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Cloud storage, an economically attractive service offered by cloud service providers (CSPs), has attracted a large number of
tenants. However, because the ownership and management of outsourced data are separated, outsourced data faces a lot of
security challenges, for instance, data security, data integrity, data update, and so on. In this article, we primarily investigate
the problem of efficient data integrity auditing supporting provable data update in cloud computing environment.
Subsequently, on the basis of the Merkel sum hash tree (MSHT), we introduce an efficient outsourced data integrity auditing
scheme. Our designed scheme could synchronously meet the requirements of provable data update and data confidentiality
without dependency on a third authority. At the same time, the numerical analysis shows that the computing complexity
logarithmically grows with the number of outsourced subfiles. Finally, a prototype implementation is developed to simulate our
designed scheme and measure its performance. The consequences of experiments present that compared with some previous
solutions, our designed scheme has much more attractive practicality and higher efficiency in practical applications.

1. Introduction

With the fast development of computer and network technol-
ogy, the total volume of digital data shows an exponential
growth tendency [1]. The investigation report shows that there
were 5200 GB digital data for everyone on average in 2020 [2].
However, the storage resources of tenants are so limited that
cannot preserve such large-scale data. Therefore, massive data
storage would become a challenging problem for resource-
constrained tenants. Fortunately, cloud storage offers a poten-
tial solution to handle the issue of massive data storage and
management. By embracing cloud storage services, tenants
could upload their data to the cloud data center, thus effica-
ciously reducing the local memory space and computational
cost [3]. Because of these attractive advantages, a growing
number of tenants prefer to employ cloud storage services.

According to the report of Cisco, there were 3.6 billion Inter-
net consumers at the beginning of 2020. At the same time,
about 55% of Internet consumers embraced cloud storage [4].

In cloud storage, the management of outsourced data is sep-
arated from its ownership [5]. Therefore, tenants would lose the
physical management of their outsourced data, thus cannot
directly perform any operations over the outsourced data [6].
In other words, the cloud data center performs all operations
over the outsourced data. Nevertheless, the cloud data center
is not fully reliable, and it might not honestly perform these
operations according to the tenant’s commands. As a result,
although cloud storage has huge advantages, it inevitably faces
plenty of serious problems [7], for instance, data confidentiality,
data integrity, data update, etc. If these problems, especially data
integrity, are not solved well, it will greatly prevent the public
from accepting and employing cloud storage services [8].
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To guarantee outsourced data integrity and availability,
plenty of solutions have been presented [9-11]. However,
there still exist some problems which need to be solved sol-
idly. First, most of the previous solutions are based on proof
of retrievability (PoR) technology or provable data posses-
sion (PDP) technology, whose computing complexity grows
approximatively linearly with the scale of outsourced files.
Hence, the efficiency is not attractive if the scale of out-
sourced file keeps growing [12]. Second, lots of the previous
works require to depend on a third authority (TA), whose
security and stability are particularly troubling. On the one
hand, because of the expensive overhead, the third authority
would refuse to provide services, which will cause service
interruption. On the other hand, the third authority might
be attacked by the adversary, and it cannot resist the com-
mands of the government, which both would trigger privacy
leakage. Last but not least, although some of the previous
solutions concurrently accomplish data confidentiality, data
integrity, and data update in some special scenarios, the
practicability and universality are so limited that they cannot
be applied to large-scale data outsourcing scenarios.

From the above analysis, we can easily discover that
there are still some issues in the previous solutions. Further,
there are few solutions that can simultaneously achieve data
integrity auditing and dynamic data update efficiently with-
out dependency on a third authority. As a consequence, the
main motivation of this paper is to design a novel scheme to
simultaneously solve the above problems. Specifically, we
aim to make use of Merkle sum hash tree (MSHT) to design
an efficient outsourced data integrity auditing scheme sup-
porting provable data update without interacting with a
third authority. As a consequence, the main contributions
of this article are the two folds as below.

