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Fourier transformation (FT) and Multiple Signal Classification (MUSIC) method suffer the insufficient ability in diagnosing
broken rotor bar (BRB) fault using short-time data. Theoretical and simulation analyses show that the Optimum Resolution of
Prescient Direction (ORPD) algorithm has the best frequency resolution performance due to a priori knowledge. The main
objective of this paper is to detect BRB faults in induction machines using a condition monitoring architecture based on
ORPD algorithm. In the proposed application, the ORPD algorithm with the best frequency resolution performance is used to
estimate the fault-sensitive frequencies in the stator current signature. The prior information of BRB fault characteristic
distribution is used to construct a weighting matrix in the ORPD algorithm, for acquiring the lowest signal-to-noise ratio
resolution threshold. Once frequencies are estimated, their corresponding amplitudes are obtained by using the least squares
estimator. The proposed methods were tested using experimental induction motors with different fault severity under the effect
of several load levels or supply frequencies. Two types of power supply modes are considered: main and inverter. The results
show that compared with traditional method which uses FT and MUSIC algorithm for fault diagnosing, the method based on
ORPD algorithm has a higher frequency resolution and identification ability with short-time data, and still has good diagnostic
performance even under light loading and lower supply frequencies.

1. Introduction

Squirrel cage induction motors are the most common way of
electro-mechanical energy conversion in the main industrial
applications. Traditionally, induction motors were con-
ceived as robust machines. However, due to the fact that
induction motors often operate in unwanted conditions such
as corrosive place and misoperations, the probability of a
fault increases, even more since inverters are used to drive
the motor. Among the various faults, broken rotor bars
(BRBs) account for about 10% of total failures. Induction
motor faults such as BRBs can result in potential physical
damage to motor itself as well as to the reliability and safety
of industrial operations, and also increase the operational
costs [1–3]. Therefore, induction motor condition monitor-
ing and fault diagnostics have created substantial interest

among researchers in the last decades, and many of them
are with great respect to BRB detection.

Motor Current Signature Analysis (MCSA) is a widely
adopted technique for online diagnostics of BRBs in motor.
It has been demonstrated that BRBs produce additional
spectral components in the stator current spectrum around
the fundamental, with frequencies given by f b = ð1 ± 2 sÞf s,
which s is the slip and f s is the fundamental frequency.
The frequency location of these components is associated
with the slip s and the fundamental frequency f s. The sever-
ity of BRB is indicated by the magnitude of the fault compo-
nent [4–6]. In Fourier transform (FT) based MCSA, the
spectrum of stator currents can be used to diagnose BRB
faults in motors. FT yields computationally efficient results,
which makes it a powerful and conceptually simple MCSA
technique. Despite these advantages, its validity has some
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drawbacks when the approach is applied under certain con-
ditions. In practical industrial applications, the two BRB fre-
quency components are very close to the fundamental
frequency in a light load condition. This requires the data
points used for FT to be long for sufficient frequency resolu-
tion, but it is not always possible due to the limitation of the
digital system memory size. Moreover, short data records are
usually required because the motor operating condition may
change during the recording period, which makes diagnostic
indicators changing with the motor load and application of
MCSA impossible. In BRB fault diagnosis, the problem of
frequency estimation using much shorter data windows to
satisfy the same frequency resolution requirement, and gain-
ing a higher accuracy of frequency estimation using the same
length windows has received a lot of attention in the electri-
cal engineering community [3, 7–9].

In order to improve the diagnostic performance of FFT-
based methods, signal windowing, frequency interpolation,
ZFFT techniques, and maximum covariance method for fre-
quency tracking (MCFT) to compute the frequency of the
fault signature have been reported. All the above methods
emphasize the compromise between frequency accuracy, fre-
quency resolution, and computation time of frequency esti-
mation for BRBs detection in induction motors [10, 11].
Furthermore, nonparametric and parametric techniques
are employed to the BRBs detection taking into account
the fact that the signal of stator current is nonstationary.
Unfortunately, the nonparametric methods exist same fre-
quency resolution problems compared to the classical FFT-
based methods. To overcome these issues, diverse paramet-
ric techniques such as the Prony and Pisarenko approaches
have been developed for frequency estimation. Due to the
fact that frequency estimation and direction of arrival
(DOA) estimation are essentially the same, the Multiple Sig-
nal Classification (MUSIC) method, which is the main
branch of DOA estimation, has also been introduced in the
area of BRB fault detection [11–16]. MUSIC method trans-
forms the fault detection problem into a generalized eigen-
value problem by calculating the current signal self-
correlation matrix and eigenvalue decomposition. MUSIC
method uses smaller samples of measured data and has a
higher frequency resolution than FT. However, in a real
application, the high resolution of MUSIC method is at the
expense of increasing the computing time, and the accuracy
depends on the dimension of the autocorrelation matrix. In
addition, amplitude estimation is still required, because the
MUSIC method is a pseudo-spectrum estimation, which
cannot reflect the amplitude of fault characteristic frequency
[14]. In [17], the authors have analyzed the influence of the
dimension of self-correlation matrix and sampling rate on
the performance of MUSIC method. In [18], Akaike infor-
mation criterion (ACI) and minimum description length
(MDL) criterion have been used to optimize the dimension
M of the self-correlation matrix, so as to minimize the oper-
ation time. In [11], an algorithm that is based on zooming in
a specific frequency range is proposed with MUSIC. The
method is integrated as a part of MUSIC to estimate the fre-
quency signal dimension order based on classification of
autocorrelation matrix eigenvalues. An application of the

