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Cognitive learning is progressively prospering in the field of Internet of &ings (IoT). With the advancement in IoT, data
generation rate has also increased, whereas issues like performance, attacks on the data, security of the data, and inadequate data
resources are yet to be resolved. Recent studies are mostly focusing on the security of the data which can be handled by blockchain.
Blockchain technology records the learned data into the block which is generated after completing proper consensus mechanism.
In this paper, Hetero Federated Learning approach is used to apply cognitive learning on data produced by Internet of &ing
devices. Security on cognitiveIoT data is provided by blockchain using Proof of Work consensus mechanism. By applying
blockchain over heteroFL approach, we have conducted various simulations to check the performance of our proposed
framework. Parameters taken into consideration during performance evaluation are effect of number of blocks on memory
utilization and impact of data sample size on accuracy according to different learning rates.

1. Introduction

Previous Google chief director, Eric Schmidt made this
striking IoT forecast: “&e Internet will vanish. &ere will be
numerous IP addresses, such countless gadgets, sensors,
things that you are wearing, things that you are cooperating
with, that you will not detect it. It will be important for your
essence constantly.” In-numerable efforts have been done
from academia community, network providers, service
providers, and various standard developing organizations, to
provoke the growth of IoT devices [1]. It is expected that
greater than 64 B devices based on IoT will exist worldwide
by 2025. Most focused areas of research include networking,
security, computations, communication, and energy har-
vesting but without cognitive ability, i.e., without brain, IoT

seems awkward [2]. Entitling high level intelligence into the
IoT gives rise to Cognitive Internet of &ings [3].

Cognitive Internet of &ings (CIoT) is a new paradigm,
where physical or virtual things are connected with least
human interruption. &e communication with the things
occurs by utilizing the approach of understanding. Un-
derstanding can be done from the actual climate, sensed
data, and social communities. &ey store the gained con-
notation and additional data gathered in form of data sets
and adjust to changes bymeans of computation and resource
efficient algorithms for decision making. CIoT assists in
bringing together physical world with the social world in an
intelligent manner. It includes smart learning, smart re-
source allocation, spectrum sensing, capturing high preci-
sion data, smart service provisioning, and information
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processing. Figure 1 illustrates the smart features that can be
incorporated in the CIoT.

Smart data being produced by smart devices may suffer
from security attacks like denial of service (DoS), physical
attacks, malware, and malicious data injection [19]. Tradi-
tional machine learning approaches may not provide pre-
vention from such attacks. Federated learning is a recent
approach which learns from the dispersed data by incor-
porating collaborative models that are embedded in the local
nodes. &is approach learns iteratively till it reaches the
threshold value set by the global model. Hetero Federated
learning (HeteroFL) models are designed for devices that
need different computation requirements and communi-
cation abilities.

With the rapid development of new technologies, the
data generation rate has also increased. As the number of
devices is increasing, the data production rate will also
increase. It is of utmost importance to provide security to the
users who are relying on the data produced by IoT devices.
Lot of work is done in the field of research of IoTsecurity [4].
However, few areas of research in IoT security are still
unexplored. Meanwhile, as an arising innovation, block-
chain innovation steadily stirs consideration of the scholarly
community and industry. Blockchain innovation depends
on a decentralized shared organization, based on cryptog-
raphy, time-managed information of all events, well-defined
consensus mechanisms, and with proper traceability and
check of information to be stored.

Cognitive computing is assisting a lot in making IoT
become smarter by providing human intelligence to the
systems. However, privacy leakage of heterogeneous
clients of IoT is not addressed by most of the technologies
developed so far. In our proposed framework, cognitive
computing is done by using heterogeneous federated
learning to serve the needs of heterogeneous IoT clients.
However, poisonous attacks can also be done on fed-
erated learning which will degrade the performance of
the system [5]. Hence, integration of blockchain is done
to protect the system from attacks and make the system
more secure.

