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LiDAR plays a pivotal role in the field of unmanned driving, but in actual use, it is often accompanied by errors caused by point
cloud distortion, which affects the accuracy of various downstream tasks. In this paper, we first describe the feature of point cloud
and propose a new feature point selection method Soft-NMS-Select; this method can obtain uniform feature point distribution
and effectively improve the result of subsequent point cloud registration. Then, the point cloud registration is completed
through the screened feature points, and the odometry information is obtained. For the motion distortion generated in a
sweep, the prior information of the LiDAR’s own motion is obtained by using two linear interpolations, thereby improving the
effect of motion compensation. Finally, for the distortion caused by the motion of objects in the scene, Euclidean clustering is
used to obtain the position and normal vector of the center point of the point cloud cluster, and the motion pose of the object
is calculated according to the offset between adjacent sweeps and eliminated distortion. Essentially, our method is a general
point cloud compensation method that is applicable to all uses of LiDAR. This paper inserts this method into three SLAM
algorithms to illustrate the effectiveness of the method proposed in this paper. The experimental results show that this method
can significantly reduce the APE of the original SLAM algorithm and improve the mapping result.

1. Introduction

As the most important sensor in the robot perception sys-
tem, LiDAR plays an indispensable role in object detec-
tion, localization, and mapping in the field of unmanned
driving. According to its working principle, LiDAR can
be divided into conventional LiDAR, solid-state LiDAR,
and hybrid solid-state LiDAR. Among them, conventional
LiDAR, with the longest development time, is also the
most widely used.

However, the conventional LiDAR is limited by the
working principle of its rotary scanning, so the point cloud
compensation problem in one sweep must be considered.
For example, Figure 1 shows the position relation of a vehi-
cle carrying LiDAR at three moments. Assuming that these
three moments are all within a LiDAR scanning cycle, for
obstacle P, there are multiple observation positions in a
sweep, which makes it difficult to accurately describe the
location information of the obstacle.

Furthermore, if objects in the scene are moved during
scanning, the point cloud of the moving object will be dis-
torted, as shown in Figure 2. At this point, while the LiDAR
is moving, the object to be measured is also moving, which
causes the measurement deviation to increase. Most LiDAR
downstream tasks choose to ignore the impact of this prob-
lem. For example, in the well-known LOAM [1] framework,
only the distortion caused by LiDAR movement is cali-
brated. However, we find that the negative impact of the dis-
tortion caused by the movement of objects in the scene on
various applications of LiDAR cannot be ignored.

Based on the above problems, we propose a LiDAR
motion compensation method. Through a new feature point
selection method of point cloud, the planar entropy and lin-
ear entropy of the points are firstly calculated, and then,
Soft-NMS-Select is used to obtain the feature description
of the current sweep. Then, the prior information of
LiDAR’s own motion was obtained by linear interpolation
twice to improve the orthodontic effect. At the same time,
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the coordinates and normal vectors of the center point of the
point cloud cluster are calculated by Euclidean clustering,
and then, the movement posture of objects in the scene is
estimated, and the point cloud of moving objects in the
scene is also compensated, so that the scene information
can be described more accurately.

In addition, we selected two laser SLAM algorithms, A-
LOAM and LEGO-LOAM, as the benchmark, and com-
pared absolute pose error (APE) to quantitatively analyze
and demonstrate the effectiveness of the proposed method.
The structure of the rest of this paper is as follows: in Section
2, we introduce the methods commonly used to calculate
motion posture and the general motion compensation
methods of laser SLAM. In Section 3, the proposed motion
compensation algorithm is introduced in detail. In Section
4, we provide the experimental effect under the actual scene.
The limitations and deficiencies of this method are discussed
in Section 5. Finally, we summarize this article.

