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For improving recognition accuracy of polyphase-coded radar signals under low signal to noise ratio (SNR), a recognition method
based on multifeature and feature selection was proposed. First, feature parameters of polyphase-coded radar signals in time
domain, frequency domain, and pseudo-Zernike moments of Choi-Williams distribution (CWD) were extracted, respectively.
And then, redundancy features and small-correlation features were removed based on mutual information with greedy idea.
Finally, recognition of polyphase-coded radar signals was implemented using support vector machines (SVM). -e experimental
results showed that the average recognition accuracy of proposed method was over 90% when SNR is 0 dB, and the recognition
performance was superior to the existing methods.

1. Introduction

Low probability of intercept (LPI) has become a necessary
technology for modern radar [1–3]. Polyphase-coded radar
signals (Frank code, P1 code, P2 code, P3 code, and P4 code)
are widely used in modern radar system due to its good
characteristics of LPI [4]. Polyphase-coded radar signals
adopts phase encoding to approximate chirp or step chirp
for obtaining the advantages of frequency modulation and
phase modulation at the same time. It is precisely because
the polyphase-coded radar signals has both the character-
istics of frequency modulation and phase modulation, and it
is difficult to intercept and recognize it, which is a key
problem that needs to be solved in electronic intelligence
system (ELINT) [5].

For recognition polyphase-coded radar signals in
noncooperative electronic reconnaissance conditions,
many recognition methods have been proposed. Jennison
[6] proposed a neural network polyphase-coded radar
signals recognition method; it uses instantaneous charac-
teristics and second-order and third-order statistical
characteristics. -is method can achieve 97% recognition
accuracy when the SNR is 6 dB. However, when the SNR

decreases, the recognition performance is poor. Yuan et al.
[7] proposed a polyphase-coded radar signals recognition
method based on modulation frequency and component
energy ratio; this method can only distinguish the signals
into two types simply. Milne and Pace [8] proposed a
method for identifying FM continuous wave and P4 code
signals based on Wigner distribution. Copeland and Pace
[9] solved the same problem based on orthogonal filter
banks. But these two methods can only complete the
classification of two kinds of signals and have higher re-
quirements for SNR. Lundén and Koivunen [10] con-
structed a feature vector based on the instantaneous
frequency characteristics of the signal and the time–
frequency distribution image characteristics to realize
polyphase-coded radar signals recognition. Recognition
performance of this method depends on the frequency
estimation. Deng and Liu [11–13] proposed a polyphase-
coded modulation type recognition method based on
multiple hypothesis testing.-is method is very sensitive to
the signal carrier frequency estimation error and the initial
phase. Because polyphase-coded radar signals is a carrier
frequency suppression signal, it is very difficult to accu-
rately estimate its carrier frequency without prior
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knowledge. Guo et al. [14] proposed a novel recognition
algorithm for LPI radar signal based on additive kernel
SVM of radar signals complete ensemble empirical mode
decomposition with adaptive noise. Zhang et al. [15]
proposed LPI radar signal recognition method haled on the
stacked autoencoder and SVM. -ese two methods have
high recognition performance at high SNR, but they are not
suitable for low SNR. A method based on time–frequency
amplitude and phase features can be applied to recognizing
polyphase-coded radar signal [16]. For improving recog-
nition performance under the condition of low SNR, a LPI
radar signal classification and recognition system based on
denoising convolution neural network and inception
network is proposed [17]. For reducing the time con-
sumption of the recognition algorithm, Pu et al. [18]
proposed a recognition method based on deep learning
convolutional neural network and coordinate transfor-
mation of ambiguity function main ridge. However, the
prior information required by this method is unknown,
and the scalability is not strong. To solve incomplete prior
information of radar in noncooperative electronic coun-
termeasure environment, a novel recognition algorithm
based on the energy cumulant of CWD is proposed [19].

