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Multidisciplinary reliability design optimization is considered an effective method for solving complex product design
optimization problems under the influence of uncertainty factors; however, the high computational cost seriously affects its
application in practice. As an important part of multidisciplinary reliability design optimization, multidisciplinary reliability
analysis plays a direct leading role in its computational efficiency. At present, multidisciplinary reliability analysis under mixed
uncertainty is still nested or sequential execution mode, which leads to the problem of poor disciplinary autonomy and
inefficiency in the reliability analysis of complex products. To this end, a multidisciplinary reliability assessment method
integrating deep neural networks and probabilistic computational models under mixed uncertainty is proposed for the problem
of multidisciplinary reliability analysis under mixed uncertainty. The method considers the stochastic-interval-fuzzy
uncertainty, decouples the nested multidisciplinary probability analysis, multidisciplinary likelihood analysis, and
multidisciplinary interval analysis, uses deep neural networks to extract subdisciplinary high-dimensional features, and fuses
them with probabilistic computational models. Moreover, the whole system is divided into several independent subsystems,
then the collected reliability data are classified, and the fault data are attributed to each subsystem. Meanwhile, the
environmental conditions of the system are considered, and the corresponding environmental factors are added as input
neurons along with each subsystem. In this paper, the effectiveness of the proposed method is verified on numerical
calculations and real inverter power failure data.

1. Introduction

Multidisciplinary design optimization (MDO) can be used to
design complex systems and subsystems by fully exploring
and exploiting the synergistic mechanisms of interactions
in the system and to optimize the design from a system-
wide perspective to achieve improved product performance
and shorter design cycles. MDO is considered an effective
approach to solve complex product design optimization
problems [1]. Early MDO design methods generally consider
only the optimization of design solutions in deterministic
cases. This deterministic optimization approach pushes the
design results to the edge of performance constraints, leav-
ing little or no room for uncertainty in engineering, which

can easily lead to product design failure. In order to achieve
a comprehensive improvement of the stability and reliability
of the design solution while pursuing the optimal perfor-
mance of complex products, reliability-oriented multidisci-
plinary design optimization has become a hot issue in
MDO at present. This paper is motivated by the fact that
multidisciplinary reliability analysis under mixed uncer-
tainties still uses nested or sequential execution models,
which leads to poor disciplinary autonomy and inefficiency
in the reliability analysis of complex products.

Reliability-based multidisciplinary design optimization
(RBMDO) is an organic combination of reliability analysis
and multidisciplinary design optimization to obtain the opti-
mal design of complex products while meeting reliability
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requirements. It is considered an effective method to solve
the problem of optimizing complex product design under
the influence of uncertainties [2]. Since RBMDO requires
both multidisciplinary design optimization and multidisci-
plinary reliability analysis, the computational cost is very
high, which seriously affects its application in practice. As
an important part of RBMDO, multidisciplinary reliability
analysis has a significant impact on its computational cost.
Studies have shown that the efficiency of multidisciplinary
reliability analysis directly dominates the computational effi-
ciency of the entire RBMDO. It is easy to see that improving
the computational efficiency of multidisciplinary reliability
analysis can effectively improve the efficiency of RBMDO
solution and help promote the engineering application of
RBMDO technology. RBMDO should fully consider the var-
ious uncertainties that exist in the design to ensure that the
designed complex products can have sufficient reliability
under the fluctuation of uncertainties. RBMDO has under-
gone more than a decade of development since its introduc-
tion. In 2002, NASA published a white paper, “Opportunities
and Challenges of UMDO for Aircraft Design,” in which the
importance and urgency of multidisciplinary design optimi-
zation considering reliability was emphasized. Subsequently,
RBMDO has become the focus of attention in the field of
complex product design and MDO.