2. Related Works

When solving motion pose, it is often necessary to match the
point cloud between adjacent frames. As one of the main-
stream registration algorithms, the ICP algorithm [2, 3] iter-
atively optimizes the conversion between source point cloud
and target point cloud by minimizing the error measure
between the two point clouds. Based on the matching of

the ICP algorithm, other scholars further proposed point-
to-line ICP [4], point-to-point ICP [5], and generalized
ICP [6], making great contributions to the accuracy of point
cloud registration. As the accuracy of point cloud registra-
tion is improved, the ICP algorithm is used in LiDAR odom-
eter to reduce the accumulated error of continuous
registration by combining the closed-loop mechanism and
pose construction process [7]. The ICP algorithm is
improved by means of downsampling and point cloud
matching rejection, and the location drift of LiDAR odome-
ter is reduced obviously. Although the ICP algorithm can be
very accurate in point cloud conversion, it has a slightly
insufficient requirement on real-time performance in auto-
matic driving. Therefore, in order to improve the efficiency
of the ICP algorithm, some articles use parallel computing
for operation [8–11]. When ICP is used for matching scan-
ning, if the scanning motion is relatively slow, serious
motion distortion will occur. Therefore, researchers use laser
intensity return to create visual images and match visually
different features between images [12] to restore the motion
of ground vehicles [13–16]. However, these methods require
dense point cloud images. In [17–19], sparse point cloud
images can be used for motion recovery, and point clouds
can be used to match the geometric structure of local point
clusters [19].

After completing interframe matching, LiDAR motion
compensation is required. Mainstream laser SLAM
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Figure 1: Distortion caused by LiDAR’s own motion. In the figure, the coordinate system on the right is the initial coordinate system of a
sweep. The vehicles in the figure have multiple positions in the current sweep period, so there are multiple observation coordinate systems,
resulting in the description of object P under measurement in multiple observation coordinate systems, thus affecting the measurement
result.
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Figure 2: Distortion caused by the motion of the object to be measured.
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algorithms [20–22] unify the point cloud within a sweep to a
timestamp, and this unified time point is often the start time
of the scan. Then, using the result of the last interframe laser
odometer as the motion between the current two frames and
assuming that the current frame is also moving at a uniform
speed, we can also estimate the position and pose of each
point relative to the starting time. That is, the motion of k
− 1 to K frame and k to K + 1 frame is one to one, and
the pose transformation of k − 1 to K frame is used as the
pose transformation of K to K + 1 frame, and the pose trans-
formation of each point of K to K + 1 frame can be calcu-
lated. However, this method does not accurately describe
the motion posture of the current frame and lacks motion
compensation for the objects to be measured in the scene.
Therefore, based on the shortcomings of the above method,
this paper improves the LiDAR motion compensation
method and uses twice linear interpolation to obtain more
accurate motion posture of the current frame. Using the
description of the center point of the object category and
the normal vector to solve its motion posture, complete the
distortion removal of the moving object.

3. Methodology

3.1. Selection of Point Cloud Feature Points. The LiDAR used
in this paper is Velodyne 16, and the laser points under a
sweep reach more than 30,000. If all points are used for
point cloud registration, it will cause great computing over-
head. Therefore, we use the idea of LOAM for reference and
select key points in the scene to participate in the subsequent
registration work. In addition, before the feature description
of the point cloud in a sweep, this paper did not adopt any
downsampling filtering method as the pretreatment, because
we found that the filtering method would reduce the com-
pensation effect of subsequent moving objects.

Before calculating the feature description of point cloud,
PCA should be performed on the processed point, and the
eigenvalues of its covariance matrix should be calculated,
which are arranged in descending order as follows: λ1, λ2,
and λ3. Its planarity is described as follows:

R =
λ2 − λ3
λ1

=
e2 − e3
e1

which ei =
λi

∑i
i=1λi

: ð1Þ

It can be seen from the above formula that the flatness
depends on the size of the third principal component in
the overall composition. Approximately, as the value of the
third principal component changes from large to small, the
value of the flatness characteristic R increases from small
to large. This means that in point cloud space, part of the
point cloud space with a larger R value is closer to the plane,
and part of the point cloud space with a smaller R value has
a steeper change. Similarly, the linearity of point cloud can
be described as

L =
λ1 − λ2
λ1

=
e1 − e2
e1

: ð2Þ

This indicates that part point clouds with a larger L value
in point cloud space are more concentrated in one direction,
and part point clouds with a smaller L value are more diver-
gent in a certain direction. Figure 3 shows the key points
selected by R and L as feature description, respectively.

