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It is quite simple for foreign objects to attach themselves to transmission line corridors because of the wide variety of laying and
the complex, changing environment. If these foreign objects are not found and removed in a timely manner, they can have a
significant impact on the transmission lines’ ability to operate safely. Due to the problem of poor accuracy of foreign object
identification in transmission line image inspection, we provide an improved YOLOX technique for detection of foreign
objects in transmission lines. The method improves the YOLOX target detection network by first using Atrous Spatial Pyramid
Pooling to increase sensitivity to foreign objects of different scales, then by embedding Convolutional Block Attention Module
to increase model recognition accuracy, and finally by using GIoU loss to further optimize. The testing findings show that the
enhanced YOLOX network has a mAP improvement of around 4.24% over the baseline YOLOX network. The target detection
SSD, Faster R-CNN, YOLOv5, and YOLOV7 networks have improved less than this. The effectiveness and superiority of the
algorithm are proven.

1. Introduction

The power grid’s transmission line serves as the conduit for
electric energy, and maintaining its stability and security for
power transmission is essential to the grid’s efficient and
secure operation [1]. Significant statistics show that the for-
eign objects that regularly appear on the electricity system
are bird nests, kites, balloons, and trash. These components
are easily capable of causing short-circuit faults or single-
phase faults between transmission lines, which can lead to
a number of short-circuit accidents, some of which might
result in fire and substantial power outages, leading to signif-
icant economic losses [2, 3]. Short circuits will cause a dom-
ino effect that endangers the lives and property of those who
reside close to power lines [4]. Additionally, it endangers the

lives and security of maintenance workers who go to inspect
the electricity infrastructure. The transmission lines typically
travel across a variety of landscapes, through densely popu-
lated regions with heavy traffic. Response time will be con-
strained once any security problems need to be resolved
manually. Processes for manual operation and maintenance
are also very costly, time-consuming, and challenging to fin-
ish on schedule. As a result, by using UAV aerial photogra-
phy of transmission lines for inspection, intelligent
inspection technology [5–8] was developed, which can save
a lot of time and resources while also having a high detection
efficiency when compared to artificial techniques. To recog-
nize aerial data, nevertheless, still requires manual judgment.
As a result, the detection process’s overall effectiveness and
precision must be improved.
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In this big data era, GPU computing power is increasing,
and deep learning is gradually proving to be advantageous in
many computer vision applications, notably target recognition
jobs. Beginning with two-stage networks like R-CNN, Fast R-
CNN [9], Mask-R-CNN [10], and Faster R-CNN [11], as well
as some excellent algorithms for improving the CNN network
model [12–15], which have the advantages of high detection
accuracy and low leakage rate, there has been an explosion
of deep learning-based target detection networks since 2014.
However, the detection speed is slow and the computation is
relatively complicated, making it difficult to be used for the
detection and prevention of cybercrime. Later, the single-
stage detection method [16] emerged, combining prediction
frame localization and candidate region feature extraction
for direct target class identification and detection frame local-
ization. Researchers have started to take lighter, faster single-
stage target detection networks into consideration. These net-
works have the benefits of quick detection and low computa-
tion to meet the demand for real-time detection, ushering in
a new era of single-stage target detection networks. Among
them, the single-stage target detection model is mainly YOLO
series, including YOLOV4 [17, 18], YOLOV5 [19], YOLOV6
[20], and YOLOV7 [21]. At the same time, YOLO series also
includes many variants, such as PP-YOLO [22].

The authors presented a way to recognize and detect for-
eign objects [23], such as birds, on transmission lines while
still having the issue of low network detection accuracy by
enhancing the YOLOv3 model, which principally uses an
improved network of two-scale detection frames. In order
to find broken strands and foreign objects, the authors sug-
gested a method using grayscale and conductor width fluctu-
ation for UAV inspection images [24]. However, this
method can only find foreign objects on the line itself, not
on transmission line towers. For finding bird nests on trans-
mission lines, a dynamic federated learning strategy is rec-
ommended [25]. This method necessitates the use of a
central server, which has network needs and information
transfer delays that are difficult to ensure, to process statis-
tics before returning the detection findings. The aforemen-
tioned techniques still have some limitations, when it is
used for transmission line foreign object detection.