Although RBMDO has a history of more than ten years
so far, the development of RBMDO still faces many
challenges and difficulties at present. The main problems
are as follows: (1) the limitation of dealing with uncertainty.
For a long time, RBMDO has mostly considered only the
cases where there is random uncertainty. Or only consider
the case of cognitive uncertainty. And the RBMDO method
for mixed uncertainty has not yet truly and comprehensively
considered the large variety of different uncertainty effects
that exist in actual engineering. (2) In computational com-
plexity, in the process of multidisciplinary reliability design
optimization when only a single uncertainty is considered,
deterministic multidisciplinary design optimization, reliabil-
ity analysis, and multidisciplinary analysis are involved.
These links together form a three-level nested cycle, making
the computation very complex. Further, considering the
mixed uncertainty may bring RBMDO from a three-layer
nested cycle to four or even more layers, and its computation
is unacceptably large. Therefore, how to reasonably mitigate
the computation of RBMDO under mixed uncertainty is also
a pressing issue at present [3].

In the process of establishing a reliability model or opti-
mization model, a primary prerequisite is the need to obtain
mathematical expressions for certain performance responses
(strength, stiffness, velocity, displacement, etc.) of a mechan-
ical product. For a complex mechanical product, the expres-
sions of these performance responses are often implicit, and
it is very difficult to derive their mathematical expressions
directly. To solve this problem, researchers have proposed
the concept of agent models. The basic idea of the proxy
model is to connect discrete performance response points
by data interpolation or fitting to make a continuous differ-
entiable response surface. These discrete performance
response points can be obtained by means of real tests or

computer simulations, but both real tests and computer
simulations have the problems of high cost and low effi-
ciency. Therefore, how to obtain the most accurate proxy
model with the least number of design points becomes a
critical issue. At present, the commonly used agent models
include polynomial response surface model, neural net-
work model, Kriging model, neural network model, and
radial basis function model. Each of these models has its
own characteristics, but their common feature is that they
are only an approximate expression of the real model. So,
there is always a certain error between the proxy model
and the real model, and this error is uncertain. A question
that arises is how to evaluate this error and how to quan-
tify the uncertainty of this error.

A large number of uncertainties exist in actual engineer-
ing. To ensure that products can be safe and reliable under
these uncertainties, RBMDO dealing with uncertainty
factors has been a popular issue in research. Uncertainty in
complex engineering systems can be divided into two
categories, random and cognitive uncertainty, from the
perspective of human cognitive ability, which affects reliabil-
ity. Random uncertainty, also known as chance uncertainty,
nonparsimonious uncertainty, and inherent uncertainty,
describes the variation within a physical system with suffi-
cient experimental data and perfect information. Random
uncertainty is generally treated and measured using a prob-
abilistic approach [4]. Cognitive uncertainty, on the other
hand, is the lack of knowledge and imperfect information
caused by negligence, experimental conditions or other
cognitive ability limitations, so it is also known as parsimo-
nious uncertainty, subjective uncertainty, etc. [5]. There are
two main typical forms of cognitive uncertainty that are
common in engineering. One is the fuzzy uncertainty due
to the complexity of the thing itself, and it is difficult to
obtain sufficient data information to describe it accurately.
The other is the interval uncertainty that can only obtain
the magnitude or boundaries of its variation using limited
data due to the limitation of experimental conditions and
cost in actual engineering, where sufficient information is
not easily available to describe the uncertainty. Fuzzy uncer-
tainty is usually handled and measured using fuzzy sets,
likelihood theory, etc. While interval uncertainty is usually
treated and measured using convex models, evidence theory,
interval analysis, etc. RBMDO, which considers the influ-
ence of uncertainty, has undergone a development process
from single uncertainty to mixed uncertainty, and a series
of results have been achieved.

The main contributions of this paper are summarized
as follows. Most of the studies on multidisciplinary reli-
ability analysis methods for single uncertainty have
focused on parallel collaborative strategies. This fully
reflects that parallel collaborative solving is an effective
means to improve the efficiency of multidisciplinary reli-
ability analysis. In this paper, a reliability analysis method
considering stochastic-fuzzy-interval uncertainty is investi-
gated. The reliability is evaluated by integrating probabilis-
tic computation and deep learning models. It is also
validated by arithmetic examples and inverter power sup-
ply reliability.
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2. Related Works