In addition, this paper finds that the introduction of
entropy of local feature description can improve the consis-
tency of the selection of key points of adjacent frames,
because entropy represents the uncertainty of information,
so selecting a larger entropy value can screen out more sig-
nificant neighborhood features, which is specifically
expressed as

Eλ = −〠
3

i=1
ei ln ei: ð3Þ

According to the above analysis, points with significant
features are characterized by low flatness or linearity and
high entropy. Therefore, by introducing flatness and line-
arity into the above equation, the flatness entropy and line-
arity entropy can be obtained as follows:

Er =
R
Eλ

=
e2 − e3ð Þ/e1

−∑3
i=1ei ln ei

,

El =
L
Eλ

=
e1 − e2ð Þ/e1

−∑3
i=1ei ln ei

:

ð4Þ

Therefore, the feature point selection problem can be
described as

ci =
argmin Er ,

argmin El,

(
  ci ∈ C, ð5Þ

where C = fc1, c2,⋯cig is the key point collection. In order
to ensure the real-time performance of the algorithm, a total
of 10 points are selected for a sweep, and 5 points are
selected by plane entropy value and linear entropy value,
respectively. In addition, in order to ensure the uniform dis-
tribution of key points, the idea adopted in LOAM is to
divide the scanning region of LiDAR and select several fea-
ture points in each subregion for subsequent registration.
However, in some special scenarios, the distribution of key
points is more concentrated.

See Figure 4. Key points in area 2 and area 3 do not cover
a large number of scene features, so the accuracy of subse-
quent registration will be reduced. In this paper, a Soft-
NMS-Select method is proposed to solve the above prob-
lems. Firstly, a neighborhood radius τ is determined, and
the intersection volume between each sphere centered on
key points is calculated. Considering that, using NMS
directly will cause the algorithm to suppress most significant
feature points according to the sphere radius in some
extreme scenarios. Meanwhile, low feature points are
selected.
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Therefore, this paper uses a soft method to suppress
nonmaxima to achieve uniform selection. The pseudo-code
of Soft-NMS-Select is shown in Algorithm 1.

Using different radii τ, 5 to 10 to 15, 20 key point distri-
bution is shown in Figure 5. It can be seen from the figure
that a relatively uniform distribution of key points can be
obtained by using 10 ≤ τ ≤ 15 for urban road scenarios. In
addition, it can be seen from the figure that key points are
mainly distributed at locations with drastic changes in the
scene, such as corners and bulges. Because these locations
often cover the uniqueness of the current scene, the key
points calculated by using the above feature description
can well represent the information of the current sweep
and meet the requirements of subsequent point cloud
registration.

3.2. Dedistortion Based on LiDAR Odometer. After obtaining
the key points of the point cloud, odometer information
needs to be calculated according to the registration result,
so as to obtain the LiDAR movement posture at each time.
The key points at moment tk and moment tk+1 are, respec-

tively, denoted as Qðk,iÞ = fqðk,1Þ, qðk,2Þ ⋯ , qðk,iÞg and Qðk+1,iÞ
= fqðk+1,1Þ, qðk+1,2Þ ⋯ , qðk+1,iÞg. The motion posture of point
cloud tk ⟶ tk+1 is denoted as

tk =
R T

0 1

" #
tk+1,

Q k+1,ið Þ = R ·Q k,ið Þ + T ,

ð6Þ

where R is the 3 × 3 rotation matrix and T is the 3 × 1 trans-
lation matrix. At this point, the matching key point problem
is essentially a point-to-point ICP problem. The point-pair
matching is shown in Figure 6.

It can be described as follows:

ΔJ = argmin
1
2
〠
i

1
Q k+1,ið Þ − R ·Q k,ið Þ + T

� ���� ���2,ΔJ = R T

0 1

" #
:

ð7Þ

Figure 3: Key point effect diagram. Among them, the red point represents the screening point of plane entropy value, and the yellow point
represents the screening point of linear entropy value.
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Figure 4: Schematic diagram of scanning area division effect.
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Then, singular matrix S is constructed by two decentra-
lized point clouds, respectively, and SVD is performed on S
to obtain the current optimal translation matrix T :

S = X · YT , X = x1, x2,⋯:xi½ �Y = y1, y2,⋯:yi½ �T ,
which xi =Q k,ið Þ −Q kð Þyi =Q k+1,ið Þ −Q k+1ð Þ,

S =UΣVT,

R =

1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ det VUT� �
2
664

3
775 ·UT ,

T =Q k+1ð Þ − R ·Q kð Þ:

ð8Þ

The optimal solution can be obtained through continu-
ous iteration J = ðRjTÞ.