&e structure of this paper is organized as follows. In
section 2, related work is discussed. &en, the proposed
cognitive learning through hetero federated learning and
privacy through blockchain is presented in section 3. Section
4 discusses the performance evaluation parameters. Con-
clusion and future work are mentioned in section 5.

2. Related Work

In last few years, cognitive computing in Internet of &ings
has gained momentum in different ways. Various tech-
nologies collaborated with this are federated learning and
blockchain. To guarantee the intelligent sensing of data, the
Quality of Information Coverage (QIC) fulfillment metric
is utilized to decide how gathered information tests can
fulfill CIoT necessities. Experiments conducted in this
model proved the accuracy of the QIC algorithm [7].
Hierarchical architecture is proposed for the heterogeneous
IoT system based on blockchain [8]. Content caching

architecture is proposed for the interaction between dif-
ferent vehicles and Road Side Units. Blockchain technology
is also adopted to provide trust among the users which are
connected to each other [9]. Edge networks are used to
facilitate blockchain in vehicular decentralized environ-
ments. &e selected edge nodes perform the task of
maintaining blockchain. Selection of edge nodes is done by
considering the velocity, distribution, and link of the ve-
hicles. &e proposed method provides improved perfor-
mance in block dissemination for the implementation of
blockchain in vehicular decentralized environments [10].
Authors highlighted that future research area will be to
improve protocols of vehicular IoT which can support
blockchain and also to frame efficient blockchain which can
satisfy the essential requirements for the vehicular IoT [11].
Multichannel blockchain architecture is proposed for In-
ternet of Vehicles where optimization of all channels is
done by using vehicle density as well as based on re-
quirements of applications. &e proposed method im-
proves the latency, transaction success ratio, and through
put for varying number of vehicles [12]. &e decentralized
model for huge data based on cognitive processing, fed-
erated learning, and blockchain together is fostered.
Blockchain empowered federated learning assists fast as-
sembly with high-level verifications and selection of
members [13]. To maximize the throughput, transmission
scheduling for CIoT based on Q-learning approach is
proposed. A Markov choice interaction-based model is
detailed to portray the state transformation of the
framework [14]. Cognitive computing technologies with
IoT provide solutions to many existing challenges like big
sensory data, efficient computation at CIoT edge, and
various data sources [15]. Energy and spectrum efficiency
are considered as very important parameters in CIoT.
Metric is identified which provides the characteristics of
network design space [18]. To increase the network utili-
zation and throughput, the hybrid model is proposed for
energy constraint devices and data aggregation of IoT
devices. Deep Reinforcement Learning is applied with the
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Figure 1: Cognitive internet of things.
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Double Q-learning algorithm to provide optimization
using multiobjective ant colony optimization (MOACO)
and greedy method techniques [19]. Internet of Multimedia
&ings based services are provided by the proposed al-
gorithm, i.e., cognitive-based middleware for private data
mashup (CMPM). Privacy issues are taken into consid-
eration to provide proper environmental monitoring of
data [20]. Table 1 presents the work done by different
researchers in the field of cognitive IoT.

Althoughmany studies are focusing on the integration of
blockchain in IoT, blockchain in cognitive learning, and
cognitive learning in IoT, there arises a need to solve the
problem of heterogeneous IoT clients by incorporating
cognitive learning and blockchain which can provide im-
provement in accuracy, learning rate, and latency.

Due to limited research carried out for security of IoT
data produced by heterogeneous clients using HeteroFL, the
research in this area is in its infancy. &erefore, this paper
focusses on providing security to heteroFL-based cognitive
learned data using blockchain.

3. Blockchain-Based Privacy on Cognitive
Learned Data

Different applications of IoT involve variety of clients be-
cause of connectivity of heterogeneous devices. As different
clients possess varying computation and capabilities of
communicating with each other, they are assigned different
complexity levels. First, the learning takes place on their
respective local model and then the aggregation of all pa-
rameters of local models gives rise to parameter of the single
global model. In our proposed framework, the cognitive
model uses heterogeneous federated learning for training of
the IoT data and then the trained data are secured by using
blockchain.

