identified from the local cost map. If no path can be found
because the obstacles have not been cleared, the robot rotates
in its current location and checks whether the obstacles have
been removed. If it is still obstructed, the cost map is reset
entirely by clearing all obstacles. If the robot still cannot dis-
cover a way, it will perform one final rotation in its place
after clearing the cost map. The robot will then abort the
mission if none of the recovery attempts succeed.

2.4. Face Mask Detection and Classification Subsystem. We
train the face mask detector to identify students without
masks or wearing masks incorrectly and classify them into
three categories: correct, incorrect, or no mask. A Logitech
C920 camera is mounted on the robot to provide real-time
feedback while navigating the laboratory or a classroom set-
ting. We use three face mask detection datasets [25–27] to
develop the proposed detection model. These datasets
include people wearing face masks properly, improperly,
and without masks at all. Conducting many experimental
tests to increase accuracy, performance, and generalization
has led to 8 different datasets throughout this project. The
first dataset (refer to Table 1) collected had 4,400 images.
The dataset contained images of people wearing face masks
correctly and was not equally distributed. The model trained
based on this dataset did not satisfy our requirements, so we
have increased the dataset size. The second dataset con-
tained a total of 9,200 images. The model’s average precision
has improved, but it was not reliable enough. The dataset
size continued to increase until we reached a point where
the device used for training runs out of memory while train-
ing more than 15,200 images. To further improve our model,
we increased the number of categories into three categories
(correctly, incorrectly worn face masks, and without face
masks). We started with a dataset size of 6,600 images
(2,200 images per category). Starting with small dataset sizes
is critical to test whether the model’s average precision will
improve after increasing the dataset size and reducing the
weight on the detection models since the more trained data
used, the slower the detection model will be. The dataset that
built the highest precision models contained significant dif-
ferences than the previous ones. The finalized dataset
included more generalized images based on face angles, dis-
tances, and mask colors. Each dataset will be used to create a
unique face mask detection model. We will evaluate the pre-
cision and recall of the models to find the best model
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performance to be used for this study. The summary of each
dataset created can be presented in Table 1.

Due to the limited adequate amount of data available for
training the face mask detector AI model, image augmenta-
tion is performed. Images are rotated, zoomed in and out,
and shifted to generate various versions of each picture
and improve accuracy [28].

We use the Caffemodel and prototxt for the implementa-
tion for the detection of facial masks. Each frame is input

through a pretrained face detector model designed to iden-
tify and crop every detected face with a confidence of 70%
or higher. The cropped image is then scaled to 224 x 224
pixels, RGB encoded, and inputted into the classifier along
with the cropped face’s X and Y coordinates. We perform
face mask detection using the pretrained MobileNetV2 net-
work, a light-weight deep CNN model, and initialize the net-
works with the weights of the pretrained models trained on
the ImageNet dataset.

Figure 1: System overview diagram.

360° LiDAR

Camera
NVIDIA

Jetson xavier
Raspberry Pi 3

OpenCR

Li-Po battery

138 mm

Bluetooth
speaker

Figure 2: Robot hardware design.

Turtlebot3 burger
360° LIDAR
for SLAM &
navigation

PC 2D map creation

Navigating an enviroment

Figure 3: Autonomous navigation subsystem diagram.
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We conduct three main experiments to develop a detec-
tor that can detect face masks of students’ faces with high
accuracy and precision. All detectors in the upcoming exper-
iments were trained using Keras and TensorFlow2. In the
first experiment, different dataset sizes with two categories
only were used to generate various models for evaluation.
The models created in this experiment can be shown in
Table 2.

In the second experiment, different dataset sizes with
three categories were used to generate models for evaluation.
The models created in this experiment can be shown in
Table 3.

In the third experiment, one dataset containing three
categories was divided to generate three models in which
one category is dominant to the other categories within each
model. The dominant category contains half the dataset size
while the other categories share the other half equally. The
models created in this experiment can be shown in Table 4.