With detection rates of up to 140 frames per second,
YOLOX [26], which was introduced in 2021, stunned the
globe and is a strong contender for real-time and mobile
deployment scenarios. Without changing the target feature
extraction network, the YOLOX-S version has been slightly
improved for a few domains in the literature [27–32]. Feature
extraction has also been improved by upgrading the FPN (fea-
ture pyramid networks), which has led to some gains in target
recognition accuracy. The YOLOX-S regression, however,
lacks sufficient precision. The mAP (Mean Average Precision)
of YOLOX-M, YOLOX-L, YOLOX-X, and other deeper layers
of YOLOX can be higher than YOLOX-S. However, the model
will contain more data, increasing the hardware requirements
of the method. YOLOX Tiny and YOLOX Nano versions can
be used on a wider range of computers and have a faster frame
rate. Nevertheless, their accuracy mAP has a gap when com-
pared to more intricate network models. Consequently, it is
challenging to achieve the demanding requirements for real-

time and target frame regression accuracy scenarios. The fol-
lowing are themain contributions of this research, which pres-
ent a lightweight and accurate target identification model
based on YOLOX-S, in order to better balance speed and accu-
racy and better apply the YOLO model to the transmission
line foreign object detection problem:

(1) The Atrous Spatial Pyramid Pooling (ASPP) was uti-
lized to replace the Spatial Pyramid Pooling (SPP) in
order to broaden the receptive field and enhance
sensitivity to foreign objects of various sizes [33]

(2) A lightweight CBAM (Convolutional Block Atten-
tion Module) is embedded in the network in order
to make the model pay more attention to the impor-
tant position information and channel information
in the feature map

(3) GIoU loss (generalized crossmerge ratio loss func-
tion) is used [34] to replace the original IoU loss
function [35], which can solve the problem that the
model cannot be optimized without overlapping
objectives, realizing the ability to distinguish two
objects in different permutations

The above is the focus of this paper. Although the
improved object detection model YOLOX in this paper is
employed in the foreign object detection of transmission
lines, the improved model also can be utilized in a wider
range, such as occlusion target detection, super resolution
reconstruction, video content segmentation, image repair,
and other fields [36–40].

The rest of this paper is organized as follows. Section 2
describes the related work; Section 3 introduces the pro-
posed method in details; Section 4 reveals the experimental
results and analysis; Section 5 deals with the conclusion.

2. Related Work

2.1. YOLOX. The YOLOX algorithm, which includes the
advantages of the YOLO series network, was proposed by
YOLO series in 2021. The three elements that distinguish
SimOTA (Sample Optimal Transport Assignment) from the
previous YOLO series are its dynamic positive sample match-
ing technique, decoupled head, and anchor-free design. Addi-
tionally, a number of advancements are used to integrate a
series of innovations that not only achieve APs beyond
YOLOv3 [31], YOLOv4, and YOLOv5 but also achieve com-
petitive inference speed. These advancements include the
introduction of the focus network structure of YOLOv5 for
channel broadening, the use of mosaic data enhancement
techniques, and a number of other improvements.

The three components of the YOLOX model are shown
in Figure 1: YoloHead, the enhanced feature extraction net-
work, and the backbone feature extraction network. The
backbone feature extraction network makes use of the
CSPDarknet network through a series of channel modifica-
tions to gather feature information from feature layers with
different geometries. The enhanced feature extraction net-
work achieves feature fusion using the feature pyramid
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network. Three decoupled heads are used by the detection
head, which consists of the classifier and regressor parts, to
produce three prediction results: the object type contained
in the feature points, the regression parameter of the feature
points if the feature points contain objects, and the regres-
sion parameter of the feature points otherwise.