(i) We use MSHT to establish a high-performance out-
sourced data integrity verification scheme, which
simultaneously supports provable outsourced data
update. Specifically, the designed scheme can not
only ensure the data integrity and usability but also
meet the requirement of block-based data update,
by which tenants can efficaciously update the out-
sourced data and check the update result without
retrieving the data. At the same time, the designed
scheme can realize the confidentiality of outsourced
data, thus preventing the leakage of privacy
information

(ii) Our designed scheme could achieve the anticipant
functionality objectives without dependency on a
third authority. In the meantime, under the random
oracle model, we conduct a detailed security analysis
to prove that the designed scheme is secure. Finally,
a prototype implementation is developed to simulate
the proposed scheme and perform the efficiency
evaluation, which directly presents the practicability
of the designed scheme

1.1. Related Works. Data integrity auditing has already been
investigated in the past several decades both in academic and
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industrial, resulting in a rich body of literature [13-16]. In
2007, Ateniese et al. [17] first designed a PDP model, in
which they utilized random sampling to realize data integ-
rity auditing efficiently. In the meantime, they put forward
two detailed PDP schemes which were provable secure and
efficient. In order to achieve remote data possession check-
ing (RDPC), Chen [18] utilized algebraic signatures to
design a possession auditing scheme for remote data. In
her designed scheme, the communication overhead was con-
stant in challenge and response protocols, which could
improve efficiency. However, Yu et al. [19] found that the
previous protocol [18] was not able to prevent replay attacks
and deletion attacks. At the same time, they proposed a
novel remote cloud data possession auditing scheme, which
could effectively resist deletion attack and replay attack. Li
et al. [20] studied the challenge of multiple copies of data
integrity auditing, in which multiple copies of data were
maintained by multiple cloud data centers. After that, they
presented a novel data integrity auditing protocol, which
could improve efficiency by checking all copies at one time.
Wang [21] designed a novel model called identity-based dis-
tributed PDP (ID-DPDP). At the same time, he utilized
bilinear pairings to present a concrete ID-DPDP protocol
for multicloud storage scenario. His proposed scheme could
support private validation, delegated validation, and public
validation. In order to improve the efficiency, Chang et al.
[22] designed an identity-based PDP protocol, in which they
adopted a novel hash function to save the communication
overhead.

In 2019, Fan et al. [23] designed an identity-based aggre-
gate signature (SIBAS) and took it as the secure integrity val-
idation protocol over cloud data, which could synchronously
realize reliable key management through Shamir’s threshold
protocol. In 2021, Shen et al. [24] presented a novel concept
named data integrity reliable without private key storage and
designed a concrete solution, in which they utilized the
advantages of biometric data to remove the hardware token.
Lu et al. [25] utilized hyperledger fabric to build a secure
data integrity validation protocol with scalability. Zhang
et al. [26] put forward a blockchain-based cloud data integ-
rity verification protocol, which could support public verifi-
ability. In their scheme, all the verification results would be
recorded into a transaction that was time-sensitive. Li and
Zhang [27] designed a certificate-based integrity auditing
protocol, which was provable secure under the random ora-
cle model. Moreover, their scheme required constant com-
putational overhead to generate a verification tag for a data
block. Nevertheless, the above solutions could not realize
data dynamic operations, such as data update.

In order to simultaneously achieve data integrity audit-
ing and data dynamic update, Liu et al. [28] presented an
improved dynamic PDP (DPDP) protocol, which, respec-
tively, utilized tags and hash values to guarantee data integ-
rity and tag integrity. Chen and Curtmola [29] designed a
remote DPDP scheme, which could achieve data integrity
auditing and data update with constant storage overhead
for client. Barsoum and Hasan [30] presented a PDP proto-
col for multi-backup dynamic cloud data, which was able to
support full data dynamics. In 2015, Esiner et al. [31] utilized
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flexlist to design an optimized DPDP scheme, which was
able to hand plenty of updates simultaneously, thus improv-
ing efficiency. Yuan et al. [32] studied the integrity auditing
for dynamic multi-replica data that was maintained by mul-
tiple cloud data centers, and they presented a solution to
hand this problem. In their protocol, the modular exponen-
tiation was replaced by the vector dot products, thus effec-
tively saving computational resources. In 2021, Yu et al.
[33] used indexed Merkle hash tree (IMHT) to design an
efficient dynamic data auditing protocol, which could sup-
port fully dynamic operations. To achieve batch verification,
Guo et al. [34] utilized implicitly indexed balanced Merkle
tree (IBMT) to put forward a dynamic proof of data posses-
sion and replication (DPDPR) protocol. Their proposed
solution greatly saved computational and communication
resources. However, their solution required introducing a
TPA to complete cloud data integrity verification.