MUSIC and the pattern search algorithm (PSA) has been
proposed to detect BRB fault in induction motors with
short-time measurement data in [19]. In the above-
mentioned researches [11, 16, 19], the data time used for
BRB fault diagnosis is shortened to 1.5 s, and good diagnos-
tic results can be achieved if the workload is already at or
near 40% rated loads.

Although MUSIC algorithm has good frequency estima-
tion performance, its application is constrained to just spe-
cific noncorrelated signals. For related signal or the signal
with low signal-to-noise ratio (SNR), the frequency estima-
tion performance gradually deteriorates [20]. In practical
applications, detecting BRB in a light load condition espe-
cially for the inverter-fed motor running under low-
frequency band is yet challenging as the fault frequency
components are very close to the fundamental and have
low amplitude. In [21, 22], analysis is made on statistical
performance of MUSIC-type high-resolution estimators.
Factors affecting its proper use and approaches for improve-
ment are discussed. Based on the concept of statistical aver-
age value of zero spectrum, the resolution performance for
all varieties of eigen-structure approaches, including MUSIC
algorithm, is compared and analyzed in [23–25], and the
formulation results of SNR thresholds to resolve two in-
correlated equal power signal for several typical eigen-
structure approaches are given. The above research reveals
the fundamental flaws that limit the improvement of fre-
quency resolution of MUSIC algorithm and shows that
under certain conditions, algorithms with different fre-
quency resolutions can be obtained by changing the distri-
bution structure of eigenvalues and the spatial projection
relationship.

In principle, Optimum Resolution of Prescient Direction
(ORPD) algorithm and MUSIC all belong to the eigen-
structure approaches. With different feature vector space
projection relationship of self-correlation matrix, they corre-
spond to different algorithm structure and frequency resolu-
tion performance. For two unknown signals whose direction
angles are θ1 and θ2, ORPD algorithm uses the prior infor-
mation of the known intermediate point θm to estimate the
parameters, which can realize the high-precision identifica-
tion of the direction angle θ and thus has the best frequency
resolution performance. The ORPD algorithm is mainly
used for radar low-angle tracking in the field of direction
estimation of wave arrival [24, 25]. Nevertheless, the authors
have not found in the literature any application of this tool
for the diagnosis of electrical machines. When BRB fault
occurs, the frequency components ð1 ± 2 sÞf s are symmetri-
cally distributed on the two sides of the fundamental fre-
quency f s. This characteristic is naturally consistent with
the application conditions of ORPD algorithm, which pro-
vides an idea for the development of a new diagnosis
method.

The aim of this paper is to introduce a new high-resolution
ORPD algorithm and its application for detecting BRB fault
diagnosis by the frequency domain analysis. The suitability of
this diagnostic tool is experimentally tested in the diagnosis of
BRBs in main-fed as well as inverter-fed squirrel cage induction
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motors with different conditions of load and fault severity. The
proposed ORPD estimator can precisely determine the BRB
fault-sensitive frequencies. By using the prior knowledge of
the intermediate point of BRB fault characteristic frequencies,
a weighted matrix which can obtain the minimum SNR resolu-
tion threshold is constructed. Thus, the ORPD algorithm with
the best frequency resolution performance is formed to estimate
the frequency. Due to the fact that BRB fault characteristic fre-
quencies given by f b = ð1 ± 2 sÞf s are distributed across low-
frequency band, filtering technique is used to confine the anal-
ysis to the frequency band related to the characteristic frequen-
cies to improve SNR and reduce the computation load. Once
the frequency estimation has performed, their corresponding
amplitudes are obtained by least squares (LS). Finally, diagnos-
tic decision is made.

The main contributions of this paper can be summarized
as follows.