The input image will first undergo feature extraction in
CSPDarknet, followed by the acquisition of three feature
layers in FPN to combine feature information at various
scales for feature fusion, and finally, the acquisition of the
three enhanced effective feature layers and input to the
detection head to determine whether the feature points have
objects corresponding to them.

2.2. Atrous Spatial Pyramid Pooling (ASPP). By maximizing
the pooling of various pooling kernel sizes for feature extrac-
tion and enlarging the network’s perceptual field, the SPP
(Spatial Pyramid Pooling) technique improves the network’s
capacity to extract multiscale contexts. However, it is gener-
ally accepted that the adjacent pixel places in the image con-
tain redundant information. The spatial resolution will
decrease as the perceptual field is widened.

The ASPP module employs a number of parallel atrous
convolution layers with various sampling rates. The features
that were retrieved for each sampling rate are further proc-
essed and combined to create the final output in a different
branch. The module generates convolutional kernels with

various sensory fields by varying the expansion coefficient
(rate), which are then used to gather multiscale object infor-
mation and broaden the network’s sensory field. This
improves the network’s capacity to acquire multiscale con-
texts without affecting the shape.

A specific ASPP with four parallel branches, the first of
which is a 1 ∗ 1 regular convolution layer, is shown in
Figure 2. A 3 ∗ 3 expansion convolution is used for the sec-
ond and third branches, with various expansion coefficients
for each branch.

2.3. Convolutional Block Attention Module (CBAM). Finding
a set of attention weight coefficients that apply to the model
is the major objective of the attention mechanism, which is
often described as pulling more significant input from a par-
ticular area while ignoring or suppressing unimportant data.
Deep learning can use the attention process to separate out
the information that is most important, enabling the net-
work’s inherent properties to be learned. CBAM’s structural
layout is shown in Figure 3. As illustrated in Figure 3, CBAM
has two distinct submodules that execute attention to chan-
nel and space, respectively: CAM (Channel Attention Mod-
ule) and SAM (Spatial Attention Module). In addition to
saving computational resources and parameters, this also
makes it simpler to integrate into current network topolo-
gies. The addition of CBAM led to features spanning more
regions of the recognized item and a higher likelihood of
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Figure 1: YOLOX structure.
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subsequently discriminating the object, showing that the
network’s attention mechanism enables it to learn to con-
centrate on the crucial information.

2.3.1. Channel Attention Module (CAM). CAM is concerned
with determining which elements contain critical informa-
tion. To achieve dimensional compression of the feature
map, maximum and average pooling of the input image is
used. The information was subsequently fed into a two-
layer neural network (MLP) with shared complete connec-
tivity. After a summing process based on the corresponding

multiplication of components, the two feature maps are acti-
vated by a sigmoid function to obtain the channel attention
feature maps with weight. The channel attention MCðFÞ is
calculated as follows:

MC Fð Þ = σ MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ
= σ W1 W0 Fc

avg

� �� �
+W1 W0 Fc

maxð Þð Þ
� �

,
ð1Þ

where σ denotes the sigmoid function and W0 and W1 are
the MLP weights shared for both inputs.
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2.3.2. Spatial Attention Module (SAM). SAM is primarily
concerned with where the visual information of importance
is placed in the picture, and spatial attention can be utilized
in conjunction with channel attention to weight distinct spa-
tial elements and aggregate them selectively. The spatial
attention feature MSðFÞ is calculated by

MS Fð Þ = σ f 7×7 AvgPool Fð Þ ; MaxPool Fð Þ½ �ð ÞÀ Á

= σ f 7×7 Fs
avg ; F

s
max

h i� �� �
:

ð2Þ

After performing global max pooling and global average
pooling based on the channel on the feature map produced
by the Channel Attention Module, a concat operation is per-
formed on these two H ∗W ∗ 1 feature maps. The two fea-
ture maps are then blended based on the channel. A 7 ∗ 7
convolution method is then used to reduce the dimensional-
ity to 1 channel. After that, the sigmoid function is employed
to provide a spatial attention feature (MSðFÞ). Finally, the
input and output images (MSðFÞ) are multiplied to obtain
a CBAM-processed image.