Besides PDP, plenty of authentication data structures
also can achieve integrity auditing and support data dynamic
operations. He et al. [35] utilized permission-based signature
and blockless Merkle tree to present a dynamic group-
oriented PDP protocol, and they claimed that their protocol
was an important phase in establishing efficient multi-writer
cloud storage systems. Chen et al. [36] designed a novel PDP
model based on blockchain, which might be utilized to
achieve distributed cloud storage framework. Subsequently,
they designed a concrete decentralized PDP scheme by uti-
lizing multi-replica storage tricks, which supported dynamic
operations over outsourced data. Recently, Guo et al. [37]
connected multi-leaf-authenticated and rank-based Merkle
tree to realize integrity checking and batch update over out-
sourced data in secure cloud storage. Chen et al. [38] utilized
vector commitment (VC) to build a novel verifiable database
(VDB) model supporting replacement update, which could
resist forward automatic update attack. Chen et al. [39] pro-
vided an improved VDB scheme, which utilized committed
invertible Bloom filter to realize full dynamic operations.
Nevertheless, their schemes required to perform plenty of
bilinear pairing computations, resulting in expensive com-
putational overhead.

1.2. Organization. We organize the rest of this paper as
below. Section 2 describes the preliminary of MSHT, which
will be used to establish our novel scheme. In Section 3, we
introduce the problem statements and then introduce the
proposed scheme in Section 4. After that, the scheme analy-
sis, including security analysis, functionality contrast, and
computational complexity analysis is introduced in Section
5. Next, we implement our designed scheme and evaluate
its efficiency in Section 6. At last, Section 7 simply concludes
this paper.

2. Preliminaries

MSHT was originally designed by Miao et al. in 2018 [40],
which could be regarded as a development of the traditional
MHT [41]. Similar to MHT, MSHT can also verify the data
integrity of any subset [42]. However, there are two differ-
ences between MHT and MSHT. On the one hand, all leaves

of MSHT could manage many data blocks, but each leaf of
MHT could merely save one data block. On the other hand,
the amount of data blocks managed by the leaf is used as
input to generate the hash value, as demonstrated in
Figure 1. Subsequently, the Merkle root node Hj contains
all of the data blocks in the given set, and a signature Sig,
can be generated on the hash value Hy through a provable
secure signature protocol.

Similar to MHT, MSHT also relies on the auxiliary vali-
dation information ¢ to achieve data integrity auditing. Aux-
iliary validation information ¢ contains the hash values and
the data block numbers of the sibling nodes on the path
from the verified leaf node to the Merkle root node [43].
For example, to verify the integrity of data block f;, the
auxiliary validation information is ¢, = ((hy, 1), (hyy,2)).
Then, the verifier can recompute a novel Merkle root node
Hy by utilizing the auxiliary validation information ¢, and
compare Hy with Hp. At the same time, the verifier, audits
the correctness of signature Sigy. If and only if Hy is equal
to Hy and Sig, is a correct signature on Merkle root node
Hy, will the verifier believe that f3, is intact.

3. Problem Statements

We present the problem statements (i.e., system framework,
technology challenges, and design goals) in this section.

3.1. System Framework. We study the problem of high effi-
ciency data integrity checking supporting provable data
update for secure cloud storage, whose system framework
consists of two participants: a tenant and a cloud data center,
as demonstrated in Figure 2.

3.1.1. Tenant. The tenant is equipped with restricted storage
capacities, so he/she could not save and manage massive
data by himself/herself in local storage mediums. Therefore,
the tenant prefers to upload his/her massive data to the
remote cloud data center. Later, the tenant wants to utilize
a few novel data blocks to replace some old data blocks for
efficiently updating the outsourced data set. Since the tenant
lacks trust in the cloud data center, the tenant would want to
audit the integrity of the outsourced data and the result of
the data update operation.

3.1.2. Cloud Data Center. The cloud data center connects
plenty of dispersive physical disks, network resources, and
computational devices by the Internet and establishes a shar-
ing resource pool, thus providing the tenant with convenient
and eflicient storage services. Meanwhile, since the owner-
ship outsourced data is separated from its management,
the cloud data center executes outsourced data update oper-
ations for the tenant and returns related proofs to convince
the tenant that the outsourced data blocks have been cor-
rectly updated according to the tenant’s commands.

3.2. Security Challenges. The following three security chal-
lenges must be seriously considered and solidly solved in
our proposal.
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FIGURE 2: System framework of the designed scheme.

3.2.1. Privacy Leakage. Outsourced data usually contains
some privacy information of tenant. In cloud storage, the
cloud manager is so curious that peeps at the outsourced
data for finding some privacy information of the tenant.
Meanwhile, external attackers (such as hackers) might ille-
gally access the outsourced data to dig the privacy informa-
tion. As a consequence, privacy leakage is a severe challenge
that should be seriously considered.