(1) The eigen-structure approaches are hopeful to be
able to provide even better resolution performance
if more a priori information about the characteristic
frequencies is utilized sufficiently. In MUSIC and its
extensions, model order estimation techniques based
on the eigenvalue decomposition of the covariance
matrix are proposed to improve resolution perfor-
mance. However, these eigenvalue-based techniques
do not exploit the particular structure of the stator
current frequency components. In this paper, we
use the midpoint frequency of BRB fault characteris-
tic frequencies to construct weighted matrix, which
can obtain the minimum SNR resolution threshold.
The resulting technique exhibits high-resolution
capabilities

(2) We prove the effectiveness of the technique on sim-
ulated and experimental data. Compared with avail-
able FT and MUSIC methods, the proposed method
has the advantages of less required data, high-
frequency resolution, short running time, and wide
diagnostic range. Experimental results show that
the proposed method only needs 1 s of short-time
data to complete the diagnosis of BRB faults under
different power supply modes and different operat-
ing conditions, and still achieves good diagnosis
result under 20% load

The remainder of this paper is organized as follows. Sec-
tion 2 describes the theoretical basis of eigen-structure
approach based frequency estimation and the feasibility
and performance of ORPD algorithm for BRB fault diagno-
sis. Section 3 gives the proposed diagnosis method and
experimental setup. Section 4 shows the experimental results
for the BRB fault. Section 5 concludes this paper.

2. Theoretical Basis of Frequency Estimation

2.1. Basic Principle of Parameter Estimation by Eigen-
Structure Approach. The eigen-structure approach assumed
a priori signal model seeks to fit a deterministic exponential
model to equally spaced data points. It was discussed in

detail by Pillai [21] and Kaveh [22]. Here we will give a brief
review of this technique. Consider discrete time signals

x n½ � = s n½ � + e n½ � = 〠
K

i=1
ai cos 2πf in + φið Þ + e n½ �, ð1Þ

where s½n� is the sum of K sinusoidal quantities, e½n� is white
noise with zero mean and σ2 variance, and ai, f i, and φi are
the amplitude, frequency, and phase of the i-th sinusoid,
respectively. Using Euler’s transformation, Equation (1)
can be expressed in the form of a complex exponential as
shown in Equation (2).

x n½ � = s n½ � + e n½ � = 〠
M

i=1
�Aie

j2π�f in + e n½ �, ð2Þ

where s½n� =∑M
i=1�Aie

j2π �f in, �Ai = ðai/2Þejφi , �AK+i = ðai/2Þejφi ,
�f i = f i, �f K+i = −f i, 1 ≤ i ≤ K , and M = 2K.

The i-th complex sinusoid is defined as siðnÞ = �Aie
j2π �f in,

and Equation (2) can be written as:

x n½ � = 〠
M

i=1
si nð Þ + e n½ �: ð3Þ

For L-dimensional discrete time series fx½n�, x½n + 1�,
⋯, x½n + L − 1�g, Equation (3) can be rewritten in a compact
matrix format as shown in Equation (4).

X n½ � = 〠
M

i=1
Si nð Þ + e n½ � ð4Þ

where L >M,XðnÞ = ½x½n�, x½n + 1�,⋯,x½n + L − 1��T , SiðnÞ =
½si½n�, si½n + 1�,⋯,si½n + L − 1��T , eðnÞ =
½e½n�, e½n + 1�,⋯,e½n + L − 1��T。

Where the i-th complex sine vector SiðnÞ can be
expressed as,

Si nð Þ =

si n½ �
si n + 1½ �

⋮

si n + L − 1½ �

2
666664

3
777775
=

1
ej2π

�f i

⋮

ej2π
�f i L−1ð Þ

2
666664

3
777775
�Aie

j2π�f in: ð5Þ

Substituting Equation (5) into Equation (4), the low-
rank matrix representation of the eigen-structure approach
is obtained as shown in Equation (6).

X n½ � = F�A + e n½ �, ð6Þ

where F = ½ fð�f 1Þ, fð�f 2Þ,⋯,fð�f MÞ�, fð�f iÞ =
½1, ej2π�f i ,⋯,ej2π�f iðL−1Þ�T , i = 1, 2,⋯,M, �A =
½�A1e

j2π�f 1n, �A1e
j2π�f 2n,⋯,�AMe

j2π�f Mn�T . F is an M order L ×M
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Vandermonde matrix, fð�f iÞ is the signal vector with param-
eter �f i.

The self-correlation matrix Rx of measured data XðnÞ
can be expressed as:

Rx = E X nð ÞXH nð Þ� �
= FR �AF

H + σ2IL, ð7Þ

where E½·� is the mathematical expectation, R�A = E½�A �AH � is
the signal correlation matrix, IL is an L × L identity matrix.

The eigenvalues of the self-correlation matrix Rx and R̂x
are decomposed into:

R = 〠
L

i=1
λieie

H
i ; R̂ = 〠

L

i=1

bλ iêiê
H
i , ð8Þ

where the subscripts of all eigenvalues and eigenvectors are
arranged according to the order of size, namely, fλ1 ≥ λ2≥
⋯≥λLg and fe1, e2,⋯, eLg. If rank ðRxÞ =M, the following
eigenvalues can be obtained:

λ1 ≥ λ2 ≥⋯≥ λM > λM+1 = λM+2 =⋯ = λL = σ2: ð9Þ

Using the eigenvectors of Equation (9) and Rx , the signal
subspace matrix ES = ½e1, e2,⋯,eM� and the noise subspace
matrix EN = ½eM+1, eM+2,⋯,eL� with eigenvalues σ2 are
defined, where estimated matrices for ES and EN are ÊS = ½
ê1, ê2,⋯,̂eM� and ÊN = ½êM+1, êM+2,⋯,êL�, respectively.