-e difference between polyphase-coded radar signals is
very small. -e electronic reconnaissance system, especially,
works under the condition of low SNR; it is very difficult to
recognize coded type of polyphase-coded radar signals.
-erefore, a multifeature fusion method for recognizing
coded type of polyphase-coded radar signals is proposed.
First, multiple signal characteristic parameters are extracted
from the time domain, frequency domain, and time-
–frequency domain to establish an overcomplete recognition
feature vector to ensure the accuracy of recognition. -en,
based on the mutual information in the information theory,
combined with the idea of greed, the feature vector that has
little correlation or redundancy with the pattern recognition
is eliminated. Finally, SVM classifier is constructed to im-
plement polyphase-coded radar signals recognition.

2. Signal Model

-e analytical expression of the polyphase-coded radar
signals is

x[n] � Ae
j 2πfcn+ϕm( ), 0≤ n≤N − 1, (1)

where A is the signal amplitude, fc is the carrier frequency,
and ϕm is the phase modulation function. Different phase
modulation functions represent different polyphase-coded
type. Among polyphase-coded radar signals, Frank, P1, and
P2 coded are approximations to the step chirp waveform.
-e P3 and P4 coded are approximations to the chirp signal
at the Nyquist sampling rate.-e phase modulation function
of each type of polyphase-coded radar signals is shown in
Table 1.

3. Multidomain Feature Extraction

3.1. Time Domain Feature. According to the definition of
polyphase-coded radar signals, essential difference of each

code type is its phase modulation function. -erefore, the
phase change can be extracted as a characteristic parameter
for recognizing polyphase-coded type. -e extracted time-
domain features include signal instantaneous phase stan-
dard deviation and instantaneous frequency standard
deviation.

Instantaneous phase standard deviation is defined as
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where φ(n) is the instantaneous phase of the signal without
defuzzification, φ(n) ∈ (− π, π], which is

φ(n) � arg tan
Im[s(n)]

Re[s(n)]
 . (3)

Noise will inevitably be mixed into the signal. -e
randomness of noise makes its impact on different sampling
points different. -erefore, when calculating the instanta-
neous phase, the sampling points that are greatly affected by
noise (weak sampling points) should be removed. A large
number of simulation experiments show that setting the
amplitude threshold to 0.2 of the maximum amplitude can
effectively filter out weak sampling points. N is the number
of nonweak sampling points.

Instantaneous phase deviation of the signal with respect
to time is signal instantaneous frequency. -erefore, in-
stantaneous frequency can be expressed in the form of the
first difference of instantaneous phase, that is,

f(n) � ϕu(n + 1) − ϕu(n), n � 1, 2, . . . , N − 1, (4)

where ϕu(n) represents signal instantaneous phase after
phase defuzzification. In order to reduce the influence of
noise and improve accuracy and stability of instantaneous
frequency, multiple phase difference method can be used to
extract the instantaneous frequency.

Instantaneous frequency standard deviation is defined as

σf �
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f(n) �
f(n) − uf

max f(n) − uf




, (6)

where uf is mean value of instantaneous frequency. It should
be noted that the process of calculating the instantaneous
frequency also needs to remove weak sampling points.

3.2. Frequency Domain Feature. Signal power spectral
density can effectively describe energy distribution of signal
in frequency domain. -erefore, it is used as a feature for
recognizing polyphase-coded radar signals. -e extracted
frequency domain feature parameters include the maximum
power spectrum and the spectrum aggregation measure-
ment value. -e maximum power spectrum is defined as
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where x(n) is the signal after amplitude normalization.
Spectrum aggregation measurement value is defined as

CM �
1


∞
− ∞ |X(f)|

αdf
, (8)

where α ∈ (0, 0.25], X(f) is the normalized spectrum of
signal

X(f) �
X(f)


∞
− ∞ |X(f)|df

. (9)

Polyphase-coded radar signals is essentially a phase
modulated signal. -e signal will show different feature after
being squared. -is feature is very beneficial for recognizing
signal types. -erefore, the maximum power spectrum value
c2,max and spectrum aggregation measurement value C2,M,
which is squared signal, are also used as recognizing feature
parameter.

3.3. CWD Pseudo-Zernike Moment Feature. CWD has dif-
ferent time-frequency performance and suppresses the cross
term by adjusting parameters. -e CWD pseudo-Zernike
feature has been used to identify the modulation mode of
radar signals and has achieved good identification results
[19].