3. The Proposed Method

3.1. Improved YOLOX-S Network Structure. The improved
YOLOX-S network structure in this paper is shown in
Figure 4. The proposed method switches the YOLOX-S
backbone feature extraction network’s original SPP structure
for an ASPP structure that uses several parallel cavity convo-
lution layers with different sampling rates to produce a bet-
ter perceptual field than the original structure. Three feature
layers reside in the middle, lower middle, and bottom layers
of the CSPDarknet of the backbone section, respectively. The
three feature layers’ shapes are FEAT1 = ð80,80,256Þ, FEAT
2 = ð40,40,512Þ, and FEAT3 = ð640,640,3Þ when the input

is (640,640,3). Prior to each feature layer being output to
the CSP net network structure, insert CBAM. This penalizes
the attention module for weight sparsity and suppresses less
significant weight, allowing attention operations to capture
conspicuous characteristics while maintaining performance
at the same level.
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3.2. Improved Loss Function. The feature points’ regression
parameter (Reg), whether or not they include objects
(Obj), and the kind of objects they contain are all predicted
using YoloHead in YOLOX (Cls). In Obj and Cls, like in the
first YOLOX network, the binary cross loss function (BCE
loss) will still be used. For calculating the Reg loss function
of the bounding box, the generalized crossmerge ratio loss
function (GIoU loss) has been improved. The GIoU loss
function offers extra benefits over the IoU loss function.

(1) Like IoU, it has nonnegativity and scale invariance

(2) GIoU is not sensitive to scale

(3) The lower bound of IoU is GIoU, which takes the
values [-1, 1]. GIoU adds a penalty term that moves
the prediction box toward the target box if the pre-
diction box and the target box do not overlap

(4) In addition to overlapping regions, GIoU focuses on
nonoverlapping regions, which can better depict
overlap

The IoU is calculated by

IoU A, Bð Þ = A ∩ B
A ∪ B

, ð3Þ

where A is the anticipated rectangular box and B is the real
rectangular box. The GIoU is calculated by

GIoU A, Bð Þ = IoU A, Bð Þ − Cj j − A ∪ Bj j
Cj j , ð4Þ

where C is the smallest rectangular box that contains A and
B. The loss function is

Lossgiou = 1 −GIoU: ð5Þ

When IoU is zero, it means that A and B do not coincide.
When A is very far from B, IoU value is infinitely close to
zero, and GIoU tends to -1. When IoU equals 1, the two
frames overlap, and IoU value equals 1. As a result, GIoU
has a value of (-1,1).

To sum up, the loss function formula of the model is
given below, which is mainly composed of three parts,
namely, location loss, category loss, and confidence loss of
positive and negative samples.

In the formula, λcoord represents the positive sample
weight coefficient, and λnoobj represents the negative sample
weight coefficient; K × K represents the number of rectangu-

lar boxes divided on the feature map; Iobjij represents the exis-

tence of positive samples; Inoobjij represents negative samples;
w and h represent width and height; and C represents the
confidence level of samples. GIoU is used for the location

Figure 6: Data enhancement processed by mosaic.

Table 1: Experimental environment.

Type Object Edition

Hardware

Operating system Windows 10

Graphic card NVIDIA TITAN RTX

CPU Intel Xeon Gold

Software

Python 3.7

Deep learning framework PyTorch

CUDA 11.1
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to calculate loss, and crossentropy is used for confidence and
category loss.