2.1. Research Status of Reliability Theory. In the middle of the
20th century, the idea of probabilistic design was introduced
into the field of engineering design, which laid the theoretical
foundation of structural reliability design. The reliability
design method is a combination of probabilistic statistical
theory and traditional mechanical design theory. All uncer-
tainty phenomena are regarded as random phenomena, and
probability distribution is used to quantify uncertainty,
through a certain calculation method to quantitatively evalu-
ate the probability of mechanical parts or components not to
fail (i.e., reliability) [6]. This design method not only can
solve the problems that cannot be solved by traditional
design methods in the past but also can effectively improve
the comprehensive performance index of mechanical prod-
ucts. After more than half a century of development, the
probability-based reliability design method has become more
and more mature. Whether it is theoretical research or engi-
neering application, there are many achievements related to
it. At present, this method has become the most common
and successful method to deal with uncertainty factors.

With the in-depth understanding of the uncertainty phe-
nomenon, it is gradually found that the probability-based
reliability design also has certain limitations. The literature
[7] points out that four prerequisites must be satisfied when
using probability theory to deal with problems: the event is
well defined; there exist a large number of samples; the
samples are probabilistically repetitive and have a good
distribution law; and they are not affected by human factors.
In the early design stage of mechanical systems, especially
for mechanical equipment with complex structures and
harsh working conditions, it is often difficult for engineers
to obtain sufficient statistical data. And by the limitation of
objective or subjective factors such as statistical methods,
observation means, personnel quality, and resource cost, it
is almost impossible to require all the statistics to meet the
above four conditions at the same time, which makes the
probability-based reliability design cannot effectively deal
with such problems.

The core idea of probability theory is to determine
several metrics such as likelihood, likelihood distribution,
likelihood distribution function, marginal likelihood distri-
bution function, and the relationship between them, as well
as the conversion rules of various fuzzy propositions and
the inference rules of imprecise propositions. Probabilistic
reliability theory can be regarded as a complement of prob-
abilistic reliability theory and fuzzy reliability theory, which
integrates various methods such as statistical analysis, logical
reasoning, and probabilistic modeling. It is especially suit-
able for dealing with the situation of fuzzy information and
incomplete information.

Nonprobabilistic reliability theory requires less data and
information and has good prospects for engineering applica-
tions. At present, nonprobabilistic reliability theory has
started to be applied in various fields such as civil engineer-
ing, transportation, computational mechanics, military,
energy, automatic control, and aerospace and has become
one of the important tools for dealing with uncertainty in

mechanical engineering [8, 9]. However, compared with
the mature probabilistic reliability theory, the nonprobabilis-
tic reliability theory is still in the stage of development and
improvement. Therefore, probabilistic reliability theory is
still the mainstream tool for reliability engineering. The non-
probability reliability theory can only be a useful supplement
to the probabilistic reliability theory and cannot completely
replace the probabilistic reliability theory.

Although reliability design can ensure that the designed
mechanical products meet the reliability requirements, it
cannot guarantee that the products have the best working
performance and parameter matching, for example, the
products have the smallest structural size, the lowest produc-
tion cost, and the greatest economic efficiency [10]. To make
the product meet the reliability requirements under uncer-
tainty conditions and also have the optimal design results,
it is necessary to combine uncertainty theory with optimiza-
tion techniques, i.e., to adopt the optimization method of
reliability design under uncertainty conditions. Uncertainty
optimization design is a design decision method that incor-
porates uncertainties into an optimal design model. This
approach considers the design variables, design parameters
and constraints in the model, and even the model itself, to
have a certain degree of uncertainty. The impact of these
uncertainties on product performance can be effectively
avoided through rational planning decisions. At present,
the typical uncertainty optimization design methods are
mainly reliability optimization design and robust optimiza-
tion design. Reliability design optimization is mainly to find
the optimal design solution under the condition of ensuring
system reliability. Robust design optimization, on the other
hand, is to find the design solution whose system perfor-
mance is least sensitive to uncertainty factors. Both of these
design ideas are increasingly being studied or applied.

Uncertainty analysis focuses on how to use effective
methods to analyze the process of uncertainty propagation
in a system model and to quantitatively evaluate the uncer-
tainty on the system output information based on the uncer-
tainty of the system input information. In the case of
reliability of mechanical systems, it is to analyze the influ-
ence of uncertainty on the reliability of mechanical products.
At this point uncertainty analysis can also be called reliabil-
ity analysis [11]. Depending on the basic theory, reliability
analysis can be divided into probabilistic reliability analysis
and nonprobabilistic reliability analysis.