CWD of continuous signal x(t) is defined as

WCWD(t,ω) � B 1
������
4πτ2/σ

 e
− (μ− t)2/4τ2/σ( ) · x μ +

τ
2

 x
∗ μ −

τ
2

 e
− jωτ

dμdτ, (10)

where σ(σ > 0) is the scale factor of the CWD. When the
scale factor is small, CWD can suppress time-frequency
cross-term very well, but the time-frequency resolution will
be affected. In order to balance cross-term suppression and
resolution improvement, a smaller scale factor is used to
suppress the cross-term here. Time-frequency image pro-
cessing will be used to increase the resolution. Figure 1 is the
CWD of Frank coded and P1 coded signal with σ � 0.05.

In order to further reduce cross-term, improve resolu-
tion, and reduce influence of parameter settings on the
feature, further processing of the CWD image is required. It
includes three steps: image thresholding, reducing noise
items, and normalizing the aspect ratio. Image thresholding
is to obtain a binary image containing only signal compo-
nents by setting the pixel value threshold, using threshold
setting method in literature [20]. -e purpose of reducing
the interference item is to reduce the influence of strong
noise on the CWD image. -e open operation in mor-
phology is used to remove the nonsignal components in the
binary image.

Pseudo-Zernike moments have rotation, translation, and
scale invariance characteristics [21]. -ese characteristics

have been widely used in the field of handwriting recog-
nition. -e p + q order origin moment of any digital image
f(x, y) is defined as

mpq � 
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y
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p
y

q
. (11)

-e translational and scale-invariant central geometric
moment is defined as
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where x � (m10)/(m00), y � (m01)/(m00). -e translational
and scale-invariant radial geometric moment is defined as
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where x � x − x, y � y − y.
According to the previously mentioned definition, the n

order m fold (|m|≤ n) pseudo-Zernike moment of image
f(x, y) can be expressed as

Table 1: Modulation phase of polyphase-coded radar signals.

Type ϕm

Frank ϕm(n, k) � (2π/L)(n − 1)(k − 1); n � 1, 2, . . . , L, k � 1, 2, . . . , L

P1 ϕm(n, k) � (− π/L)[L − (2k − 1)][(k − 1)L + (n − 1)]; n � 1, 2, . . . , L, k � 1, 2, . . . , L

P2 ϕm(n, k) � (− π/2L)[2n − 1 − L][2k − 1 − L]; n � 1, 2, . . . , L, k � 1, 2, . . . , L(L is even)

P3 ϕm(k) � (π/L)(k − 1)2; k � 1, 2, . . . , L

P4 ϕm(k) � (π/L)(k − 1)(k − 1 − L); k � 1, 2, . . . , L
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where k � (n − s − m)/2, d � (n − s − m − 1)/2 and

Bnms � (− 1)
s (n − s)!

s!((n +|m|/2) − s)!((n +|m|/2) − s)!
, (15)

Dnms � (− 1)
s (2n + 1 − s)!

s!(n +|m| − s)!(n +|m| − s)!
. (16)

In order to reduce the dynamic range of the charac-
teristic parameters, the logarithm of the pseudo-Zernike
moment can be calculated. -erefore, the pseudo-Zernike
moment feature used to recognize the polyphase-coded
radar signals is

Znm � ln Znm


. (17)

-e low-order pseudo-Zernike moments are mainly
used to describe the overall characteristics of the image, and
the high-order pseudo-Zernike moments are mainly used to
describe the local details of the image. -e more the low-
order moments are, the stronger the noise immunity has.
-e superior performance of CWDpseudo-Zernikemoment
features in identifying radar signal modulation types has
been demonstrated [22]. -e modulation characteristics of
polyphase-coded radar signals are highly similar, and
electronic reconnaissance is a cooperative environment.
Considering the characteristics of high-order moment and

low-order moment of pseudo-Zernike moment, the paper
determines the selection principle of CWD pseudo-Zernike
moment features that combine high-order moment and low-
order moment, and low-order moment accounts for the
majority. Type recognition experiments are performed for
all second to fourth moment features of CWD pseudo-
Zernike moment features. -e experimental results show
that, Z20, Z22, Z30, Z31, Z32, Z33, and Z43; these seven CWD
pseudo-Zernike moment types have high discrimination for
polyphase encoded signals.