L objectð Þ = λcoord 〠
K×K

i=0
〠
M

j=o
Iobjij 2 −wi × hið Þ 1 −GIoUð Þ

− 〠
K×K

i=0
〠
M

j=o
Iobjij Ĉi log Cið Þ + 1‐Ĉi

À Á
log 1 − Cið ÞÂ Ã

− λnoobj 〠
K×K

i=0
〠
M

j=o
Inoobjij Ĉi log Cið Þ + 1‐Ĉi

À Á
log 1 − Cið ÞÂ Ã

− 〠
K×K

i=0
〠
M

j=o
Iobjij 〠

c∈classes
p̂i cð Þ log pi cð Þð Þ + 1‐p̂i cð Þð Þ log 1 − pi cð Þð Þ½ �:

ð6Þ

4. Experiment

4.1. Data Collection. Because there is not a publicly accessi-
ble dataset for transmission line foreign objects, this study
employs a manually compiled dataset with four types of bird
nests, balloons, garbage, and kites. The transmission line for-
eign object dataset is created using the LabelImg tool, and it
includes the four categories mentioned above. Based on the
image sample data gathered, the label information for the
images will be recorded in an XML file. After screening
out, 4517 images are acquired from the 2D target shots that
do not have any noticeable compression marks. The dataset
was randomly divided into training, validation, and test sets
that were all independent of one another in an 8 : 1 : 1 ratio.
There were 3613 photographs in the training set, 452 in
the validation set, and 452 in the test set. The most frequent
occurrence across the entire dataset is the existence of bird
nests atop transmission lines. A small sample of the dataset
is shown in Figure 5.

To expand the data amount, the dataset used in this
study underwent a number of processing steps, including
flipping and rotating the data images. The main objective
is to accelerate convergence and enhance generalization
properties of the model. Although the initial photographs
were of great quality, the network model being trained for
this study will reduce them, leading to recognition for 640
∗ 640 images in the end.

4.2. Mosaic Data Enhancement. In this study, mosaic data
enhancement is applied, and the mosaic-processed data
enhancement is displayed in Figure 6. The image and frame
combination is then carried out by the computer after reading
four photos simultaneously, flipping, scaling, and altering each
image’s color spectrum. This offers a number of benefits.

(1) Enriching the dataset: four images are selected and
scaled at random. All of them are distributed randomly
for stitching considerably enriching the detection data-
set. The random scaling, in particular, adds many small
targets, allowing for higher network robustness

(2) Images are saved in GPU RAM by explicitly calculat-
ing the data of four photos, eliminating the require-
ment for a high minibatch size to produce better
results

4.3. Experimental Environment. The operating environment
required for the experiment is shown in Table 1. All experi-
ments are conducted in this environment.

The input image tensor and the initialization learning
rate are (640, 640, 3). Adam optimizer with cosine annealing
learning rate is used for the training. In order to prevent the
early model training data from having too much unpredict-
ability, the model’s core is frozen for the first 50 iterations
and the feature extraction network is left unchanged. After
50 iterations, the frozen component is eliminated, and all
network parameters are changed with the training, which
is repeated three times for a total of 300 iterations.

4.4. Model Evaluation. For target detection models, the usual
evaluation metrics Mean Average Precision (mAP) and
frames per second (FPS) are utilized. The area under the
precision-recall (PR) curve is hereby designated as mAP,

Table 2: Experiment results with different improvement methods.

Model ASPP CBAM GIoU mAP FPS

YOLOX × × × 82.33% 31.43

Improvement 1 ✓ × × 85.67% 30.38

Improvement 2 ✓ ✓ × 86.04% 30.13

Improvement 3 ✓ ✓ ✓ 86.57% 30.08

Table 3: Comparison of performance between main stream target
detection models.

Model mAP P R FPS

Fast R-CNN 53.58% 50.12% 59.28% 31.33

SSD 73.91% 75.34% 78.60% 26.84

YOLOV4 84.47% 84.01% 86.76% 24.35

YOLOV7-S 83.77% 82.67% 86.01% 34.89

YOLOv5-S 76.42% 75.87% 79.32% 32.13

Proposed 86.57% 85.98% 89.16% 30.08
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Figure 7: Loss curve.
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and the mean value of AP for each category is referred to as
mAP. The precision and recall rate are calculated as:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
:

ð7Þ

TP (True Positive) is the positive samples that have been
correctly assigned. FP (False Positive) is the positive samples
that have been erroneously assigned, and FN (False Nega-
tive) is the negative samples that have been incorrectly
assigned.