3.2.2. Data Pollution. Because of the following three reasons,
outsourced data might be polluted. First, data loss would be
caused by software failure, hardware breakdown, and erro-
neous operations of the cloud manager. Second, the cloud
data center may maliciously remove a few outsourced data
blocks which are seldom utilized in order to save storage
overhead. Third, hacker might maliciously target the cloud
data center, causing damage to the outsourced data.

3.2.3. Dishonest Data Update. The cloud data center must
run some complex protocols or calculations in order to
achieve outsourced data update. In consequence, the cloud
data center has to cost some expensive computational over-
head and some additional storage capacities, which is unde-
sired for the cloud data center. Therefore, the cloud data
center may not honestly execute the tenant’s command to
update the outsourced data.

3.3. Security Goals. In the designed scheme, we require to
meet three requirements as follows, including data confiden-
tiality, data integrity auditing, and provable data update.

3.3.1. Data Confidentiality. Data confidentiality refers to
keeping the tenant’s privacy information included in the
outsourced data secret. In consequence, to avoid the leakage
of privacy information, the tenant should encrypt the
outsourced file by utilizing a secure encryption protocol
before uploading.
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3.3.2. Data Integrity Auditing. Data integrity is defined that
the cloud data center saves and manages the outsourced data
integrally. If malicious data pollution has occurred in out-
sourced data blocks, the tenant can effectively discover the
data pollution through periodically performing a data integ-
rity auditing operation.

3.3.3. Provable Data Update. Provable data update refers to
that the cloud data center must sincerely perform the ten-
ant’s outsourced data update command and honestly return
related evidence. The tenant can check the returned evidence
to detect malicious acts if the cloud data center did not hon-
estly update the outsourced data.

4. Our Scheme

We establish a high-efficiency data integrity auditing
scheme, which can also realize data confidentiality and veri-
fiable data update in secure cloud storage environment. Spe-
cifically, the proposed scheme contains five main phases:
initialization, data preprocessing, data outsourcing, data
integrity auditing, and data update.

4.1. Initialization. In this phase, the tenant achieves registra-
tion on the cloud data center. Meanwhile, some related pub-
lic parameters and public/privacy key pairs are generated.

4.1.1. Tenant Registration. Before employing the cloud data
center’s data storage services, the tenant must become a legit-
imate customer of the cloud service providers. Hence, the ten-
ant has to register and complete the identity authentication on
the cloud data center. Then, the tenant becomes a legitimate
customer of the cloud data center and obtains a unique iden-
tity number ID. As a consequence, the tenant can employ
the cloud data center’s data storage services directly.

4.1.2. Parameter/Key Generation. Firstly, the public/private
key pair (PK,SK.) for the elliptic curve digital signature
algorithm (ECDSA) is generated by the cloud data center.
Then, the cloud data center publishes the public key PK.
and keeps the privacy SK so confidential that nobody else
can obtain it. Similarly, the tenant computes public/privacy
key pair (PKy, SK). Subsequently, the tenant publishes the
public key PK; and keeps the privacy SK confidential. At
the same time, the tenant picks an identifier n; for the file F.

4.2. Data Preprocessing. This phase mainly achieves data
encryption and ciphertext segmentation. The detailed pro-
cess of data preprocessing is below.

4.2.1. Data Encryption. Generally, the outsourced file
involves some privacy information which has to be kept con-
fidential. Hence, before uploading the outsourced data to the
cloud data center, the tenant should encrypt it to protect the
privacy data. To be more specific, the tenant first computes a
key K = H(IDl|n;[|SK ), in which H(-) is a secure hash algo-
rithm. After that, the tenant executes data encryption oper-
ation f = Ency(F), in which Enc is a symmetric encryption
scheme, and it is indistinguishable under chosen-plaintext
attack (IND-CPA), and f is the corresponding ciphertext.
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4.3. Data Outsourcing. In this phase, the outsourced data set
is maintained through building an MSHT, and then, the
whole tree is outsourced to the cloud data center. The details
of data outsourcing are described as below.