The output of the face mask detector includes the loca-
tion of the bounding boxes for each detected face, a colored
label, and the confidence score of those predictions. To fur-
ther classify the images, we use the You Only Look Once
(YOLO) object detector [29], shown in Figure 4 to detect
cases where students are wearing a full mask, nose exposed,

or chin mask and customize the bilingual alerts provided to
the user.

The full subsystem pipeline is illustrated in Figure 5.

3. Results and Discussion

3.1. Autonomous Navigation Results. We tested the AI-
powered robot in the engineering labs at Abu Dhabi Univer-
sity, UAE, and in various lab-like and classroom environ-
ments. Such settings include workstations, chairs, desks,
and other objects. The robot successfully mapped the lab’s
overall shape and the static objects using the LiDAR sensor,
as illustrated in Figure 6. It travelled through the goal points
defined on the planner without colliding with any obstacles
to arrive at the final destination. The local planner con-
structs a map once an obstacle appears that takes approxi-
mately 30 seconds to get around the obstacle and to the
goal point.

3.2. Face Mask Detection and Classification Results

3.2.1. Face Mask Detection Results. The trained models from
the face mask detection and classification subsystem were
used to generate a total of 6 face mask detectors to be tested
in real time. All detectors will then be compared to find the
best performance detector for this research work. Table 5
shows the testing results of each trained detector in real time.

From Table 5, Detectors 4 and 6 showed the highest
average precision compared to the other detectors. The
real-time results of the captured testing images can further
support the performance of all detectors. Figure 7 shows
the detection accuracy of Detector 6 for a single student cap-
tured by the robot, which has the highest precision out of all
other detectors.

In Figure 8, the robot captures 2 students in the labora-
tory environment in two different scenarios.

3.3. Face Mask Detection Model Evaluation 261. In this sec-
tion, we evaluate the performance of both the baseline

Table 1: Datasets created.

Name
Total
images

Categories
Models
generated

Dataset
1

15,200 Correct, incorrect Model 1

Dataset
2

9,200 Correct, incorrect Model 2

Dataset
3

4,400 Correct, incorrect Model 3

Dataset
4

10,000
Correct, incorrect,

without
Model 4

Dataset
5

6,600
Correct, incorrect,

without
Model 5

Dataset
6

12,000 Correct, other Model 6

Dataset
7

12,000 Incorrect, other Model 7

Dataset
8

12,000 Without, other Model 8

Table 2: Models created in experiment 1.

Name
Total images

trained
No. of
epochs

Batch
size

Categories

Model
1

15,200 12 32
Correct,
incorrect

Model
2

9,200 12 32
Correct,
incorrect

Model
3

4,400 12 32
Correct,
incorrect

Table 3: Models created in experiment 2.

Name
Images
trained

No. of
epochs

Batch
size

Categories

Model
4

10,000 11 32
Correct, incorrect,

without

Model
5

6,600 11 32
Correct, incorrect,

without

Table 4: Models created in experiment 3.

Name
Images
trained

No. of
epochs

Batch
size

Categories

Model
6

12,000 14 128 Correct, other

Model
7

12,000 14 128
Incorrect,
other

Model
8

12,000 14 128
Without,
other
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(Detector 4) and improved model detectors (Detector 6) and
discuss the main differences that led to better precision and
performance. To describe the model’s performance, we con-
struct a confusion matrix, as shown in Figure 9.

We primarily focus on the model’s predictive ability,
precision, and recall, instead of the classification time of
the model. We elaborate on these two metrics as follows:

(i) Precision quantifies how correct the model’s positive
predictions are, where positives mean correctly worn
masks and negatives mean incorrectly worn masks,
in our case. This means that the more the model cor-
rectly classifies the label “correctly worn masks,” the
more precise it will be. It can be computed using
Equation (1).