In summary, a total of 13 feature parameters for rec-
ognizing polyphase-coded radar signals have been extracted.
-ese features include two time domain feature parameters,
four frequency domain feature parameters, and seven
time–frequency domain feature parameters. Feature pa-
rameter list is shown in Table 2.

4. Feature Selection Based on
Mutual Information

Feature parameter extracted in the time domain, fre-
quency domain, and time–frequency domain may have
relatively small or redundant correlations with signal
recognition. In order to improve recognition accuracy and
efficiency, feature parameter must be filtered. A feature
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Figure 1: CWD of polyphase-coded radar signals. (a) Frank coded. (b) P1 coded.
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selection method based on mutual information is
proposed.

Given a sample data setT � (O, X, C), where O � o1, o2,

. . . , oN}, X � x1, x2, . . . , xK  and C � c1, c2, . . . , cM  rep-
resent sample set, feature parameter set, and category set,
respectively. -e task of feature selection is to select a set of
optimal features from the feature parameter set. In other
words, use the least features to effectively classify and reduce
data overhead. -e key to feature selection is how to remove
redundant or unrelated features while retaining useful
features.

Entropy is a physical quantity that measures the degree
of uncertainty in the value of a random variable.-e entropy
of any discrete random variable can be defined as

H(X) � − 
x∈X

p(x)log2 p(x), (18)

where p(x) is probability distribution function of random
variable. -e entropy value is only related to probability
density of random variable and has nothing to do with the
specific value. To a certain extent, influence of noise and
parameter values is avoided. -e conditional entropy of two
random variables refers to the uncertainty of variable Y
when variable X is given as

H(Y | X) � − 
x∈X

p(x) 
y∈Y

p(y | x)log2 p(y | x), (19)

where p(y | x) is the conditional probability distribution
function. Mutual information describes the content of in-
formation shared between two variables, which can measure
the degree of interdependence between two random vari-
ables. It can be expressed as

I(X; Y) � − 
y


x
p(x, y)log2

p(x, y)

p(x)p(y)
dxdy, (20)

where p(x, y) is the joint probability distribution function.
When two variables are independent of each other, the
mutual information is 0; that is, there is no shared infor-
mation. According to the relationship between mutual

information and entropy, mutual information can be
expressed in the form of entropy; that is,

I(X; Y) � H(Y) − H(Y | X)

� H(X) − H(X | Y).
(21)

Mutual information satisfies symmetry, namely,
I(X; Y) � I(Y; X).

In process of feature selection, mutual information
represents the correlation between category labels and
feature parameters; that is,

I(X; Y) � H(C) − H(C | X)

� − 
ci∈C

p ci( log2 p ci( 

+ 
X

p(x) 
M

j�1
p ci | x( log2 p ci | x( dx,

(22)

where M is the number of category labels. -e first term in
equation is the entropy value of the category label, which can
be calculated directly based on the sample data,
p(cj) � Nj/N, where Nj is the number of data samples of
type j in the sample dataset. Since x is a continuous value, it is
impossible to directly calculate the estimation of the pos-
terior probability p(cj | x). -e method based on the Parzen
window probability density [23] is used to estimate the
posterior probability.

-e basic idea of the feature selection algorithm is as
follows. -e final feature selection is achieved through
multiple selections using the idea of greed. Only one new
feature parameter is selected for one feature selection. -is
new feature parameter is the feature that satisfies the
maximum mutual information with the category set among
all the features to be selected. -e termination condition of
the feature selection algorithm is that the newly added
feature parameters make the increment of mutual infor-
mation less than the specified threshold. -e specific steps of
the feature selection algorithm are as follows.

(1) Initialization. Let F be the set of n feature parameters
to be selected and S be the set of selected feature
parameters, S � 0{ }, f ∈ F, s ∈ S.

(2) Calculate the mutual information between all can-
didate features and recognition categories I(fi; C).

(3) Add the large feature parameter corresponding to
the maximum value of mutual information I(fi; C)

to set S, and delete it from set F.
(4) the feature selection termination condition is met, go

to the next step. If not, return to step (2).
(5) -e selected feature set S is used as the output of

feature selection, and the feature selection ends.