4.3.1. Tree Building. The tenant uses the received data blocks
to construct a Merkle sum hash tree MSHT that contains n
leaf nodes Ny, N,, ---, N,,. In MSHT, every leaf saves a sub-
file, ie., leaf N; saves subfile f,. Subsequently, the tenant
could acquire a Merkle root Hy. Meanwhile, the tenant com-
putes a signature Sig, for hash value Hp, where Sig, =

Signgc (Hg), and Sign is the signature computation algo-
rithm of ECDSA. Next, the tenant uploads the whole Merkle

sum hash tree MSHT to the cloud data center, along with
the Merkle root’s signature Sigp.

4.3.2. File Storage. On receipt of the outsourced data set f,
the tree MSHT, and the signature Sig,, the cloud data center
audits the correctness of MSHT. To be more precise, the
cloud data center rebuilds the tree by utilizing outsourced
data set f and then acquires a novel hash value of the Merkle
root Hy. Subsequently, the cloud data center checks if equal-
ity Hy = Hy, holds, meanwhile, confirms the correctness of
the signature Sig,. If and only if equality Hy = Hy holds
and signature Sig, is correct, will the cloud data center think
the received tree MSHT is correct and then manage the out-
sourced file for the tenant by saving the tree MSHT. At last,
the cloud data center returns success to the tenant to indi-
cate the data storage result.

4.3.3. Data Deletion. After the outsourced file is successfully
stored by the cloud data center, the tenant deletes all copies
of outsourced file F and outsourced data set f for saving

local storage capacities. Subsequently, the tenant merely
stores the Merkle root H in local physical disks.

4.4. Integrity Auditing. After the tenant uploads the out-
sourced data to the cloud data center, the data integrity
auditing is periodically executed to ensure the integrity of
outsourced data. Then, the details of data integrity auditing
are below.

4.4.1. Information Retrieval. The tenant firstly discretiona-
rily picks an integer i, where 1<i<n. Subsequently, the
tenant gets the subfile f; = (f;,,f;,."*",fis) and its related
auxiliary validation information ¢, back from the cloud
data center.

4.4.2. Merkle Root Rebuilding. The tenant utilizes the auxil-
fary validation information ¢, and the subfile f;=(f,,,
fizfis) to rebuild the Merkle root. Subsequently, the
tenant can obtain a novel hash value Hy of Merkle root
for contrasting with Hy. If equality Hp =Hjy does not
hold, the tenant believes that the subfile f;=(f;,f;5 "
fis) has been polluted; Otherwise, if equality Hp=Hj
holds, the tenant can believe the subfile f;=(f;,f; ;"
fis) is intact.

4.5. Data Update. The tenant wants to utilize a few novel
data blocks to replace some old outsourced data blocks, thus
efficiently updating the outsourced file. Subsequently, the
detailed steps of data update are below.

4.5.1. Command Generation. For simplicity, assume that the
tenant hopes to update the outsourced data block f kp? which
is stored by leaf node N, where 1 <k<nand 1<p<S. Sub-
sequently, the tenant retrieves the subfile f; = (f; , fro "
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FIGURE 4: Time cost of data preprocessing.

frs) from the cloud data center, as well as its auxiliary vali-
dation information ¢,. Meanwhile, the tenant generates a
signature Sig, = SignSKT (update||kllpll T), where T represents
the timestamp. Next, the tenant can further generate a data
update command UC = (update, k, p, T, Sig). Finally, the
tenant transmits the data update order UC to the cloud data
center, along with the novel data block f/ p

4.5.2. Data Updating. When the cloud data center receives a
data update command UC and a new data block f kp the
cloud data center firstly audits the correctness of the data
update command UC by signature checking. To be more
specific, the cloud data center validates the signature Sig,.
If Sig; is an invalid signature, the cloud data center returns
failure; otherwise, if signature Sig, is correct, the cloud data
center replaces the old data block f; , with the new data

block f’ kp Meanwhile, the cloud data center obtains a new

Merkle sum hash tree MSHT', as presented in Figure 3. Sub-
sequently, the cloud data center transmits the new Merkle
root H,, along with its corresponding signature Sig, to the
tenant, where Sig, = Signg _(H,).

4.5.3. Result Checking. Upon receiving H, and Sig, from the
cloud data center, the tenant could audit the data update
result. Specifically, the tenant firstly utilizes the auxiliary val-

idation information ¢, and the new subfile f; = (f 1 kp

»+frs) to acquire a novel hash value H, of the Merkle root
for contrast with H,, where H, is returned by the cloud data
center. Meanwhile, the tenant validates the validity of the
signature Sig,. If and only if the equality H,=H, holds
and signature Sig, is correct, will the tenant think that the
cloud data center has honestly executed the data update
command.