Precision =
TP

TP + FP
: ð1Þ

(ii) Recall is otherwise referred to as Sensitivity or True
Positive Rate (TPR). This measure refers to how
many people wearing their mask correctly did the

Conv. Layer
+

maxpool layer

Conv. Layer
+

maxpool layer

Conv. Layer
+

maxpool layer

Conv. Layer
+

maxpool layer
Conv. Layer Conv. Layer

Conn. Layer
Output

Conv. Layer
+

maxpool layer

Conv. Layer
+

maxpool layer

Conv. Layer
+

maxpool layer
Conv. Layer Conv. Layer

Conn. Layer
Out

Figure 4: YOLOv2 network architecture.

Data
pre-processing

Face detection

Image resizing &
RGB conversion

Face mask detection

Further classification:
YOLOv2 object

detection
Customized alerts

Input images

Figure 5: Face mask detection pipeline.

Figure 6: Map generated of the lab environment using the LiDAR
sensor.
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AI model miss out of all people who wore their face
masks correctly. It can be determined using Equa-
tion (2).

Recall =
TP

TP + FN
: ð2Þ

Due to the nature of this research work, precision is a
significant metric to report. We want to ensure that our AI
model can correctly identify students who wear their masks
correctly from those who do not. In other words, if the AI
model predicts that the student is wearing their face mask
correctly while they are not, the chances of spreading the
infection increases due to those wearing the face incorrectly
but not alerted.

We evaluate the proposed AI models and report on their
performance in terms of their precision. We also construct
Receiver-Operating Characteristic (ROC) curves using True
Positive Rates, TPR, vs. False Positive Rate (FPR). To con-
struct an ROC curve, we need to:

(1) Use the face mask detection model to produce a
probability of correctly worn masks (P (correctly
worn masks)) in each frame captured from the live
stream camera. The total number of test instances
(frames) that will be used is 100

(2) Sort the instances in descending order according to
the P (correctly worn masks).

(3) Count the number of TP, FP, TN, and FN after
applying a threshold to each unique P-value (cor-
rectly worn masks).

(4) Calculate the TPR using Equation (2) and FPR using
Equation (3).

FPR = FP
FP + TN

: ð3Þ

Following the previous steps, we build a table that will
help us construct an ROC curve for the model. We imple-
ment the following to improve the performance of the face
mask detection model:

(i) Increase the number of augmented images showing
students wearing face masks correctly in varying
angles

(ii) Use binary classification (one vs. all classification)
and repeat the experiment three times. The first time
to classify the correctly worn mask images vs. the
rest, while the second time to classify the incorrectly
worn face mask vs. the rest. The last experiment clas-
sifies students without a face mask vs. the rest

We train the improved face mask detection model on
100 frames and construct its ROC curve. We display the first
20 frame instances for the improved face mask detection
model along with their respective positive class probabilities
and confusion matrix metrics in Table 6.

The constructed ROC curve for the improved model
taken from Table 6 along with the ROC curve for the base
and default models can be seen in Figure 10.

As can be seen in Figure 10, the AUC for the improved
model is greater than the default classifier, which means it
is more precise than the base model presented in green.
We summarize the major differences between the base
model initially used and the improved face mask detection
model in Table 7.

We observe that the improved model’s detection speed is
affected by the dataset size, computing compatibility (GPU),
and the camera’s quality. A high-quality camera with better
shutter speed and exposure will increase the performance
significantly. Similarly, deploying the model on a more pow-
erful GPU with high compatibility can improve
performance.

3.4. Face Mask Classification Results. We present the out-
come of the YOLOv2 face mask classification system. The
test images are labelled Full Mask, Nose Exposed, or Chin
Mask. Figure 11 demonstrates the effectiveness of our model
in detecting and classifying students wearing masks from
varying angles regardless of the color of the mask worn.

The system can also accurately classify students wearing
their masks incorrectly as can be seen in Figure 12, where
the student had his nose exposed in (a) and both his nose
and mouth exposed in (b).