Accordingly, the signal subspace estimation Ŝ
L
q = spanfê1,

ê2,⋯,êqg and noise subspace estimation N̂
L
Lq = spanfêM+1,

êM+2,⋯,̂eLg can be obtained.
The basic idea of eigen-structure approach is to estimate

the value of signal parameter �f i by using the relationship
between the signal subspace of signal vector fð�f iÞ and each
characteristic vector. Constructing the search function as
shown in Equation (10) and searching the projection of fð
�f iÞ on N̂

L
L−q, the estimated value of the parameter �f i

ði = 1,⋯MÞ can be obtained, according to the value of �f that
minimizes the projection modulus (the position of the peak).

bα �f
� �

= fH �f
� �

f �f
� �

tr Ŵ
� �

fH �f
� �

ÊNŴÊ
H
N f �f
� � : ð10Þ

2.2. Frequency Estimation Based on ORPD Algorithm. The
resolution performance of the eigen-structure approach
refers to the ability to separate signals with similar parame-
ters on the “spectrum.” When calculating the self-
correlation matrix Rx according to Equation (8), the self-
correlation matrix of the sample is used to replace the real
self-correlation matrix. Therefore, there must be errors
between the eigenvalues and eigenvectors obtained by eigen-
value decomposition of Rx and their real values. Statistical
analysis of the eigenvalues and eigenvectors of the Rx matrix
shows [21–23] that the resolution performance of the zero
spectral parameter estimation obtained according to Equa-
tion (10) is related to the weighted matrix W and SNR. In

order to obtain the eigen-structure approach with the best
resolution performance, two signals with very close frequen-
cies f1 and f2 are considered, and f m = ð f1 + f2Þ/2 is assumed
to be the intermediate value of the two frequencies. The
SNR’s resolving threshold of parameter estimation by the
eigen-structure approach is defined as the SNR satisfying
Equation (11).

D �f m
� �

= D �f 1
� �

+D �f 2
� �

2 , ð11Þ

where Dð�f Þ = EfD̂ð�f Þg = EffHð�f ÞÊNŴÊ
H
N fð�f Þg.

It has been proved [23] that for the eigen-structure zero-
spectrum estimation Equation (10) with complex Emmett
weighting matrix W , when the weighting matrix W has the
form of Equation (12), the lowest SNR’s resolving threshold
ξT can be obtained, and the unidentifiable frequencies f1 and
f2 can be distinguished.

W = EH
N e f mð ÞeH f mð ÞEN , ð12Þ

ξT = 20 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +NΔ2 1‐4/L2ð Þ/5

p
LNΔ4 1‐4/L2

� �
1‐1/L2
� � : ð13Þ

In Equation (13), N is data length, L is signal dimension,
and Δ is signal distance. Consequently, the ORPD algorithm
based parameter estimation equation is shown in (14).

bα fð Þ =
f H fð Þf fð Þtr Ê

H
N f f mð Þf H f mð ÞÊN

h i
f H fð ÞÊN Ê

H
N f f mð Þf H f mð ÞÊN Ê

H
N f fð Þ

: ð14Þ

In practice, f m is usually unpredictable. In this case, the
weighted matrix can be constructed by assuming that f m fol-
lows a certain probability distribution and then taking the
average value. Both MUSIC and mini-norm algorithm are
all special cases of this processing method, in which the f m
is assumed that uniformly distribute in the interval of ð0 ~
2πÞ. The resolution performance based on the above
hypothesis is not optimal, but can only get suboptimal effect.
For BRBs failure, the characteristic frequencies ð1 − 2 sÞf s
and ð1 + 2 sÞf s are distributed on the left and right sides of
the fundamental frequency f s, and their middle frequency
f m can be accurately known. Consequently, the weighted
matrix W that meets the minimum SNR resolution thresh-
old can be accurately obtained, and the ORPD algorithm
obtained on this basis has a higher frequency resolution.
So accurate estimation of the characteristic frequencies of
BRBs ð1 − 2 sÞf s and ð1 + 2 sÞf s can be achieved.