5. Scheme Analysis

5.1. Security Proof. We would formally demonstrate that the
novel designed scheme could achieve the anticipant design
goals, including data confidentiality, data integrity, and
provable data update.

5.1.1. Theorem 1: The Designed Scheme Could Achieve Data
Confidentiality. Data confidentiality refers to that the privacy
information included in outsourced data should not be dis-
closed. Generally, outsourced data should be encrypted with
a safe encryption protocol to avoid the leakage of sensitive
information. As a consequence, the encryption protocol
directly determines the security of outsourced data. In our
designed scheme, before storing the outsourced file on the
cloud data center, the tenant encrypts the outsourced file
with an IND-CPA secure symmetric encryption protocol,
such as AES. Thus, the corresponding ciphertext IND-CPA
is secure too. As a result, if the attacker is unable to obtain
the corresponding decryption key, he/she will be unable to
extract any plaintext information from the ciphertext with
a nonzero probability in polynomial time [44, 45]. That is,
in our designed scheme, no attacker can get any plaintext
data from the ciphertext if the tenant keeps the encryption/
decryption keys secret.

5.1.2. Theorem 2: The Designed Scheme Could Ensure Data
Integrity. Data integrity is defined that the cloud data center
has to save and manage the outsourced data honestly and
prevent it from being polluted. Otherwise, the tenant could
discover the malicious outsourced data destruction with an
overwhelming probability. In our designed scheme, the ten-
ant randomly chooses an integer i from Z,. After that, the
tenant retrieves the subfile f;=(f; ,f;,,"*f;5) from the
cloud data center, as well as its auxiliary validation informa-
tion ¢,. As a result, the tenant can recompute a novel hash
value Hy, of Merkle root for contrast with Hy. Note that in
data outsourcing scenario, the scale of outsourced subfiles
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is so large that the cloud data center could not correctly
guess the chosen number i with nonnegligible probability
in advance. Meanwhile, the hash function is collision-
resistant and one-way. Therefore, if the outsourced data is

polluted, in polynomial time, the cloud data center could
not successfully forge a new data block to make equality
Hy=Hjy hold with a nonnegligible probability. In other
words, if and only if the outsourced data is intact, will
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equality Hy = Hy hold. That is, if and only if equality Hy
= Hjy holds, will the tenant believe that the outsourced data
is intact.

5.1.3. Theorem 3: The Designed Scheme Could Achieve
Provable Data Update. Provable data update means the
cloud data center sincerely updates the outsourced data
under the tenant’s permission. To guarantee the data update
operation is executed under the tenant’s permission, the
cloud data center verifies whether the data update command
DC is correct and valid by signature verification. Note that
the data update command DC contains a digital signature
Sig;, which is generated by the tenant with the privacy key
SK ;. As we know, the privacy key SK is kept so secret by
the tenant that nobody else can obtain it. Further, only the
tenant can compute the signature SK and generate the data
update command DC. Therefore, the signature SK; can be
seen as evidence which proves that the tenant prefers to
update the outsourced data set. In other words, if signature
SK is valid, it can mean that the data update command is
indeed generated by the tenant. Then, the data update oper-
ation is executed by the cloud data center under the tenant’s
permission.

Moreover, since the tenant lacks trust in the cloud data
center, he/she would want to authenticate the result of data
update to guarantee the data update command is honestly
carried out by the cloud data center. Specifically, the tenant
firstly checks the correctness of signature Sig,. When signa-
ture Sig, is correct, the tenant thinks that the Merkle root H,
is returned by the cloud data center without being tamper-
ing. Subsequently, the tenant utilizes the new subfile f = (

f k’1,~-~,f( kp»"fks) and the auxiliary validation information

¢, to recompute a novel Merkle root H|. Then, the tenant

contrasts the new Merkle root H, with the Merkle root H,
that is returned by the cloud data center. Note that the cho-
sen hash function is collision-resistant and one-way. There-
fore, if the cloud data center did not update the outsourced
data set honestly, in polynomial time, it is unable to effi-
ciently forge the Merkle root H, to make equality H, = H,
hold with a nonnegligible probability. As a consequence, if
equality H, = H, holds and signature Sig, is correct, the ten-
ant can believe that the data update command has been hon-
estly performed by the cloud data center.

5.2. Functionality Contrast. We would compare the func-
tionality of our designed scheme and two previous schemes
[16, 33], as demonstrated in Table 1.