4.5. Experimental Design and Results. The figure shows the
training loss of the YOLOX model in terms of the experi-
ment. Although there are some variances in the center, the
loss curve finally tends to be smooth as the number of train-
ing rounds increases. When epoch exceeds approximately
150, the model begins to progressively converge, and the
training procedure does not seem to be overfitting. The loss
function is shown in Figure 7.

The “-s” lightweight specification is chosen for this
experiment to suit the model deployment requirements. A
set of ablation experiments and a set of comparison experi-
ments are constructed in this work. Ablation experiments
are utilized to examine the impact of several improvement
components of this study on network performance in order
to completely investigate the model performance, followed

by comparison experiments with mainstream networks (Fast
R-CNN, SSD, YOLOv5, YOLOV4, and YOLOV7-S).

4.5.1. Ablation Experiment. To determine how the improved
portion of this study affected the model’s performance, three
sets of trials were developed, each of which used the same
training parameters but different model contents. The
results of the model performance test are shown in
Table 2, where “√” denotes the better model strategy and
“×” denotes the improved model strategy that was not
applied. Table 2 indicates that improvement 1 expands the
perceptual field by using ASPP instead of the original SPP
structure, and improvement 2 adds a lightweight attention
module (CBAM) to capture salient features through atten-
tion operations. Improvement 3 employs a generalized
crossmerge ratio loss function (GIoU_loss) to enhance the
fit of the prediction frame to the target frame.

4.5.2. Model Comparison. Using the same dataset and hard-
ware setup, the upgraded YOLOX model is compared
against the YOLOv5 target detection model from the previ-
ous generation as well as the equally effective Fast R-CNN,
SSD, and other mainstream target detection techniques.
The outcomes of the comparison experiments are shown in
Table 3.

The approach in this study detects foreign objects on
transmission lines, as shown by the two sets of data in the
above table. The detection mAP values have been enhanced
to varying degrees when compared to the original YOLOX
algorithm. Compared to other popular target identification

Figure 8: Effect of YOLOX detection.
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models (Fast R-CNN, SSD, YOLOv5, YOLOV4, and
YOLOV7-S), the proposed method performs better. While
providing high precision detection, the model’s FPS does
not decrease dramatically as accuracy increases, and the
detection speed still has certain advantages over the main-
stream approach. The visual effects of the proposed YOLOX
detection method are shown in Figure 8.

5. Conclusions

In this research, we use the YOLOX method to detect for-
eign objects on transmission lines using the dataset of for-
eign objects on transmission lines. Using the ASPP
structure based on hole convolution, the suggested strategy
increases the network’s ability to gather multidimensional
input while extending the perceptual field without degrading
sampling. The ASPP structure increases the perceptual field
without sacrificing sampling and increases target identifica-
tion accuracy while retaining the current inference speed,
which enhances the network’s ability to obtain multiscale
contexts. Improve the way the CBAM attention mechanism
is used to highlight the distinctive qualities of common alien
objects. The GIoU loss function is used to improve detection
accuracy since it more accurately illustrates the overlap
between the prediction frame and the ground truth. The
mosaic approach of training the model enhances the model’s
ability to detect objects in complex backgrounds and gives
the model a more lifelike appearance. According to the
experimental findings, the improved YOLOX-S model
described in this paper performs better in terms of inference
speed and detection accuracy and may be applied more suc-
cessfully in the field of transmission line foreign object
identification.

Then, we will focus on minimizing duplicate model
components, removing network topologies that are unre-
lated to the domain used in this article, and increasing model
recognition efficiency without sacrificing recognition accu-
racy. The improvement of the detecting head and the back-
bone feature extraction network parts has been the main
focus of the effort to date. In order to further improve recog-
nition accuracy, the upgraded feature extraction network
section will then be changed in accordance with the most
current feature extraction network pyramid findings.
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