The numerical simulation method, represented by
Monte Carlo method, calculates the reliability of the system
by simulating the random sampling process, which has the
characteristics of high precision and low efficiency [12]. In
order to improve the computational efficiency, some
improved Monte Carlo methods have also appeared, such
as the significant sampling method, the directional sampling
method, the subset simulation method, and the line
sampling method. These methods can improve some com-
putational efficiency under certain conditions, but they can
never avoid the requirement of multiple repetitions of
sampling. As a result, the total computational efficiency is
not too high. Deterministic optimization, on the other hand,
is mainly concerned with optimization strategies,
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optimization algorithms, optimization models, etc. Optimi-
zation strategy refers to how to arrange deterministic calcu-
lation and uncertainty analysis under the same model in
order to improve the efficiency and accuracy of optimization
calculation. Sequential Optimization and Reliability Assess-
ment (SORA) [13] is a representative optimization strategy.
The SORA method decouples the traditional two-layer cycle
into a single-layer cycle, which can greatly improve the com-
putational efficiency. The SORA method was first used for
probabilistic models, but later it was used for possible reli-
ability models and also achieved good results.

2.2. Research Status of Multidisciplinary Design Research. In
the past, many studies have been conducted to optimize the
design of mechanical systems, often focusing only on one
part of the system. However, a mechanical system is a large
engineering machine with complex structure and close inter-
actions between mechanisms, and its subsystems interact
with each other. The parameters changed by the optimiza-
tion of one mechanism will affect not only the mechanism
under study but also other mechanisms [14]. In other words,
the design parameters adjusted for the optimization of a sub-
system, although making the performance of the studied
subsystem better, may cause the performance of other
subsystems to decline. Therefore, for complex systems, it is
necessary to consider it whole and perform multidisciplinary
optimization design. Multidisciplinary design optimization
(MDO) in the discipline can refer to both mechanical,
electrical, structural, and other general sense of the discipline
but also can refer to the decoupling of the system after the
subsystem [15]. MDO can be used to design complex sys-
tems and subsystems by fully exploring and exploiting the
synergistic mechanisms of interactions in the system and
to optimize the design from a global perspective to improve
product performance and shorten the design cycle. A white
paper published by the American Institute of Aeronautics
and Astronautics introduces the MDO method, which has
been applied in many fields [16]. Sun et al. [17] introduce
the application of MDO method in mechanism design. Park
et al. [18] apply the MDO method to the optimal design of
magnetorheological brakes for automobiles. Hart and Vla-
hopoulos [19] proposed a prototype tool for the MDO
method for ships, and many scholars have done work in
the optimal design of mechanical systems using the MDO
method. After decoupling the system, it is easier to obtain
reliable optimization results by considering the mutual
coupling relationship between subsystems for design optimi-
zation using the MDO optimization design method.

The multidisciplinary reliability studies mentioned above
are for the case of random uncertainties, while in practical
engineering, there are usually a mixture of uncertainties at
the same time. For complex multidisciplinary systems, the
existence of mixed uncertainties is more obvious and
common. The multidisciplinary reliability analysis under
mixed uncertainties depends on the development of single-
disciplinary reliability analysis techniques. With the develop-
ment of some single-disciplinary reliability analysis methods
under mixed uncertainty, scholars have integrated these
methods with MDO optimization strategies to form some

multidisciplinary reliability analysis methods under mixed
uncertainty. Meng et al. [20] proposed three efficient multidis-
ciplinary reliability analysis methods under random-interval
uncertainty for multidisciplinary reliability problems contain-
ing random-interval uncertainty at the same time, combining
the FORM-URA method for hybrid reliability analysis under
single discipline and the MDO optimization strategy MDF,
and gave the applicability of the three methods.