3.1. Cognitive Learning Based on HeteroFL. Mobile devices,
Gaming, and IoT devices generate huge amount of data.
Based on cognitive computing, models can be made to store
the data and then train the models locally. Federated
learning (FL) is an approach of machine learning where
parameters of local models are trained and their aggregation
produces the global model which is independent of raw data.
Generally, local models and global model share the same
architecture. However, there can be various scenarios where
miscellaneous types of local models will exist with the wide
range of computing complexities. To meet the requirements
of heterogeneous clients of IoT devices, another unified
learning system named HeteroFL is used to outfit the en-
tirely different computations and their communication
abilities [6].

&e process of training global model is done from
local data x1, . . . , xn{ } available at heterogeneous IoT
devices. Local model parameters are expressed as
w1, . . . , wn{ }. &e model averaging of the local parameters
is done to find the global parameter wg. &is process is
done in various iterations, and wg calculated at i th

iteration is passed on to the local parameters of (i + 1)th

iteration.
For effective cognitive learning to take place, size of

network can be modulated by changing width of the net-
work. &is can help in decreasing the local parameters,
whereas architecture of local and global parameters remains
in the same model class. &is also improves the stability of
aggregation in the global model. In heteroFL, selection of
global parameters is done based on the size of input channel
(ig), output channel (og), and computation complexity
level (c). Figure 2 shows the federated learning approach
with various complexity levels of computations on the data
produced by heterogeneous IoT devices. Calculation of
shrinkage ratio plays very important role for hidden layers.
Equations of shrinkage ratio of output channel are expressed
as mentioned in the following equation:

s1 �
oc+1

l

og
 

1/c

. (1)

Formula for shrinkage ratio of input channel is shown in
the following equation:

s2 �
ic+1
l

ig
 

1/c

. (2)

For simplification, let s1 � s2 � s.
Shrinkage ratio of local model parameter is mentioned in

the following equation:

SR � w
c
l � wg∗ s

2(c− 1)
. (3)

According to the calculated potential of the local model
parameter, global model parameters can be constructed
based on allocated subsets. &e concept of set difference is
mostly used in the calculations of the global parameter.
Figure 3 shows different regions according to set differences.
According to Figure 3, total clients m� 6 are shown. Here, 3
clients are of complexity level 3 (represented by m3 in red
region), 2 clients are of complexity level 2 (represented bym2
in yellow region), and 1 client is of complexity level 1
(represented by m1 in blue region).

Aggregation of smallest local model parameter (red
region) is done as follows:
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Calculation of subset of yellow region is done as follows:
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Calculation of subset of blue region is done as follows:
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1
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(6)

Calculation of subset of global model parameter is done
as follows:
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Table 1: Related work in CognitiveIot and Blockchain.

Ref.
no Parameters Technology used Application Proposed model Future scope

[7]
Information density,
price, collection of

data samples
Non-cooperative game Intelligent sensing

intelligence system
Quality of information
coverage algorithm

Considering privacy
for the growth of
internet of things

[16] Smart contract
Cognitive engine for machine

translation, blockchain,
intrusion detection

Shopping center Cognitive recommender
system

Applicability of
proposed framework
for web of things

[9] Cache hit rate and
robustness

Caching strategy, deep
learning andmachine learning

algorithms
Internet of vehicles

Blockchain and cognitive-
engine-enabled content

caching strategy
—

[17] Average delay,
processing time

Convolutional neural
networks (CNN), smart

contract, machine learning
algorithms

Sharing economy
services in mega

smart cities

MEC-based sharing service
economy system, which
includes the blockchain

Testing different
sharing economy cases

at a bigger level

[18] System utility, no. of
average packet loss Markov decision process Wireless data