3.5. Computational Complexity and Inference Speed. The
frames captured using the camera mounted on the robot
go through different functions. Each function/process is
unique when it comes to complexity. In addition, the more
complex the process is, the more time the frame needs to
be processed. Frames captured by the camera start their pro-
cessing journey. At first, the frame gets resized since the
models trained are based on 224x224 pixel images. After
that, the spatial dimensions of the frame get extracted, and
a blob gets constructed. This constructed blob will pass
through the pretrained face detector to extract the confi-
dence and face coordinates of the captured frame. Next,
the frame with high confidence (face detection probability
above 70%) will pass through the face mask detectors (3 in
total). Each face mask detector will give a prediction based
on the input frame, and the face mask detector with the

Table 5: Performance of the MobileNetV2 detectors.

Name Models used Avg. precision Avg. recall

Detector 1 Model 1 0.692 0.562

Detector 2 Model 2 0.624 0.511

Detector 3 Model 3 0.538 0.445

Detector 4 Model 4 0.775 0.654

Detector 5 Model 5 0.707 0.633

Detector 6 Model 6 0.914 0.654
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highest accuracy will select the most accurate label to label
the input frame. Finally, the processed frames will be dis-
played using OpenCV with the corresponding face bound-
aries and labels. To compute the complexity of this
process, we calculated the frame rate (FPS) before and after
the face mask detection process. The frame rate without

mask detection using real-time video capturing was 25
frames per second. Once faces and masks are detected, the
frame rate drops to 10 frames per second. This means that
it takes 2.5 seconds additionally per frame to get processed,
detected, and labelled. The device used to obtain such results
was a laptop with a 2.4GHz CPU. Testing on GPU was

(a) (b)

Figure 7: Face Mask Detector testing accuracy for a student wearing a face mask (a) incorrectly and (b) correctly.

(a)

(b)

Figure 8: Face Mask Detector testing accuracy for two students in the lab, where (a) one student is wearing a face mask incorrectly while the
other student is wearing it correctly and (b) one student is wearing a face mask correctly while the other one is not wearing a face mask.

Actual class

Predicted class

Class 1: correct
Class 1: correct

Class 2: incorrect

Class 2: correct
a (TP)
c (FP)

b (FN)
d (TN)

TP: True positive
FN: False negative
FP: False positive
TN: True Negative

Figure 9: Confusion matrix.
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inapplicable since the GPU capability was below 3.0. As for
the Jetson Xavier NX, the compute capability is 7.2, which
can run the detection process in real time with a frame rate
of 8 frames per second. The computing device plays a critical
role in speeding up the detection process. Additionally, com-
patible versions of TensorFlow 2, CUDA, and cuDNN can
accelerate deep learning significantly. cuDNN provides
highly tuned implementations for standard routines such
as forward and backward convolution, pooling, normaliza-
tion, and activation layers. [30]

3.6. Convolutional Neural Network (CNN) Architectures.
Inference speed and mean average precision (mAP) are crit-
ical in CNNs. Choosing the correct CNN to train object
detection models will enhance the model’s performance.
The depth and types of layers (such as convolution, batch
normalization, and rectified linear unit (ReLU) activation)
are the main characteristics of CNNs. The deeper the CNN
is, the more precise the trained model will be. However, deep
CNNs are heavier than CNNs with few layers, which means

they will be much slower. Precision comes at a cost, so
choosing a CNN that can be both precise and fast is very
important. For this project, the model is pretrained on a
CNN with enough speed to achieve exact results. Moreover,
MobileNetV2 SSD CNN architecture was used to balance
precision and speed. To further support our choice, we pres-
ent in Table 8 a comparison between some of the different
pretrained CNNs based on speed and mAP. [31]

3.7. Enhancing the Generalization of the Proposed Model.
The generalization of deep learning models using data aug-
mentation helps ensure model optimization. Data augmen-
tation is a technique to increase the number of training
samples by modifying the already existing data. In [28], a
full-stage data augmentation framework is proposed to
improve the accuracy of deep CNN for image classification.
Two benchmarks CIFAR-10 and CIFAR-100, based on
coarse-grained and fine-grained tiny images dataset, were
used in the study. The experimental results for the study
on the coarse-grained dataset CIFAR-10 and dataset

Table 6: Testing instances up to 30 frames, probability of correctly worn masks, true class, prediction, TP, FP, TPR, FPR, recall, and
precision for the improved face mask detection model.