5. SVM Classifier Design

-e task of the classifier is to classify the input feature
parameter vector into an appropriate category according to a
specific criterion. -at is to say, the classifier has completed
the mapping of the feature space to the category space and

Table 2: Feature parameter list.

Serial
number Feature name Symbol

1 Instantaneous phase standard deviation σφ
2 Instantaneous frequency standard

deviation σf

3 Maximum power spectrum cmax
4 Spectrum aggregation measurement CM

5 Squared maximum power spectrum c2,max

6 Squared spectrum aggregation
measurement C2,M

7 CWD-pseudo-Zernike moments Z20
8 CWD-pseudo-Zernike moments Z22
9 CWD-pseudo-Zernike moments Z30
10 CWD-pseudo-Zernike moments Z31
11 CWD-pseudo-Zernike moments Z32
12 CWD-pseudo-Zernike moments Z33
13 CWD-pseudo-Zernike moments Z43
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has completed the classification of the input. -e SVM is a
classifier based on statistical learning and has achieved good
results in many fields. -e basic idea of the SVM is to map
the input data to a high-dimensional feature space through a
nonlinear mapping. -en, implement data classification
based on linear classification criteria in a high-dimensional
space.-erefore, the SVM is essentially a linear classifier in a
high-dimensional space. -e specific classification method
of SVM is shown in Figure 2.

Traditional SVM is proposed for two classification
problems. When solving multiclassification problems, the
two-class SVM needs to be extended. At present, there are
three main methods for extending traditional SVM: one-to-
one (OAO) method, one-to-many (OAA) method, and
binary tree structure (BTA) method. -e existing imple-
mentation results show that the performance of OAO
method multiclass extension method is better than OAA
method and BTA method. For the recognition of k types of
problems, OAO method needs to construct a total of k(k −

1)/2 two-class SVM.
-ere are five coded types of polyphase-coded radar

signals. -erefore, five-class SVM is shown in Figure 3. -e
classifier has a total of 10 two-class SVM. -e input feature
parameters first pass through the top-level SVM and then
continuously pass into the lower-level SVM. -e final rec-
ognition result is output by the underlying SVM.

6. Experiment and Analysis

Performance of the multifeature fusion recognition algo-
rithm for polyphase-coded radar signals is verified by ex-
periments. -e flow diagram of multifeature fusion
recognition algorithm is presented in Figure 4.

-e normalization method of the input features can be
expressed as

x
n
i �

x
n
i − μi( 

σi

, n � 1, 2, . . . , N, (23)

where μi and σi represent the mean and standard deviation
of the i-th type features extracted from sample data, re-
spectively. N is the number of sample data.

6.1. Feature Selection Experiment. In feature selection ex-
periment, the sample dataset contains a total of 10000
polyphase-coded radar signals pulses, that is, 2000 pulses for
each coding type. -e modulation parameters of each coded
type are set randomly under standardized constraints. In
order to make feature selection robust to noise, the SNR of
each pulse is randomly selected from 0 dB to 20 dB.

-e input of the feature selection experiment is 13
feature parameters extracted in the time domain, frequency
domain, and time–frequency domain. In the process of
feature selection, it is necessary to estimate the mutual in-
formation between each feature parameter and the recog-
nition category. If the mutual information between a certain
feature parameter and the recognition category is too small,
it means that the contribution of this feature parameter to
the recognition process is small. In order to reduce the time

consumption of the feature selection algorithm, the feature
parameters whosemutual information with the classification
category is less than the specified threshold will be removed
first, and the threshold is set to 0.05. -e number of rec-
ognition types is five, and the number of samples in each
category is the same, so the entropy value of the first item in
the mutual information definition is 2.3219.

-e mutual information value of each step in the feature
selection process is shown in Figure 5. -e horizontal axis is
the serial number of the feature parameter: from left to right
indicates the order of selecting the feature parameter. -e
vertical axis is the mutual information of all selected feature
parameters and recognition categories. In order to describe
the feature selection process more clearly, the figure shows
the mutual information value of all the parameters to be
selected. However, in the actual process, when the feature
parameter is selected to the seventh, the increment of mutual
information is already less than the specified threshold, and
the feature selection algorithm has ended. After feature
selection, six of the thirteen feature parameters are selected
for recognition of the modulation type of the polyphase-
coded radar signals.