Q-learning algorithm and
stacked autoencoders deep

learning model

Process to create more
relays

[18] Energy and spectrum
efficiency

Dynamics of spectrum sharing
and energy harvesting

Solar energy
harvesting

Cloud enabled CIoT
platform —

[19] Energy and
throughput

Deep reinforcement learning
and double Q-learning

algorithm
— Multiobjective ant colony

optimization (MOACO)
Considering security

parameters

Parameters for global model formed by
aggregation of parameters of local model Federated Learning

Parameters for local model having
2 clients with complexity level = 2

Parameters for local model having
1 clients with complexity level = 1

Parameters for local model having
3 clients with complexity level = 3

Wl
1

Wl
2 Wl

2

Wl
3 Wl

3 Wl
3

Raw data

Heterogenous IoT devices

Figure 2: Federated learning from data produced by IoT devices.
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wg � w
3
1 ∪ w

2
1 − w

3
1 ∪ w

1
1 − w

2
1 . (7)

Aggregation of all those clients is done whose parameter
is the part of the parameter matrix. Hence, model having
intermediate complexities contains the parameters com-
pletely aggregated with the bigger models whereas moder-
ately with the smaller models. Also, aggregation is more in
case of smaller local models which can benefit global model.
&e data stored at the global model become the learning part
of the cognitive learning. Algorithm 1 and Algorithm 2 are
mainly designed for applying cognitive learning using
heteroFL and sending client updates.

3.2. Blockchain on Cognitive Learned Data. Blockchain as-
sumes a significant part to protect the performance of
cognitive learned data. As these data will be used for making
further decisions, it is very important to provide privacy to
these data. Important characteristics of blockchain-like
immutability, tamper-resistant, decentralized, pseudony-
mous identity, and so on are the contributing factors of
security and privacy.

&is subsection explains the role of blockchain to the
data stored in a global model. Here, blockchain guarantees
the security of the global model parameters by storing the
learned data into the blocks [21]. Here, blockchain guar-
antees the security of the global model parameters by storing
the learned data into the blocks. &e framework of the
blockchain of our proposed model is the same as that of the
basic blockchain. Figure 4 explains the task of process of
computing block. All blocks consist of previous hash, a hash
of the current block, timestamp, nonce, and data field which
contains cognitive learned data. &e first block is the genesis
block whose previous hash field contains all zeroes. All
blocks are cryptographically linked to each other through the
hash of the previous block. A very minute change in any one
of the fields of the block can change the hash of the entire

block. Applicability of the consensus algorithm on the block
completes the process of verification and validation of the
block and then appends the block to the distributed
blockchain. &e Proof of Work (PoW) consensus algorithm
is used in our approach. &e miners keep on trying to create
the random nonce until they reach the constraints of the
target nonce [22]. Once a miner gets the desired nonce,
miner obtains the authority of broadcasting the block as a
new block to the distributed blockchain. All miners will
append the new block to their blockchain, which makes the
blockchain consistent. Algorithm 3 explains the procedure
followed by miners to compute block by completing the task
of nonce calculation.

4. Implementation and
Performance Evaluation

Amazon AWS platform has been used which includes dif-
ferent types of 1000 nodes. Some of these nodes are SPV
nodes and few are full nodes. Nodes are configured with a
Linux Virtual Machine. &e privacy of the learned data is
tested on the testing environment. Testing was done in 4 sets
by changing the number of clients according to different
complexity levels. Accuracy, latency, and block generation
rate are evaluated to check its performance. &e SHA-256
algorithm is used to compute the ID of IoTdevices added in
this framework. Computed ID is 16 bytes long. All IoT
devices are assigned public key and private key for inter-
action with the other devices and providing secure
signatures.

&e IoT devices connected to the framework are known
by 16 bytes ID. HeteroFL approach is applied for successful
cognitive learning to take place. HeteroFL technique min-
imizes the computation as well as communication com-
plexity of complete process. Training of local models is done
in lesser number when compared with the global model.
Private Ethereum platform is used for performing block-
chain computations. Core i7-8565U CPU 1.80GHz, 1992
Mhz, 4 Core(s), and 8 Logical Processor(s) are used for
implementation. &e performance of our proposed scheme
has been evaluated for different parameters such as accuracy
and memory utilization [23].