From Table 1, we can obviously get three findings as
below. First, the three solutions all can ensure data integrity,
which enables the cloud data center to maintain the out-
sourced file honestly. Meanwhile, they all utilize secure
encryption algorithms to prevent privacy information from
leakage, thus ensuring data confidentiality. Second, our
designed scheme and the previous scheme [33] can achieve
block-based data update, but the previous scheme [16] can-
not support data update. Finally, the previous scheme [33]
requires relying on a TA to realize data integrity checking
and provable data update, while the other two solutions do
not need to interact with a TA. Therefore, we can trust that
the overall functionalities of our designed scheme are more
appealing than the other two previous solutions [16, 33].

5.3. Numeric Analysis. We present the numeric analysis
through computational complexity contrast. We first
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introduce some symbols which would be utilized for the
contrast. To be more specific, we adopt symbols E, H, Exp,
and M to, respectively, represent encryption computation,
hash calculation, modular exponentiation computation,
and multiplication operation. Meanwhile, we utilize symbol
S and symbol V to, respectively, represent signature compu-
tation and signature auditing. Moreover, symbol n repre-
sents the number of outsourced subfiles, symbol P
represents bilinear pairings computation, symbol k denotes
the number of audited data blocks, and symbol g denotes
the number of updated data blocks. In scheme [33], we
assume each data block would be further split into s sectors.

From Table 2, we obviously discover our designed scheme
which merely requires to compute/audit some signatures and
compute some hash values. However, the other two solutions
[16, 33] need to perform some modular exponentiation calcu-
lations or bilinear pairing computations. Therefore, we can
consider that our designed scheme has higher efficiency than
the other two previous solutions [16, 33].

6. Experimental Results

We carry out a prototype system to simulate our designed
solution. Meanwhile, we evaluate the computational perfor-
mance of executing the primary computations in each pro-
cess. All the experiments are carried out on a desktop with
Unix system, Intel(R) Core(TM) i7-7700 CPU running at
8 GB random access memory and 3.6 GHz.

In the simulation experiments, the pairing-based cryp-
tography library and the open secure socket layer library
are used to simulate the related cryptographic algorithms.
To be more specific, SHA — 1 is chosen as the secure hash
function and AES is chosen as the secure encryption algo-
rithm. Moreover, we choose ECDSA as the signature algo-
rithm. For simplicity, we ignore the communication cost
and assume that in our designed solution, each subfile is
divided into a data block. That is, we treat a subfile as a data
block in the experiments.

6.1. Time Overhead of Data Preprocessing. This data prepro-
cessing phase aims to complement data encryption and
ciphertext segmentation. As a consequence, the running
time overhead of data preprocessing is concerned with the
scale of outsourced file and the quantity of outsourced sub-
files. In the experiment, the number of outsourced subfiles
is set to n = 3000 and the scale of outsourced file is increased
from 2MB to 20 MB. Subsequently, we measure the time
overhead of data preprocessing, as presented in Figure 4.
Figure 4 clearly demonstrates that the time overhead of
data preprocessing linearly increases with the scale of out-
sourced data approximatively. At the same time, our designed
solution’s growth rate is a little lower compared with that of
the previous solution [16]. Moreover, we are able to discover
that our designed solution requires less time than the previous
solution [16] under the same size of outsourced file. For exam-
ple, if the scale of outsourced data reaches 20 MB, our designed
solution requires nearly 55.6 milliseconds, while the previous
solution [16] costs about 71.5 milliseconds. As a result,
although the data preprocessing phase is performed by the

tenant, the data preprocessing is a single-use for a given out-
sourced file; meanwhile, it can be executed off-line. In conse-
quence, we could trust that our designed solution is quite
high-efficiency in the step of data preprocessing.

6.2. Time Overhead of Data Outsourcing. This data outsour-
cing phase aims to build a data structure for managing the
outsourced file and upload the outsourced file to the cloud
data center. Therefore, the running time overhead of data
outsourcing is connected to the quantity of data blocks.
For convenience, the quantity s is set to 500. At the same
time, the quantity of data blocks is increased from 1000 to
10000. Subsequently, we provide the running time overhead,
as presented in Figure 5.