6.2. Type Recognition Experiment. First, training sample set
and test sample set are constructed, respectively. Number of
training sample pulses is 500, each type of polyphase-coded
radar signals is 100, and the SNR ranges from 0 dB to 15 dB.
Number of test sample pulses is 1000, each type of poly-
phase-coded radar signals is 200, and the SNR ranges from
-5 dB to 15 dB. -e SNR range of the test sample is larger
than the training sample. -e purpose is to test recognition
algorithm adaptability to noise.

-e relationship curve between the recognition accuracy
of each signal modulation type and the SNR is shown in
Figure 6. Experimental results show that recognitionmethod
based on multifeature fusion has higher recognition accu-
racy for every polyphase-coded radar signals modulation
type. When the SNR of the test sample pulse is equal to or
better than the training sample, the recognition accuracy
rate of each modulation type is greater than 94%, and the
overall recognition accuracy rate reaches 95%.

Table 3 shows the confusion matrix for modulation type
recognition when the SNR is 0 dB. -e confusion matrix
gives the recognition result of eachmodulation type signal in
detail. It can be seen that the error recognition rate between
P1 coded and P2 coded, and between Frank coded and P3
coded is relatively high. -is is because the modulation
characteristics of the two sets of signals are very similar,
which can be known from the definition of each modulation
type of the polyphase-coded radar signals. In addition, the
time–frequency distributions of the two types of signals are
also very similar, which makes them easy to misidentify in
the identification process.

In order to further verify the performance of the rec-
ognition algorithm in this paper, under the same condi-
tions, a simulation comparison experiment was carried out
with ensemble empirical mode decomposition and kernel
support vector machine (EEMD-KSVM) [14] and stacked
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auto-encoder and support vector machine (SAE-SVM)
[15]. -e simulation results of three recognition algorithms
are shown in Figure 7. Table 4 shows the recognition

accuracy of the recognition algorithm in this paper and the
other two methods at a SNR of 0 dB. -e experimental
results show that recognition performance of proposed
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Figure 2: Schematic diagram of high-dimensional space mapping.
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algorithm is better than the other two recognition methods
for each type of polyphase coded. -is is because the
proposed algorithm extracts a variety of characteristic
parameters, which can characterize signal characteristics.
-e feature parameter selection is completed based on the

mutual information evaluation criterion, and features with
excellent performance are selected. -e entire recognition
process makes full use of the characteristics of each
modulation type signal in different “domains,” so it has
higher recognition accuracy.
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Figure 5: Mutual information value in the feature selection process (H(C) � 2.3219).
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Figure 6: Recognition result of every polyphase-coded radar signals modulation type.

Table 3: Recognition confusion matrix (%).

Type Frank P1 P2 P3 P4
Frank 97.3 1.4 0 0 1.3
P1 1 96.0 3 0 0
P2 0.9 2.4 96.7 0 0
P3 0 0 0 99.0 1.0
P4 0 0 0 0.4 99.6
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Figure 7: Continued.
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7. Conclusions

Polyphase-code radar signals recognition method based on
multifeature fusion is proposed. First, feature parameters are
extracted in time domain, frequency domain, and time-
–frequency domain. -en, feature selection is implemented
based on mutual information. Finally, SVM is used to realize
signal recognition. -is method can recognize polyphase-
coded radar signals modulation type without prior knowl-
edge. Simulation experiments show that the overall recog-
nition accuracy can reach 95% when the SNR is 0 dB, which
is suitable for the recognition of polyphase-coded radar
signals in electronic reconnaissance.

Abbreviations

BTA: Binary tree structure
CWD: Choi-Williams distribution
ELINT: Electronic intelligence system
EEMD-
KSVM:

Empirical mode decomposition and kernel
support vector machine

LPI: Low probability of intercept
OAO: One-to-one
OAA: One-to-many
SAE-SVM: Stacked auto-encoder and support vector

machine

SNR: Signal-to-noise ratio
SVM: Support vector machine.
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