2.3. Amplitude Estimation. The pseudo-power spectrum
obtained by Equation (14) cannot provide the amplitude of
the corresponding frequency component. Using the estima-
tion matrix F̂ in Equation (6), the least square method is
adopted to design the LS amplitude estimator as shown in
Equation (15). Then, according to Euler’s formula, the
amplitude estimate âi corresponding to the frequency
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estimate f̂ i can be obtained by taking the absolute value of b�A
, 1 ≤ i ≤ K .

b�A = F̂H F̂
� �‐1

F̂HxT nð Þ, ð15Þ

where xTðnÞ = ½x½n�, x½n + 1�,⋯, x½n +N − 1��T .
2.4. Simulation Results. The performance of the proposed
ORPD algorithm is evaluated in Matlab in terms of its resol-
vability of closely spaced sinusoids. The aim of this section is
to highlight the high-resolution performance of ORPD algo-
rithm compared classic MUSIC method. Three synthetized
signals i1ðtÞ, i2ðtÞ, and i3ðtÞ were considered, composed of
only two harmonic components, respectively.

i1 tð Þ = cos 2π ⋅ 49:3 ⋅ t + 0:23πð Þ + cos 2π ⋅ 50:7 ⋅ t + 0:3πð Þ,
ð16Þ

i2 tð Þ = cos 2π ⋅ 49:4 ⋅ t + 0:23πð Þ + cos 2π ⋅ 50:6 ⋅ t + 0:3πð Þ,
ð17Þ

i3 tð Þ = cos 2π ⋅ 49:5 ⋅ t + 0:23πð Þ + cos 2π ⋅ 50:5 ⋅ t + 0:3πð Þ:
ð18Þ

In all cases, the signals were sampled at the frequency of
2 kHz during 1 s, white Gaussian noise was added, SNR was
set to 20 dB, and dimension M of self-correlation matrix was
set to 100.

The pseudo-spectra of MUSIC and ORPD correspond-
ing to signal i1ðtÞ, i2ðtÞ, and i3ðtÞ are shown in Figure 1.
The observed pseudo-spectra integrate the statistical results
of 20 simulation experiments.

As shown in Figure 1, under the same conditions such as
SNR, data length N , and matrix dimensionM, the resolution
performance of ORPD and MUSIC algorithm varies with
the change of frequency interval. In Figure 1(a), when the
two frequency components are far away from each other,
the resolution of MUSIC and ORPD algorithms is roughly
equal. However, when the two frequency components grad-
ually approach each other, the resolution of MUSIC algo-
rithm begins to decline, as shown in Figure 1(b). The
spectral peak of MUSIC algorithm is ambiguous, while
ORPD algorithm still maintains high resolution. When the
two frequency components are very close to each other, as
shown in Figure 1(c), there is only one spectrum peak and
cannot identify two frequencies by MUSIC algorithm, but
still two spectrum peaks clearly by ORPD algorithm. So
ORPD algorithm can still distinguish two closely spaced
sinusoid frequencies. By averaging each result of the ORPD
algorithm in Figure 1(c), the left and right frequency values
are 49.52Hz and 50.53Hz, respectively. Within the allow-
able error range, the frequency values obtained by ORPD
algorithm are very close to the real frequency, indicating that
ORPD algorithm has higher resolution performance and can

accurately distinguish two signals with very similar fre-
quency values. The simulation results show that ORPD algo-
rithm can be used for broken rotor bar fault diagnosis and
has higher frequency resolution than MUSIC algorithm.
Many pseudo peaks will be generated when ORPD algo-
rithm is used, and the spectral peaks in the stopband proc-
essed by band-pass filtering can be identified as “pseudo
peaks” and excluded.

3. Experimental Setup

The general view of the experimental setup is depicted in
Figure 2. The test motor used in the experimental investiga-
tion is a three-phase, 50Hz, 4-pole, 3 kW, 380V, 6.8A, Y-
connected induction motor. Several identical type rotors
with different broken bars, which can be interchanged, have
been prepared for testing. Each of them is a standard cast
aluminum single-squirrel cage-type rotor with 32 skewed
and uninsulated bars. The broken rotor bar fault is con-
structed by drilling holes through the rotor bars at the joints
with the end ring using a fine milling cutter. An industrial
drive (Siemens, 6SE6440-2UD31-8DB1) has been employed
to apply open-loop constant voltage/frequency (CV/F) con-
trol technique for the different operating conditions. A
three-phase change-over switch is used for exchanging the
motor connection from the mains to the drive output and
vice versa. A separately excited 4 kWDC generator with a
variable resistance box is used as the load of the motor.
The current signal is acquired by using a current transducer
with a data acquisition card during 10s. The sampling fre-
quency is 2 kHz.

The tests are performed with the motor in different
steady-state regime. First, the motor is in healthy condition.
In the second group of tests, the motor is the utility-driven
case and the supply frequency is 50Hz. During the experi-
ment, the load is adjusted randomly to make the motor
run under 20%, 23%, 25%, 50%, and 75% rated load, respec-
tively. The third group of tests corresponds to the same
motor with inverter-driven cases. Contrary to the utility-
driven case, in CV/F mode, the motor reference frequency
is adjustable. Therefore, the low supply frequencies of
20Hz, 32Hz, 40Hz, and 45Hz are investigated. Data acqui-
sition is done via National Instruments NI USB6216, LEM
LA55-P current probe, and standard PC notebook com-
puter. The signal processing software has been implemented
by using the MATLAB R2014a on a PC processor, having
Intel(R) Core(TM) i5-4300U CPU, and 64-bit Windows 7
operating system.