Memory utilization of different sizes of blocks is con-
sidered, i.e., 10 transactions per block, 20 transactions per
block, and 30 transactions per block. Memory utilization
mainly depends on the size of basic information of block
excluding transactions data and size of the transactions. &e
data produced by the global models are stored in the blocks.
However, to evaluate the appropriate number of transac-
tions to be stored in the block, evaluation of this parameter is
done. Figure 5 presents the reduction in memory utilization
with the increase in the transactions per block. Experiment
proves that less number of transactions per block will
consume less memory.

&e performance is also evaluated at different learning
rates, i.e., 0.005, 0.05, and 0.5. Good accuracy is observed at
large data sample sizes also as shown in Figure 6. It is clear
from the graph that initially learning is done linearly in all
three cases and then it becomes constant, but the best
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Figure 3: Venn diagram of different complexity levels.
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(i) Variables: w1, wg, s, p, m

(ii) Procedure input: data generated by heterogeneous IoT devices, Xi, and local clients with the data, xi
(iii) Begin: Initialization of global model parameter, wg, and local clients with the data, xi
(iv) for each round of data production t � 0, 1, 2, . . . do
(v) S ← random set of active clients
(vi) for all clients, k ∈ S

(vii) Compute complexity level ‘c’ based on local information
(viii) Compute output channel shrinkage ratio (s1), input channel shrinkage
(ix) ratio (s2) and hidden shrinkage ratio (SR)
(x) End
(xi) for all complexity levels, c do
(xii) Compute global model parameter using aggregation of local model parameter
(xiii) end
(xiv) end
(xv) End

ALGORITHM 1: Algorithm for cognitive learning using HeteroFL.

Cognitive
Learned

data
through
heteroFL

1. Cognitive
learned data

2. PoW Consensus
algorithm used to create a

block by miners

3. Other miners receive
block for verification

4. Validated block is appended in
the blockchain of Cognitve IoT

data

Figure 4: Blockchain protected cognitive data.

(i) Variables: T, l, ƞ
(ii) Procedure input: wk, Xk

(iii) Begin: Bk ← splitting of local data Xk into various batches of size, T
(iv) After regular interval of time, t do
(v) for batch bk ∈ T do
(vi) for all clients, k ∈ S

(vii) lk←ηΔl(Wk, bk)

(viii) Wk←Wk − lk

(ix) ratio (s2) and hidden shrinkage ratio (SR)
(x) End
(xi) End

ALGORITHM 2: Blockchain protected cognitive learned data.

(i) Variables: bi
(ii) Procedure input: cognitive learned data, Yi, and Miners, Mi
(iii) Begin: Fetch cognitive learned data, Yi
(iv) while Yi do
(v) Upload Yi of fixed size to Miners Mi
(vi) If Mi finds the nonce
(vii) Block bi of that data is created
(viii) bi is appended to all local ledgers
(ix) Computation done by other miners is dropped
(x) end
(xi) Winning miner Mi gets the incentive
(xii) Compute global model parameter using aggregation of local model parameter
(xiii) end
(xiv) End

ALGORITHM 3: Blockchain protected cognitive learned data.
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accuracy is observed in case of high learning rate. Similar
graph is expected in case of larger data sample sizes (in
thousands). &is also guarantees high scalability.