In summary, the research of multidisciplinary reliabil-
ity analysis methods is based on the research of single-
discipline reliability analysis and deterministic MDO
methods, and the research is mainly carried out by com-
bining some methods. In the multidisciplinary reliability
analysis under mixed uncertainty, the coupling of multiple
types of disciplines and multiple uncertainties is involved,
which makes its computational efficiency low. Therefore,
in the research of multidisciplinary reliability analysis
methods under mixed uncertainty, how to improve the
computational efficiency has been the main problem faced
by its development. At present, some very effective
methods have been developed for multidisciplinary reli-
ability analysis under random-fuzzy and random-interval
uncertainties. However, with the increase of the types of
uncertainties considered, it will further increase the com-
putational power of multidisciplinary reliability analysis,
which is bound to bring new challenges to the research
of multidisciplinary reliability analysis methods. With the
development of deep learning technology, the technology
provides new ideas for the research of parameter estima-
tion and model prediction [21]. Combining deep learning
methods is a potential solution.

3. Algorithm Design

3.1. Random-Fuzzy-Interval Uncertainty Modeling. The mul-
tidisciplinary design problem involves several different disci-
plines. The different design situations in each discipline, as
well as the different background knowledge and preferences
of the experts performing the design in each discipline, make
the uncertainties in the inputs from each discipline different.
These uncertainties input by different disciplines are propa-
gated through interdisciplinary coupling, making the whole
multidisciplinary system contain a mixture of uncertainties.
It is easy to see that for the coupled multidisciplinary system,
the uncertainty of the input of each discipline directly deter-
mines the uncertainty contained in the whole system. When
each discipline contains three different types of uncertainty,
it can be classified into various cases depending on the type
of uncertainty of each discipline’s input.

(1) Each discipline contains a different kind of uncer-
tainty. This situation is characterized by the fact that
each discipline contains only one type of uncertainty,
and each discipline contains a different type of
uncertainty, which is fed into the total system by
different disciplines

(2) Each discipline contains both types of uncertainty.
This case is characterized by the fact that each
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discipline contains only two types of uncertainty,
and at least two disciplines contain different types
of uncertainty, which are entered into the total sys-
tem by different disciplines

(3) Each discipline contains all three types of uncer-
tainty at the same time. This case is characterized
by the fact that each discipline contains three types
of uncertainty at the same time: random, fuzzy, and
interval. These uncertainty variables are entered into
the total system by different disciplines

(4) A combination of single, two, and three types of
uncertainty. This case is characterized by the fact
that each discipline may contain one or two or three
types of uncertainty, each discipline contains differ-
ent ones, and the uncertainties of each discipline
are combined together and input into the total sys-
tem, as shown in Figure 1. From Figure 1, it can be
found that for the three different inputs to Discipline
2 and Discipline 3, respectively, the three disciplines
are finally fused together through the interaction of
the three disciplines

3.2. Integrating Probabilistic and Deep Learning for
Reliability Assessment. There are many indicators for prod-
uct reliability evaluation. Among them, reliability, i.e., the
probability of no failure calculated by probability method,
is the most commonly used index in product design. The
probability-based reliability evaluation considers various
random uncertainties in the design, calculates the probabil-
ity of failure caused by these uncertainties using the proba-
bility theory method, and evaluates the degree of safety
based on the magnitude of the calculated value.

Probability-based reliability evaluation has a long history
of research and mature technical methods. The early reliabil-
ity calculation was implemented by its definition. Based on
the basic principles of probability theory, when the distribu-
tion density function of the input random variable is known,
the reliability is calculated as the multiple integrals in the
reliability domain ΩR = fgðXrÞ ≥ 0g, which is calculated by
the equation:

R gð Þ = P g Xrð Þ ≥ 0f g =
ð
g Xrð Þ≥0

f Xr
Xrð ÞdXr , ð1Þ

where subscript n represents the number of random vectors
and f Xr

ðXrÞ is the joint probability density function of
random variables.