The proposed fault detection methodology is summa-
rized in Figure 3. First of all, the captured single-phase cur-
rent signal is filtered in order to suppress frequency
components, related to the fundamental component as well
as other stator winding harmonics. This procedure, which
yields a clearer representation of the results, is applied grad-
ually, eliminating the main current harmonic in all cases and
removing higher order ones as needed. Chebyshev notch fil-
ter and Batworth 4-order band-pass filter, as implemented in
MATLAB, are suitable for this task. The filter preprocessing
overcomes the problems of judging the number of
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components according to the eigenvalues of the covariance
matrix, and the possible pseudo-peak generated by ORPD
algorithm are also avoided to the maximum extent. After
the preprocessing of the stator current signal, the character-

istic frequencies are obtained applying the ORPD algorithm,
and the amplitude of the frequencies is estimated by LS algo-
rithm. Finally, diagnosis decision is made based on fre-
quency and amplitude estimation results.
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Figure 1: Comparison of the resolvability between MUSIC with ORPD algorithms.
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Figure 4: Time domain waveform of original stator current signal and preprocessed signal.
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Figure 5: Comparison of ORPD current pseudo-spectra between the healthy and faulty machine with different severity.

Table 1: Parameter estimation results with the healthy and faulty machine with different severity using ORPD algorithm.

Fault type Characteristics of the component Theoretical value Frequency estimation Amplitude estimation

0
1 − 2sð Þf — — —

1 + 2sð Þf — — —

1 broken rotor bar
1 − 2sð Þf 48.7 48.66 0.019

1 + 2sð Þf 51.3 51.36 0.014

2 broken rotor bars
1 − 2sð Þf 48.7 48.71 0.025

1 + 2sð Þf 51.3 51.32 0.021

3 broken rotor bars
1 − 2sð Þf 48.7 48.70 0.035

1 + 2sð Þf 51.3 51.30 0.028
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Figure 6: ORPD current pseudo-spectra of faulty induction motor with different power supply frequencies.

Table 2: Parameter estimation results with the faulty machine at different power supply frequencies using ORPD algorithm.

Power frequency (Hz) Speed (r/min) Characteristic component Theoretical value Frequency estimation Amplitude estimation

20 584
1 − 2sð Þf 18.92 18.92 0.036

1 + 2sð Þf 21.08 21.10 0.029

32 935
1 − 2sð Þf 30.33 30.33 0.513

1 + 2sð Þf 33.67 33.68 0.462

40 1184
1 − 2sð Þf 38.93 38.82 0.031

1 + 2sð Þf 41.07 41.09 0.027

45 1132
1 − 2sð Þf 43.83 43.90 0.044

1 + 2sð Þf 46.17 46.11 0.039
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4. Experimental Results

The original stator current signals of healthy and faulty
motors were pretreated with the same band-pass and notch
filtering. According to different analysis requirements, 1 s
samples were randomly selected from the pretreated data
for analysis. Figure 4 shows the time domain waveform of
the stator current signal of a motor with 1 broken rotor
bar fault and the signal after filtering and pretreatment.

4.1. Validation of Diagnostic Ability of ORPD Method

4.1.1. Diagnostic Ability of Power Supply Motor with
Different Fault Severity. When the motor runs under low
load, the stationarity of the stator current signal is easily
affected by load fluctuation. At the same time, the fault char-
acteristics are weak and gradually approaching with the load
reduction. These factors put forward higher requirements
for the short-time data diagnosis ability and frequency reso-
lution of the algorithm. Therefore, the data of the healthy
motor, 1, 2, and 3 broken rotor bars motors at low load
(25% rated load, speed n=1480 r/min) were randomly
selected for analysis to verify the diagnostic performance of
the ORPD algorithm. Data length N =600 for experimental
analysis. As can be seen from the ORPD spectrum of the
healthy motor and the fault motor shown in Figure 5, for
the healthy motor, there are no spectrum peaks on both

sides of the 50Hz dotted line in the spectrum, and only
two spectrum peaks appear in the frequency band other than
40Hz to 60Hz. Obviously, these two spectrum peaks can be
identified as pseudo peaks.

For the motors with 1-3 broken rotor bars, two spectrum
peaks with equal distance distribution appear in a very small
range on both sides of the 50Hz dotted line. According to
the frequency corresponding to the spectral peak position,
it is found that the estimated frequency is consistent with
the theoretical value, which indicates that ORPD algorithm
can accurately estimate the fault characteristic frequency
and judge the motor fault state based on it. Using Equation
(15), the amplitude estimation obtained from the frequency
estimation is shown in Table 1. It can be seen that the ampli-
tude of the motor with different severity is significantly dif-
ferent, reflecting the actual situation that the severity is
gradually increasing. It is shown that the proposed method
can accurately diagnose the broken rotor bar fault and judge
the severity of the fault. Compared with previous methods
[11, 16, 19], the fault can be determined in only 1 s in this
paper, and the diagnosis scope is extended to low load oper-
ation, indicating that the proposed method has advantages
in short-time data diagnosis and resolution.