Figure 7 presents execution time taken for the creation
of blocks with 10, 20, and 30 transactions per block using
one thread. Figure 8 presents execution time taken for the
creation of blocks with 10, 20, and 30 transactions per
block using two threads. Figure 9 presents execution time
taken for the creation of blocks with 10, 20, and 30
transactions per block using four threads. Figure 10
presents execution time taken for the creation of blocks
with 10, 20, and 30 transactions per block using eight
threads. As the count of blocks rises with rise in number of
transactions per block, the execution time also increases
whereas the increase in number of threads reduces the
execution time. Figure 9 shows very less execution time as
the number of threads is four and the number of cores of
our system is also four. Evaluation of this parameter
proves that there is a dependency on the system’s con-
figuration for the execution time of a block. Less execution
time will ultimately improve the performance of the
network by updating the blocks in a blockchain very
quickly, which will make the system consistent with the
more recent learned data in its ledger.
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Figure 5: Effect of number of blocks on memory utilization.
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Figure 9: Execution time with 4-threads.

60

50

40

30

20

10

0
0 100 200 300 400 500 600 700 800

Number of Blocks (8 Threads)

Ex
ec

ut
io

n 
Ti

m
e (

se
co

nd
s)

Transactions per block = 10
Transactions per block = 20
Transactions per block = 30

Figure 10: Execution time with 8-threads.

Wireless Communications and Mobile Computing 7



5. Conclusion

We propose heteroFL for cognitive learning to take place
from the raw data produced by IoTdevices. In this approach,
local models are trained by exploiting their full capabilities,
and then their aggregation is done to infer an individual
global model. HeteroFL takes less number of iterations to
produce best results. Blockchain is employed to provide the
privacy to the learned data. &e PoW consensus algorithm is
used to verify and validate a block. From the experiments,
accuracy at different learning rates and memory utilization
at different number of transactions per block are computed.
&is approach achieves good results for heterogeneous
clients of IoTdevices. In future, multimodal learning can be
used for addressing heterogeneous learning.

Data Availability

No data were used to support this study.

Conflicts of Interest

&e authors declare that there are no conflicts of interest.

Acknowledgments

&is work was supported by Taif University Researchers
Supporting Project Number (TURSP-2020/114), Taif Uni-
versity, Taif, Saudi Arabia.

References

[1] P. Datta and B. Sharma, “A survey on IoT architectures,
protocols, security and smart city based applications,” in
Proceedings of the 2017 8th in- Ternational Conference on
Computing, Communication and Networking Technologies
(ICCCNT), pp. 1–5, Delhi, India, 2017 July.

[2] R. Chhabra, S. Verma, and C. R. Krishna, “A survey on driver
behavior detection techniques for intelligent transportation
systems,” in Proceedings of the 2017 7th International Con-
ference on Cloud Computing, Data Science Engineering-Con-
fluence, pp. 36–41, Noida, India, 2017 January.

[3] F. Li, K. Y. Lam, X. Li, Z. Sheng, J. Hua, and L. Wang,
“Advances and emerging challenges in cognitive internet-of-
things,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 8, pp. 5489–5496, 2019.

[4] Y. Qian, Y. Jiang, J. Chen et al., “Towards decentralized IoT
security enhancement: a blockchain approach,” Computers &
Electrical Engineering, vol. 72, pp. 266–273, 2018.

[5] S. R. Pokhrel and J. Choi, “Federated learning with blockchain
for autonomous vehicles: analysis and design challenges,”
IEEE Transactions on Communications, vol. 68, no. 8,
pp. 4734–4746, 2020.

[6] E. Diao, J. Ding, and V. Tarokh, “HeteroFL: computation and
communication efficient federated learning for heterogeneous
clients,” arXiv preprint arXiv:2010.01264, 2020.

[7] Y. Liu, A. Liu, T. Wang, X. Liu, and N. N. Xiong, “An in-
telligent incentive mechanism for coverage of data collection
in cognitive Internet of &ings,” Future Generation Computer
Systems, vol. 100, pp. 701–714, 2019.

[8] L. Tseng, L. Wong, S. Otoum, M. Aloqaily, and J. B. Othman,
“Blockchain for managing heterogeneous internet of things: a

perspective architecture,” IEEE network, vol. 34, no. 1,
pp. 16–23, 2020.