Reliability R and failure probability F are a pair of rela-
tive indexes for reliability evaluation. For the probability of
the same events, they have the following relationship:

R gð Þ = 1 − F gð Þ: ð2Þ

The failure probability is calculated by the equation:

F gð Þ = P g Xrð Þ < 0f g =
ð
g Xrð Þ<0

f Xr
Xrð ÞdXr: ð3Þ

For the calculation of Equations (1) and (3), the inte-
gration domain of the actual engineering problem is very
complex, resulting in almost impossible to solve. For this
reason, the reliability index knife of simple form and easy
to solve is often used as a solution alternative, and its
calculation equation is:

F gð Þ =Φ −βð Þ: ð4Þ

The calculation method used in Equation (4) is also
known as Reliability Index Approach (RIA), which is
aimed at obtaining the magnitude of the failure probability
and thus making a judgment on whether it is reliable or
not. To further improve the efficiency and accuracy of reli-
ability assessment using reliability index, this paper uses
the percentage performance measure approach (PMA) for
reliability assessment. Different from RIA, PMA directly
evaluates whether the current design point is safe and
reliable under the specified reliability index βt , and its
calculation equation is:

g∗ = F−1 Φ −βtð Þð Þ, ð5Þ

where g∗ is the target probability percentage performance
and the upper corner -1 represents the inverse operation.

PDF

0 g⁎ g

g(Xr) < 0

Figure 2: Percentage performance of reliability assessment.

Discipline 1

Discipline 2 Discipline 3

Xr, Xf, Xe

Xr Xr, Xf

Figure 1: Combination of single, double, and three uncertainty
cases.
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A schematic diagram of PMA method to evaluate reliabil-
ity is shown in Figure 2.

From the figure, it can be seen that if the value of g∗ is
greater than or equal to zero, it indicates that the design
point is satisfying the reliability requirement under the cur-
rent βt , and vice versa. From the formula of the PMA
method and its way of reliability assessment, it can be seen
that the PMA method is just opposite in form to the RIA
method. For this reason, the analysis method that uses
the RIA method to solve the reliability directly is often
called positive reliability analysis, while the party that uses
the PMA method for reliability analysis is called inverse
reliability analysis.

In addition to probabilistic calculations, this paper incor-
porates deep neural networks to assess multidisciplinary reli-
ability. The main idea of the reliability prediction model
based on deep neural network is as follows: the whole system
is divided into several independent subsystems, and then the
collected reliability data are classified and the failure data are
attributed to each subsystem. At the same time, the environ-

mental conditions of the system are considered, and the
corresponding environmental factors are added as input
neurons together with the subsystems. The failure rate of
the whole system is taken as the output neuron to build a
deep neural network with multilayer structure. The neural
network structure used in this paper is shown in Figure 3.
The neural network structure in Figure 3 contains three
different modules: the input layer, the hidden layer, and
the output layer. The hidden layer is composed by three fully
connected networks.

Environmental factors include natural environmental
factors and anthropogenic environmental factors, which
are calculated by the equation:

β = 1
2β1 +

1
2β2, ð6Þ

where β1 is the natural environmental factor and β2 is the
anthropogenic environmental factor.

Input layer Hidden layer Output layer

Figure 3: Deep neural network structure diagram.

Subdiscipline 1 Subdiscipline 2

xs = (xs)
x1 = (x1)

ws = (ws)
w1 = (w1)

ws = (ws)
w2 = (w2)

y12 = (y12)
x2 = (x2)

y21 = (y21)

G1 G2

xs = (xs)

Figure 4: Coupling structure diagram of numerical example.

Table 1: Distribution parameters of uncertain variables for numerical examples.

Random variables Interval variables
Variables Distribution Average μ Standard deviation σ Variables [wl ,wu]

xs Normal 01.2 1 ws [2.065, 2.075]

x1 Normal 1.4885 0.1 w1 [0.7714, 0.7814]

x2 Normal 3.3227 0.1 w2 [0.14, 0.16]
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In this paper, the algorithm uses the system failure rate
as the input data. The system failure rate data are statistically
collected and attributed to each functional module. The fail-
ure rate of each module is used as an input neuron data,
respectively. The system failure rate is used as the neural
network output. The system failure rate is:

λi = 〠
n

i=1
ri/〠

n

i=1
ti =N0/T , ð7Þ

where n is the number of sampled units. ti is the actual
working time of the ith product in the evaluation period in
hours. ri is the failure frequency of the ith product in the
evaluation period. N0 is the accumulated failure frequency
of the system in the evaluation period. T is the total working
time in the evaluation period. The failure rate of the input
neuron is:

λj =
Nj

T
, ð8Þ

where N is the number of faults of the jth input neuron
during the rating period and T is the total working time of
the rating cycle.