4.1.2. Diagnostic Ability under Different Power Supply
Frequencies. When the motor is powered by a frequency
converter, the noise component in the current signal
increases significantly due to the influence of switching noise
in the frequency converter. In low-frequency operation
under speed regulation, the power frequency and motor
speed decrease simultaneously, resulting in extremely weak
fault characteristics. These factors not only lead to the reduc-
tion of SNR and difficulty in feature recognition but also
make the diagnosis results susceptible to load fluctuations.
Power supply frequencies are randomly set as 20Hz, 32Hz,
40Hz, and 45Hz, data time is 1 s, sample number N =600.
The analysis results are shown in Figure 6, and Table 2
shows that the proposed method can still accurately identify
the fault characteristics of broken rotor bars in frequency
conversion power supply mode.

4.2. Performance Comparison of ORPD, MUSIC, and FFT
Algorithms. FFT is a classical spectral estimation method;
OPRD and MUSIC are high-resolution parameter estima-
tion methods. In this section, based on the experimental data
of three broken rotor bars motor under different load oper-
ation conditions, the short-time data diagnosis ability and
anti-interference ability of ORPD, MUSIC, and FFT
methods are compared, and the frequency resolution and
operation performance of OPRD and MUSIC methods are
compared.

4.2.1. Comparison of Short-Time Data Diagnostic Ability.
The data of the motor at 75%, 50%, 23%, and 20% rated load
were randomly selected for analysis, and the data time was
1 s. Figure 7 shows FFT spectrum, MUSIC and ORPD
pseudo-spectra under 75% and 50% rated load. As can be
seen from Figure 7, when FFT is used for spectrum analysis,
two spectral peaks of characteristic frequency can still be

Table 3: Parameter estimation results of the faulty machine with
different load levels using FFT, MUSIC, and ORPD algorithms.

Speed (r/
min)

Characteristic
component

Reference
value

Estimated value
FFT MUSIC ORPD

1484

1 − 2sð Þf 49 — — 49.13

A1 0.021 — — 0.017

1 + 2sð Þf 51 — — 51.07

A2 0.016 — — 0.012

1482

1 − 2sð Þf 48.8 — — 48.88

A1 0.028 — — 0.025

1 + 2sð Þf 51.2 — — 51.23

A2 0.020 — — 0.020

1479

1 − 2sð Þf 48.6 — 48.60 48.57

A1 0.044 — 0.045 0.044

1 + 2sð Þf 51.4 — 51.53 51.44

A2 0.038 — 0.035 0.036

1460

1 − 2sð Þf 47.4 47.51 47.33 47.44

A1 0.102 0.108 0.108 0.107

1 + 2sð Þf 52.6 54.24 52.62 52.50

A2 0.087 0.099 0.090 0.091

1440

1 − 2sð Þf 46.0 46.11 46.02 45.99

A1 0.123 0.113 0.120 0.121

1 + 2sð Þf 54.0 53.89 53.98 54.01

A2 0.101 0.107 0.105 0.105
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distinguished under 75% rated load, but it is difficult to dis-
tinguish under 50% rated load, indicating that FFT cannot
be used for fault diagnosis of short-time data. In contrast,
due to the long distance between the left and right character-
istic frequency components, the ORPD and MUSIC algo-
rithm can estimate the characteristic frequency accurately
under 75% and 50% rated load, and there is no difference
in the resolution between the two algorithms (shown in
Table 3).

In order to further compare the fault diagnosis perfor-
mance of ORPD and MUSIC algorithm under low load
operation of motor, the load was adjusted randomly to make
the motor run at 1479 r/min, 1482 r/min, and 1484 r/min,
and the data analysis conditions were the same as above.
As can be seen from Figure 8 and Table 3, when the load
is low (n=1479 r/min), the estimated value of characteristic
frequency can also be obtained based on MUSIC algorithm.
However, as the load decreases (speed n increases), the spec-
tral peak becomes unclear, and the estimated value of fre-
quency obtained based on the pseudo-spectral peak differs
greatly from the real value until it cannot be estimated. In
contrast, the spectral peak of ORPD algorithm is always
clear, and the estimated frequency and amplitude obtained
from the spectral peak are very close to the real value, and
the resolution of ORPD algorithm is significantly better than
that of MUSIC algorithm.
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Figure 8: Comparison of the resolution performance between MUSIC with ORPD of faulty motor with lower load levels.

Table 4: Comparison of the number of successful resolution times
for different data lengths with FFT, MUSIC, and ORPD algorithms.