# P (+) True class Prediction TP (++) FP (-+) TPR (recall) FPR Precision

1 99.99 + + 1 0 0.015 0 1

2 99.97 + + 2 0 0.290 0 1

3 99.93 + + 3 0 0.044 0 1

4 99.92 + + 4 0 0.059 0 1

5 99.92 + + 5 0 0.074 0 1

6 99.91 + + 6 0 0.088 0 1

7 99.91 + + 7 0 0.103 0 0.857

8 99.88 + + 8 0 0.118 0 0.875

9 99.85 + + 9 0 0.132 0 0.889

10 99.85 + + 10 0 0.147 0 0.900

11 99.81 + + 11 0 0.162 0 0.909

12 99.75 + + 12 0 0.176 0 0.917

13 99.71 + + 13 0 0.191 0 0.923

14 99.71 + + 13 1 0.191 0.031 0.929

15 99.70 + + 14 1 0.206 0.031 0.933

16 99.70 + + 15 1 0.221 0.031 0.938

17 99.69 + + 16 1 0.235 0.031 0.941

18 99.65 + + 17 1 0.250 0.031 0.944

19 99.63 + + 18 1 0.265 0.031 0. 947

20 99.62 + + 19 1 0.279 0.031 0.950

21 99.57 + + 20 1 0.294 0.031 0.952

22 99.51 + + 21 1 0.309 0.031 0.955

23 99.36 + + 22 1 0.324 0.031 0.957

24 99.12 + + 23 1 0.338 0.031 0.958

25 99.12 + + 24 1 0.353 0.031 0.960

26 99.08 + + 25 1 0.368 0.031 0.962

27 99.00 + + 26 1 0.382 0.031 0.963

28 98.93 + + 27 1 0.397 0.031 0.964

29 98.91 + + 28 1 0.412 0.031 0.966

30 98.86 + + 29 1 0.426 0.031 0.967
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CIFAR-100 demonstrated 93.41% and 70.22% accuracy,
respectively. In another study [32], deep transfer learning
method is used for facial diagnosis from uncontrolled 2D
face images of various diseases like beta-thalassemia, hyper-
thyroidism, Down syndrome, and leprosy with a relatively
small dataset of 350 face images. The experiments showed
90% accuracy and demonstrate the effectiveness of CNN
for feature extraction of small datasets but emphasize the
need for data augmentation to increase the ability of the
model to detect more diseases with higher accuracy to per-
form facial diagnosis. This research [12] proposes real-time
AI platform for people detection and social distancing mea-
sure, and social distancing classification of individuals using
thermal camera. YOLO-v4-Tiny is used for model develop-
ment, which is a lighter version of YOLO-v4. Two datasets
were used of 1000 and 950 images, respectively. The dataset
was collected from different sources on the Internet of peo-
ple sneaking, walking, and running in different body posi-

tions. The final algorithm achieved up to 95% accuracy
and was deployed in Nvidia Jetson devices.