4. Experiments

4.1. Numerical Example. This numerical example consists of
two subdisciplines, as shown in Figure 4. The numerical
example contains two independent random variables x1
and x2 and one shared random variable xs and two indepen-
dent interval variables w1 and w2 and one shared interval
variable ws. The limit state functions and coupling equations
of each discipline are shown in Equations (9)–(12), and the
distribution of each uncertainty variable is shown in Table 1.

Subdiscipline 1:

G1 = xs + 0:5wsð Þ2 + 2w1 + x1 +w1e
−y21 − 7:65, ð9Þ

y12 = xs + 0:5wsð Þ2 + 2w1 − x1 + 2 ffiffiffiffiffiffi
y21

p
: ð10Þ

Subdiscipline 2:

G2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs + 0:5ws

p
+w2 + 0:4x2 xs +wsð Þ + 0:2y12 − 9:3,

ð11Þ

y21 = xs + 0:5wsð Þw2 +w2
2 + x2 + y12: ð12Þ

When solving, the limit state function and coupled equa-
tions are first transformed into the U-space. The results of
the multidisciplinary reliability analysis are shown in
Table 2 for each of the two disciplines using the method pro-
posed in this paper. SDL denotes sequential double loops;
SSL denotes sequential single loops; SSSL denotes sequential
single-single loops; MCS denotes Monte Carlo simulation;
Funcall denotes the number of function evaluations. The
results obtained by SDL, SSL, SSSL, and MCS methods are
from the original literature. As can be seen from Table 2,
the failure probabilities obtained by the proposed method
are close to those obtained by the three methods of SDL,
SSL, and SSSL and the MCS method and meet the accuracy
requirements. However, the other three methods involve
random uncertainty solution and interval uncertainty cycle
in solving, so their total number of function evaluation is
the sum of the evaluation times in probability analysis and
interval analysis. For example, for function G1, the least
number of function evaluations is the SSSL method. The
number of function evaluations for solving the minimum
and maximum values of failure probability is 506 + 410 =
916. For function G2, the least number of function evalua-
tions is the SSL method. The number of function evaluations

Table 2: Results of different methods of numerical examples.

Method
G1 G2

Pf Funcall Pf Funcall

Proposed
0.1799 856 0.1091 654

0.1822 831 0.1124 636

SDL
0.1797 (1231, 1115) 0.1092 (7810, 8650)

0.1823 (1221, 1105) 0.1124 (13185, 14621)

SSL
0.1797 (2084, 2084) 0.1092 (380, 380)

0.1823 (2540, 2540) 0.1124 (380, 380)

SSSL
0.1797 (506, 410) 0.1092 (785, 977)

0.1823 (506, 410) 0.1124 (785, 977)

MCS
0.1806 106 0.1093 106

0.1823 106 0.1129 106

Table 3: Experimental environment.

Name Versions

Python 3.7

Tensorflow-gpu 2.0.0rc0

CUDA 10.0

CUDNN V7.5.0

Opencv-python 4.4.0.46

Keras 2.3.1
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Figure 8: Performance curve of training error.

Table 4: Reliability prediction results.

Method Sample Test results Prediction Error Average error rate

Probability calculation
9 0.1589 0.1377 0.0212

13.33%
10 0.1634 0.1416 0.0248

DNN
9 0.1589 0.1513 0.0076

5.91%
10 0.1634 0.1519 0.0115

Fusion method
9 0.1589 0.1527 0.0062

3.85%
10 0.1634 0.1696 0.0062
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Figure 9: Comparison of the number of function evaluations when solving for the failure probability of inverter power by different methods.
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for solving the minimum and maximum values of failure
probability is 380 + 380 = 760. When using the proposed
method, the function evaluation times are 856 and 831 for
solving the minimum and maximum values of failure prob-
ability for function G1, and 654 and 636 for solving function
G2, respectively, which are less than the function evaluation
times of the original method.