Generally, the use of laser speedometer for LiDAR is an
important premise to the distortion of the uniform model
assumption, the assumption of LiDAR between adjacent
sweep movements is uniform, and with a moment of motion
being equal, using J represented the moment point cloud
motion matrix; the movement of the middle time i gesture
by linear interpolation can be represented as

Ji =
ti − tk+1
tk − tk+1

· J: ð9Þ

The above formula can be used to calibrate the point
cloud at the intermediate time to the coordinate system at
k + 1 with a uniform velocity model, so as to realize LiDAR
motion compensation. In this paper, it is found through
experiments that higher compensation accuracy can be
obtained by linear interpolation of rotation matrix R and

shift matrix T , denoted as J = ðRjTÞ. For the translation
matrix T = ½tx, ty , tz�, since the first-order difference can
approximately represent the change trend of the function
at the current point, the translation change at moments
tk−1, tk−2 can be used to approximately deduce the transla-
tion matrix at tk, and then, linear interpolation can be used
to obtain the translation change at intermediate moments
to obtain higher accuracy:

Ti =
ti − tk+1
tk − tk+1

·
tk−1 − tk−2

k − 1ð Þ − k − 2ð Þ · k
� �

: ð10Þ

As for the rotating attitude, classical Euler angle ðx − y
− zÞ is used in this paper, so the Euler angle-rotation matrix
transformation needs to be carried out using Rodrigues’ for-
mula and represents the Euler angle of LiDAR motion at the
moment ti:

θi =
ti − tk+1
tk − tk+1

· θk−1 − θk−2ð Þ · kð Þ,

Ri · v = cos θi · I + 1 − cos θið ÞkkT + sin θi · K
� �

· v:

ð11Þ

Let Xi represent the point cloud at time i, so the motion
posture after two linear interpolation can be described as fol-
lows:

Xk = Rk · Xk+1 + Tk: ð12Þ

The point cloud effect after two interpolation is shown in
Figure 7. Compared with single linear interpolation, the cal-
ibration effect of LiDAR carrier under acceleration or decel-
eration is improved because first-order difference is used to
calculate the rate of change.

3.3. Moving Object Compensation Based on Euclidean
Clustering. Another innovation of this method is to calcu-
late the movement posture of objects scanned by LiDAR,
so as to realize rough compensation. Therefore, after the
key points set in the scene are extracted, the point cloud
in the current sweep needs to be clustered. Due to the
randomness of the scene, it is impossible to predict the
number of categories in advance, so this paper selects
European clustering to process the point cloud. Euclidean
clustering is a clustering algorithm based on Euclidean dis-
tance; that is, the Euclidean distance between points is cal-
culated to determine whether some point clouds belong to
the same class, and the distance threshold is set to ξ. For
the point clouds after clustering, the mean values of point
clouds within the class are calculated, respectively, to
obtain the location of the center point of the cluster.
The pseudo-code of the Euclidean clusters and extraction
center is shown in Algorithm 2.

The effect of realizing Euclidean clustering of objects
in the scene by using the above methods is shown in
Figure 8.

Input: key points set (C), radius τ, volume threshold ξ
Output: new key points set (CSelect)={ c1, c2,⋯c10}

Create CSelect ⟵ {}
C=C.sorted(max ⟶ min)
whileC.size > 0 orCSelect =10 do
CSelect .append(cmax)
ifdo
CSelect .append(ci)
C.remove(ci)
elsedo
ifdo
CSelect .append(ci)
C.remove(ci)
else do
CSelect .append(ci · ð1 − spherevolumeÞ)

C.remove(ci)
end if
end if
end while
return key points set (CSelect)

Algorithm 1: Soft-NMS-Select.
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The coordinate transformation of the central point set to
its adjacent sweep inner central point set can be described as
follows:

Pk =
R T

0 1

" #
· Pk+1: ð13Þ

The actual center set is Rk+1 = fr1, r2, r3 ⋯ rng. For the
matching center point pair pi ⟶ ri, is the threshold of min-
imum matching distance. If jpi − rij < φ, it is approximately
considered that no absolute motion has occurred in the cor-
responding category. Therefore, no motion state estimation
is performed on the point cloud set corresponding to the
center point. If jpi − rij ≥ φ, then we calculate the corre-
sponding central point translation matrix T trans = ½tx , ty, tz�,

(a) (b)

(c) (d)

Figure 5: Filtering effects of key points in scenarios with different thresholds. (a–d) The key point filtering results when τ is 5, 10, 15, and 20.
It can be seen from the figure that when τ is 5, the distribution of key points in the scene is still redundant; when τ = 20, the value of key
points is too sparse, which is not conducive to subsequent feature point matching.