Based on the literature to better optimize our model, we
used utilized data generalization for our developed algo-
rithm. Our model’s ability to adapt to new unseen data relies
on different factors, such as face angles, distance, and mask
color, which are critical in improving the model’s generaliza-
tion ability. Moreover, numerous experimental tests were
conducted to enhance the models’ generalization ability. In
the first few experiments, the detection models struggled to
detect face masks at sharp angles between 45 and 90 degrees,
so we have improved our dataset by increasing the images of
people facing the camera at an angle to reach about 60% of
the total dataset. Furthermore, we noticed in our tests that
the model’s accuracy against masks of dark colors is low.
To avoid increasing the number of images containing people
wearing a dark face mask (such as black or brown), we have
used data augmentation to grayscale a considerable portion
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Figure 10: Comparison of the ROC curves of the improved face mask detection performance model shown in blue vs. the baseline model
shown in green vs. the default classifier in red.

Table 7: Differences between the base and improved models.

Differences Base model Improved model

Number of models 1 model 3 models

Categories Correct, incorrect, and without Correct, incorrect, and without

Dataset size 10,000 images 12,000 images

Mask colors Bright mask colors only Bright and dark mask colors

Face angles Facing the camera directly Face angles between 45 and 90 degrees

Frame rate 12 FPS 10 FPS

Inference time 83ms 100ms

Avg. precision 0.775 0.914

Avg. recall 0.654 0.654
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of our training dataset. Hence, the model now detects dark
and light-colored masks more accurately. In addition, it is
well-known that faces become unrecognizable at long dis-

tances. Likewise, face masks can be difficult to detect from
a distance. The pixel ratio between people’s faces and face
masks will change significantly. Two steps were taken to

(a) (b)

(c)

Figure 11: Full face mask classification using YOLOv2 object detection for a student wearing (a) blue mask and facing forward, (b) black
mask and facing to the left, and (c) white mask and facing to the right.

(a) (b)

Figure 12: (a) Nose exposed and (b) mask worn under the chin incorrectly detected with the proposed model.
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solve this limitation. In the first step, we included images
that contain multiple people shown at different distances
while wearing face masks correctly and not. In the second
step, we have used data augmentation to apply “zoom-out”
on the training data. With these two solutions, we have man-
aged to sort out the distance issue. The model can now
detect face masks from distances that can reach 6 meters.

4. Conclusions

In conclusion, we propose an AI-powered self-driving robot
to enforce student mask wearing in educational settings dur-
ing pandemics. We design and build the robot to navigate
and map lab and classroom environments autonomously.
Simultaneously, the face mask detection and classification
system can identify students wearing masks from those
wearing masks incorrectly or without a mask at all. Our
bilingual and customized auditory system alerts students
with no masks or incorrectly wearing their masks. We pro-
pose a mask-wearing robot as a solution to prevent the
spread of the disease in educational premises, primarily lab-
oratories and classrooms. Our face mask detection system is
trained on a dataset based on 3 Kaggle datasets, including
various images of people wearing face masks properly with
different colors, not wearing face masks properly, and people
with no mask. We train the model using MobileNetV2
architecture and classify the face masks correctly, incor-
rectly, or not wearing a mask. The training process resulted
in different face mask detectors for real-time performance
and precision testing. We use the YOLO object detector to
classify the images into students wearing full masks, nose
exposed, or chin masks. The face mask detector with three
integrated models showed the highest performance and pre-
cision (77.5%) of all other face mask detectors. The
improved performance detector had more images of stu-
dents facing 90-degree angles. In addition, the better perfor-
mance detector had three models in which each model had a
dominant category (Correct, Incorrect, and Without) and
achieved a precision of 91.4%. The overall system can oper-
ate for 2 hours and be extended using higher-capacity batte-
ries. We tested the proposed approach in the lab and
concluded that it efficiently alerts students not wearing a
mask or wearing it incorrectly while navigating the environ-
ment. The system’s limitations include small obstacles that
are not in the LiDAR’s range of vision, which can be over-
come by using ultrasonic sensors. Moreover, to reduce cam-

era blur and jitter and increase the prediction accuracy, we
have programmed the robot to stop when detecting a face,
capture an image, and continue moving.

Data Availability

The face mask detection datasets used to support the find-
ings of this study are available from the corresponding
author upon request.
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