Figure 5 shows that in data outsourcing phase, all the
running time overhead of the three solutions roughly grows
with the quantity of data blocks. In the meantime, our
designed solution’s growth rate is the lowest among the three
solutions. Moreover, the other two solutions [16, 33] both
require significantly more time than our designed solution.
For instance, when the quantity of data blocks is 5000, the
time overhead of our designed solution is nearly 7.0 millisec-
onds, but the time of the previous solution [16] is 30.8 mil-
liseconds, and the time overhead of the previous solution
[33] is approximately 36.3 milliseconds. Foreseeably, our
designed solution would require the least time overhead to
outsource the same quantity of data blocks. As a conse-
quence, we could directly consider our designed solution is
more efficient than the other two solutions [16, 33] in data
outsourcing phase.

6.3. Time Overhead of Integrity Auditing. The data integrity
checking process aims to check the integrity and availability
to ensure the cloud data center sincerely saves and manages
the outsourced data. Hence, the running time overhead of
integrity auditing is connected to the quantity of outsourced
data blocks. As a consequence, we let k=100 and s=n for
convenience. Meanwhile, the quantity of outsourced data
blocks is increased from 1000 to 10000. Subsequently, the run-
ning time cost of data integrity auditing is presented in
Figure 6.

From Figure 6, we would directly discover that all the
time cost of the three solutions grows with the quantity of
outsourced data blocks, while our designed solution’s
growth rate is the lowest. This is because the time cost of
our designed solution logarithmically increases with the
quantity of outsourced data blocks, while the running time
cost of the other two previous solutions [16, 33] linearly
grows with the quantity of outsourced data blocks approxi-
matively. Furthermore, our designed solution requires the
least time cost, and the previous solution [33] requires the
most time cost. For instance, if the quantity of outsourced
data blocks is 5000, the running time cost of our designed
solution is nearly 1.7 milliseconds, while the time overhead
of the previous solution [16] is approximately 31.1 millisec-
onds, and the time of the previous solution [33] is about 38.9
milliseconds. Therefore, we could trust that the efficiency of
our designed solution is higher than these of the other two
previous solutions [16, 33].
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6.4. Time Overhead of Data Updating. This data updating
phase aims to utilize a few novel data blocks to replace the
old data blocks, thus updating the outsourced data. Hence,
the running time overhead of data updating is concerned
with the quantity of outsourced subfiles. We let g =100
and s = n for convenience. Meanwhile, we grow the quantity
of outsourced subfiles from 1000 to 10000. Subsequently, we
measure the running time overhead, as presented in
Figure 7.

From Figure 7, we can clearly discover that in data
updating phase, the running time cost of both our designed
solution and the previous solution [33] grows with the quan-
tity of outsourced data blocks. At the same time, the time
overhead of our designed solution shows a much lower
growth rate compared with that of the previous solution
[33]. Specifically, the running time cost of our designed solu-
tion shows a logarithmic growth tendency, while the time
overhead of the previous solution [33] presents a linear
growth tendency. Furthermore, our proposed solution
requires a substantially less time overhead than the previous
solution [33]. For instance, when the quantity of outsourced
subfiles is 5000, the time overhead of our proposed solution
is nearly 3.5 milliseconds. Nevertheless, the running time
overhead of the previous solution [33] is 55.3 milliseconds.
Therefore, we can trust that in data updating phase, our
designed solution is equipped with much higher efficiency
than the previous solution [33].

7. Conclusions

In this paper, we study the issue of outsourced data integrity
checking with provable data update in cloud computing
environment. In the meantime, we utilized MSHT to present
an efficient integrity auditing scheme over outsourced data,
which could also achieve block-based dynamic data update.
Specifically, the tenant could permanently delete the local
backups from the physical medium after the file was stored
on the cloud data center. Meanwhile, the tenant could peri-
odically perform data integrity and availability auditing to
ensure the cloud data center sincerely stored and managed
the outsourced data. Subsequently, the tenant was able to
utilize a few novel data blocks to replace the old outsourced
data blocks to achieve data update. Because the tenant lacks
trust in the cloud data center, he/she could audit the result of
data update. The security analysis formally proved that our
proposed scheme could realize anticipant design goal with-
out dependency on a third authority. Finally, the perfor-
mance comparison and experiment results showed that our
designed scheme was much more high-efficient.

In our designed scheme, we solved the problem of effi-
cient data integrity auditing with provable data replacement
update. However, in some specific scenarios, tenants not
only want to audit the data integrity and update the data
but also want to add a few novel data blocks and remove
some old data blocks. Therefore, in the future, we aim to
study the design of efficient data auditing scheme supporting
all dynamic operations, thus simultaneously achieving data
integrity checking, dynamic data insertion, verifiable data
update, and secure data deletion.
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