Figure 6: Matching diagram of cloud key points of adjacent frame points.

(a) The original point cloud (b) Postcompensation point cloud

Figure 7: Compensation rendering of LiDAR point cloud.
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Input: Point cloud(C)={ c1, c2, c3... cn } and distance threshold ξ
Output: Point set(P)={... ci } and center point M =(�x, �y, �z), which �x = 1/i∑xi, �y = 1/i∑yi, �z = 1/i∑zi

create P ⟵ {}
create K ⟵ {}
forc in Cand cnot in (P) do
find k nearest neighbourðKÞ = fk1, k2, k3 ⋯ kng

for k in K do
ifandcnot in (P)then

P.append(k)
end if

calculate M= Pmean

return set(P), center M

Algorithm 2: Euclidean clusters and extraction center.

Figure 8: European clustering effect diagram. Red dots represent clustering points.
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Figure 9: Principle diagram of point cloud dedistortion of the moving object. The vector N is the normal vector of the object. (a) shows that
the coordinate offset of the center point is used to estimate the translation transformation of the object, and (b) estimates the rotation
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(a) The original point cloud (b) Point cloud after compensation

Figure 10: Compensation effect of the moving object. It can be seen that the distribution of point cloud of vehicles in (a) has obvious
distortion, while that in (b) has obvious change.
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and the scanning time of the point convergence correspond-
ing to the central point can be obtained from the LiDAR
timestamp. Assuming that the starting time of the scanning
of a point convergence is and the scanning time of a point in
the middle is tk+i, then the position calibration of the point is
the same as the above LiDAR orthodontic principle. For the
whole point convergence, it is also necessary to consider its
orientation angle θrot, so it is necessary to calculate the nor-

mal vector of the central point neighborhood and find the
rotation matrix that makes the normal vector direction con-
sistent. The overall principle is shown in Figure 9.

The effect of compensating the moving objects in the
scene by using the above methods is shown in Figure 10.

Since this method needs to solve the motion posture of
each point cloud cluster after clustering in the scene, result-
ing in too much computing overhead, it is necessary to limit
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Figure 11: Comparison diagram of quantitative analysis of campus environmental experiment.
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the point cloud cluster for different scenes. Since an
unmanned driving scene is taken as the benchmark in this
paper, the point cloud cluster is set as

xmax − xmin		 		 ≤ 3∧xmax ≤ 20,

ymax − ymin		 		 ≤ 3∧ymax ≤ 20,

zmax ≤ 2:

ð14Þ

4. Result

In this part, we first use three SLAM algorithms, A-LOAM,
LEGO-LOAM, and T-LOAM, as the benchmark for experi-
mental comparison. Then, we use the point cloud dedistor-
tion method proposed in this paper, respectively, for the
original versions of the above three algorithms and obtain
their trajectories to quantitatively analyze the performance
differences between the proposed method and the original
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Figure 12: Comparison diagram of the trajectory effect.
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method. The experimental site was selected in the campus
environment, the PIX unmanned vehicle carrying VLP-16
and RTK was used to obtain external information, and the
algorithm was implemented in Ubuntu 18.04 (ROS) under
AMD 3950X. All the algorithms are implemented in C++.

In the campus scene experiment, we avoided the driver-
less car driving through the sparse environment and ensured
the presence of a certain number of moving objects (such as
pedestrians and bicycles) in the scene. In other words, stable
feature points can be obtained for interframe matching,
while some moving objects exist, and then, distorted point
clouds are generated.

We show the two benchmark algorithms and the abso-
lute pose error (APE) after the improved point cloud com-
pensation stage, respectively, as shown in Figure 11.