4.2. Inverter Power Reliability Test. Inverter power supplies
have been sold in the process of development and improve-
ment of products. The data used in this paper comes from an
internal nonpublic dataset of a Chinese machinery and
equipment research center. The data includes the first failure
time of the product collected and compiled on the returned
product quality feedback form. These data come from real
working environment and contain field information, which
are important data to reflect the product life distribution
pattern and evaluate the reliability of inverter power supply.
The model parameters are set as follows, the feature vector
dimension is 256, the learning rate is 0.005, and the filter win-
dows are selected as 3, 4, and 5; the dropout is 0.5, and the
batch size is 128. The experimental environment is shown in
Table 3. The training process performance enhancement and
loss convergence are shown in Figures 5 and 6.

The inverter power supply failure statistics chart is
shown in Figure 7, the horizontal coordinate is the lifetime
period of the failure, and the vertical coordinate is the
number of failures occurred in the time period. As can be
seen from the graph, the number of failures is mainly con-
centrated in the time period of 3000-7000 hours.

In this paper, the inverter subsystem, drive subsystem,
sampling subsystem, supply electronics system, feedback
subsystem, protection subsystem, sine wave generation sub-
system, PWM control subsystem, and environment factor
are selected as the input vectors of the network, and the
neural network established in this paper is determined
according to the above discussion as: initial weights of −1
~ 1; learning factor η = 0:05; impulse factor α = 0:9; iteration
accuracy ε = 0:00001. The error variation during the training
of the deep neural network is shown in Figure 8. As can be
seen from Figure 8, the model reaches convergence at 2500
iterations during the training process.

After the neural network prediction model was estab-
lished, the sample data were brought in for reliability predic-
tion, and the evaluation results were compared and analyzed
with the results of the prediction method using probability
calculation only, and the comparison of the prediction
results is shown in Table 4. It can be seen that the deep neu-
ral network method can reduce the larger errors brought in
data processing and improve the prediction accuracy
compared with the probability calculation model prediction
method. This is because neural networks can achieve
arbitrary nonlinear mapping and can represent complex
relationships between reliability variables.

In Figure 9, the horizontal coordinates represent the
item categories. The bar graphs indicate the number of func-
tion evaluations used by different methods when solving the
failure probability of each constraint function, respectively.
The methods are, from left to right, the probability calcula-

tion fused with deep learning proposed in this paper, the
SDL method, the SSL method, and the SSSL method. From
Figure 9, it is clear that the number of function evaluations
required by using the methods in this paper is all less than
those of the remaining methods.

The results of both the numerical example and the
inverter power example show that the reliability analysis
under uncertainty using the method of this paper can
achieve fast solution of reliability analysis and improve the
solution efficiency while meeting certain computational
accuracy requirements. The probability calculation method
with the fusion of deep learning models can effectively
reduce the evaluation error. It shows that the proposed mul-
tidisciplinary collaborative reliability analysis method with
mixed uncertainties can effectively deal with the reliability
analysis problems when random uncertainties, interval
uncertainties, and fuzzy uncertainties exist simultaneously.

5. Conclusions

The paper addresses the problems of limited types of
handling uncertainty and computational complexity faced
by the current development of multidisciplinary reliability
design optimization and carries out research on multidisci-
plinary reliability design optimization methods considering
mixed uncertainty with the aim of expanding and improving
the theoretical system of multidisciplinary reliability design
optimization under mixed uncertainty. Based on probability
theory and deep learning theory, the reliability analysis and
multidisciplinary reliability design optimization modeling
under random-fuzzy-interval uncertainty are thoroughly
studied. In this paper, the proposed method is validated
using numerical arithmetic examples and inverter power
supply failure data. The results show that the proposed
method is able to consider multiple uncertainties and
surpasses other methods in terms of computational speed
and evaluation accuracy. The reliability prediction model
incorporating deep neural networks can effectively improve
the evaluation performance and has a greater potential for
application in multidisciplinary reliability optimization
design. In the future, we plan to conduct multidisciplinary
reliability design research based on reinforcement learning.
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