[9] Y. Qian, Y. Jiang, L. Hu, M. S. Hossain, M. Alrashoud, and
M. Al-Hammadi, “Blockchain-based privacy-aware content
caching in cognitive internet of vehicles,” IEEE Network,
vol. 34, no. 2, pp. 46–51, 2020.

[10] S. Buda, C. Wu, W. Bao et al., “Empowering blockchain in
vehicular environments with decentralized edges,” IEEE
Access, vol. 8, pp. 202032–202041, 2020.

[11] C. Peng, C. Wu, L. Gao, J. Zhang, K.-L. Alvin Yau, and Y. Ji,
“Blockchain for vehicular internet of things: recent advances
and open issues,” Sensors, vol. 20, no. 18, Article ID 5079,
2020.

[12] L. Gao, C. Wu, T. Yoshinaga, X. Chen, and Y. Ji, “Multi-
channel blockchain scheme for internet of vehicles,” IEEE
Open Journal of the Computer Society, vol. 2, pp. 192–203,
2021.

[13] Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A
blockchained federated learning framework for cognitive
computing in industry 4.0 networks,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 4, pp. 2964–2973, 2020.

[14] J. Zhu, Y. Song, D. Jiang, and H. Song, “A new deep-Q-
learning- based transmission scheduling mechanism for the
cognitive Internet of &ings,” IEEE Internet of @ings Journal,
vol. 5, no. 4, pp. 2375–2385, 2017.

[15] Y. Zhang, X. Ma, J. Zhang, M. S. Hossain, G. Muhammad, and
S. U. Amin, “Edge intelligence in the cognitive internet of
things: improving sensitivity and interactivity,” IEEE Net-
work, vol. 33, no. 3, pp. 58–64, 2019.

[16] A. M. Saghiri, M. Vahdati, K. Gholizadeh, M. R. Meybodi,
M. Dehghan, and H. Rashidi, “A framework for cognitive
Internet of &ings based on blockchain,” in Proceedings of the
2018 4th International Conference on Web Research (ICWR),
pp. 138–143, Tehran, Iran, 2018 April.

[17] M. A. Rahman, M. M. Rashid, M. S. Hossain, E. Hassanain,
M. F. Alhamid, and M. Guizani, “Blockchain and IoT-based
cognitive edge framework for sharing economy services in a
smart city,” IEEE Access, vol. 7, pp. 18611–18621, 2019.

[18] A. Afzal, S. A. R. Zaidi, M. Z. Shakir et al., “&e cognitive
internet of things: a unified perspective,”Mobile Networks and
Applications, vol. 20, no. 1, pp. 72–85, 2015.

[19] S. Vimal, M. Khari, R. G. Crespo, L. Kalaivani, N. Dey, and
M. Kaliappan, “Energy enhancement using Multiobjective
Ant colony optimization with Double Q learning algorithm
for IoT based cognitive radio networks,” Computer Com-
munications, vol. 154, pp. 481–490, 2020.

[20] A. M. Elmisery, M. Sertovic, and B. B. Gupta, “Cognitive
privacy middleware for deep learning mashup in environ-
mental IoT,” IEEE Access, vol. 6, pp. 8029–8041, 2017.

[21] J. Ren, J. Li, H. Liu, and T. Qin, “Task offloading strategy with
emergency handling and blockchain security in SDN-
empowered and fog-assisted healthcare IoT,” Tsinghua Sci-
ence and Technology, vol. 27, no. 4, pp. 760–776, 2021.

[22] L. Li, P. Shi, X. Fu, P. Chen, T. Zhong, and J. Kong, “&ree
dimensional Tradeoffs for consensus algorithms: A review,”
IEEE Transactions on Network and Service Management, 2021.

[23] S. A. Kumar and J. Vassileva, “User acceptance of usable
blockchain-based research data sharing system: an extended
TAM-based study,” in Proceedings of the 2019 First IEEE
International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), IEEE, Los
Angeles, CA, USA, 2019.

8 Wireless Communications and Mobile Computing