Because the reference algorithm lacks the correction of
the distortion of moving objects in the scene, it can be found
that the orthodontic algorithm proposed in this paper can
effectively lower the APE of the reference algorithm and
improve its positioning accuracy in any direction by com-
paring the figures. Meanwhile, we also compared the motion
trajectory of the two benchmark algorithms and the
improved algorithm reference RTK, as shown in Figure 12.

It can be seen intuitively that the two benchmark algorithms
can improve the coincidence degree with the real trajectory
after using the orthodontic method proposed in this paper.

In addition, the method proposed in this paper can fur-
ther improve the mapping effect. We used the improved
LEGO-LOAM 3D map to overlay with the satellite map, as
shown in Figure 13. It can be seen that after the improved
motion compensation algorithm, more accurate 3D scene
information can be obtained, and the constructed map and
the actual map can be accurately matched.

Table 1 shows the ablation experiments of the proposed
method. Since the motion compensation of LiDAR is loosely
coupled with point cloud orthodontics of moving objects, we
compare the performance of one module alone with that of
the whole algorithm to illustrate the effectiveness of each
module of the algorithm.

Table 1 shows the overall performance improvement
effect of the two modules on the algorithm. Due to the large
number of moving objects in the scene, the interframe
matching is not accurate, so the performance of the original
version of A-LOAM is poor. By using the point cloud com-
pensation method proposed in this paper, the attitude of
LiDAR itself can be estimated more reliably, and the errors

Satellite imagery

(a) Satellite imagery

3D map

(b) 3D map

Overlay diagram

(c) Overlay diagram

Figure 13: LEGO-LOAM_new map aligned with Google Earth.

Table 1: Comparison of ablation results.

Method LiDAR compensation Motion compensation
APE in cm

Max Mean Median RMSE SSE Std

A-LOAM

— — 67.8541 14.4364 10.4834 20.7422 611797 14.8919

√ — 52.6475 11.2146 8.99951 16.1594 425757 12.2473

√ √ 36.6778 8.12781 5.76563 11.2797 180924 7.82116

LEGO-LOAM

— — 14.8682 4.08091 2.9907 5.8075 47959.9 4.13198

√ — 12.6464 3.25944 2.91616 4.45671 31614.5 3.25294

√ √ 12.5331 2.93791 2.85014 4.15562 24556.8 2.93902

T-LOAM

— — 8.1165 2.1564 2.1168 3.9515 26546.4 2.16445

√ — 6.5941 1.9594 2.2661 3.5941 21646.1 1.94865

√ √ 5.3911 1.9849 2.6489 3.1646 19816.7 1.89446
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caused by point cloud distortion of moving objects can be
calibrated to a certain extent, which makes the APE smaller,
so as to obtain more accurate positioning effect.

5. Limitations

In this experiment, the feature points of the scene are used as
the basis for interframe matching, and the movement pos-
ture is obtained by calculating the movement of the Euclid-
ean clustering center point and the deviation of the normal
vector, and then, the point cloud of the moving object is
dedistorted. In practice, in a sparse scene, most of the feature
points selected by the Soft-NMS-Select algorithm may be
distributed in the point cloud cluster of moving objects. In
this case, the experimental effect of this algorithm is worse
than the benchmark, because point cloud matching highly
depends on the selection of feature points within the scene.
If most of the feature points are in motion, the odometer will
be extremely inaccurate. In addition, due to the extra com-
putational overhead brought by Euclidean clustering, the
algorithm takes more time in most scenarios. However, not
all objects involved in Euclidian clustering in the scene are
in motion, so the algorithm has some invalid operations.

6. Conclusion

In this paper, we propose a LiDAR motion compensation
method. We calculate the flatness and linearity of point
cloud, introduce entropy value to screen the feature points
with greater degree of information, and then optimize the
odometer information of the point cloud by obtaining the
prior information of its own motion through quadratic
interpolation. Then, Euclidean clustering is performed for
the current scanning scene, and cluster center points and
normal vectors are calculated to represent moving objects.
By eliminating distortion of the point cloud of moving
objects, higher quality scanning results can be obtained,
and positioning and mapping results can be further
improved. We conducted localization and mapping experi-
ments using VLP-16 in a real campus scene and evaluated
our method with two benchmark LiDAR SLAM algorithms.
The results show that the proposed method can effectively
reduce the APE and improve the accuracy of pose
estimation.
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