Data length
The number of successful resolution times
FFT MUSIC ORPD

400 0 2 15

500 0 25 40

600 0 26 45

700 0 40 56

800 0 45 60

900 0 50 80

1000 0 60 90

1100 0 80 95

1200 10 95 100

1300 50 96 100

1400 81 96 100

1500 90 97 100

1600 95 99 100

1700 100 100 100
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The results show that the frequency resolution and diag-
nostic performance of ORPD and MUSIC are significantly
higher than that of FFT when the motor is running under
50% rated load for short-time data of 1 s. As the load
decreases, when the motor runs under low load, the resolu-
tion of MUSIC decreases significantly and even fails. In con-
trast, ORPD consistently maintains high-frequency
resolution and can identify fault features even at 20% load
rating, demonstrating superior short-time data diagnosis
ability.

4.2.2. Comparison of Anti-Interference Ability. In practical
application, the longer the signal data used for diagnostic
analysis, the more likely the diagnosis result is affected by
data noise, and ambiguity frequency may occur in the case
of load fluctuation, increasing the risk of misdiagnosis.
Therefore, the length of data used for diagnostic analysis is
an important indicator to measure the anti-interference per-
formance of a diagnostic method. In order to compare the
diagnostic performance of ORPD, MUSIC, and FFT algo-
rithms in different data lengths, several data segments of dif-
ferent lengths were selected for statistical analysis. During
the analysis, the matrix dimension M =100, the motor speed
n=1482 r/min under low load, and the data length N ranged
from 400 to 1700 sampling points. Under certain conditions
of N , take different data to do 100 independent experiments.

The frequency error UE is defined as shown in Equation
(19), where f est is the estimated frequency value and f true is
the theoretical value calculated according to slip s.

UE = f est − f truej j: ð19Þ

Under the condition of UE < 0:3, the number of success-
ful resolution times of various algorithms was counted, and
the statistical results are shown in Table 4 and Figure 9.

As can be seen from Table 4 and Figure 9, as the length
of signal data N increases gradually, the number of success-
ful resolution times of all algorithms increases gradually.
However, under the same data length, the number of suc-
cessful resolution times of ORPD and MUSIC algorithm is
significantly higher than FFT algorithm, and ORPD is
always higher than MUSIC algorithm. This shows that
ORPD algorithm has obvious advantages in short-time data
diagnosis and therefore has better anti-interference ability
than MUSIC and FFT algorithms.

4.2.3. Comparison of Performance between ORPD and
MUSIC Methods. The frequency resolution and operation
time of ORPD and MUSIC methods depend on the dimen-
sion of self-correlation matrix M ðM ≤NÞ. If M is too small,
the characteristic frequency cannot be identified. If M is too
large, too much computing resources are occupied.

In order to compare the performance of the two
methods, the speed n=1482 r/min was set when the motor
was running under low load, and the corresponding 20 dif-
ferent data with length N =600 were taken. Independent
experiments were repeated when M =200, 150, and 100,
and the spectra were recorded and the data were analyzed.
The simulation operation time corresponding to M =200,
150, and 100 is 43 s, 31 s, and 22 s, respectively. The simula-
tion spectra are shown in Figure 10. As can be seen from
Figure 10, with the decrease of M, the resolution of MUSIC
algorithm will gradually decline, but the resolution of ORPD
remains unchanged.

This means that in order to maintain the same frequency
resolution, MUSIC requires an increase in the dimension of
matrix M, resulting in an increase in computing time and
hardware requirements. In contrast, ORPD is more conve-
nient for system development and integration due to its
advantages in computing performance.
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Figure 9: Influences of data lengths on diagnostic performance of FFT, MUSIC, and ORPD algorithms.
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5. Conclusions

Theoretical and simulation analyses show that the ORPD
algorithm has the best frequency resolution performance
under the condition of the prior information of the pre-
dicted parameters. The characteristic frequencies of broken
rotor bar faults are symmetrically distributed on both sides
of the fundamental frequency f s. Using this prior informa-
tion, by constructing a weighted matrix with the lowest
SNR resolution threshold, ORPD algorithm with the best
frequency resolution performance can be developed to esti-
mate the characteristic frequencies of broken rotor bar faults
in the stator current spectrum.

Experimental results show that due to its high-frequency
resolution, the proposed method has good diagnostic ability
for motors with different fault severity of power frequency
and frequency conversion power supply. When the motor
runs at low load and frequency conversion power supply at
low-frequency band, the SNR is low and the fault character-
istics are susceptible to load fluctuation. In this case, the

method presented in this paper still has strong diagnostic
ability and can diagnose the broken rotor bar fault under
the short-time data condition of 1 s. Compared with FFT
and MUSIC methods, the proposed method has obvious
advantages in short-time data diagnosis ability, anti-
interference ability, and computing performance, so it is
convenient for the development of portable diagnosis device
and the integration of diagnosis system.

The ORPD algorithm adopted in this paper is better
than FFT and MUSIC algorithm in frequency resolution,
but it still has shortcomings in accuracy. In addition, the
accuracy of frequency estimation is affected by signal pre-
processing technology, which will be the focus of the next
stage of research.

Data Availability

The data used to support the findings of this study are
included within the article.
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