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Artificial intelligence and Internet of Things (IoT) devices are experiencing explosive growth. Currently, the commonly used
gesture recognition methods are difficult to deploy and expensive, so this paper uses the Channel State Information (CSI) for
Chinese sign language recognition. Aiming at the problems of current gesture recognition methods, such as strong personnel
dependence, high computational resource consumption, and low robustness, we proposed a Chinese sign language gesture
recognition method named Air-CSL. In this method, the Local Outlier Factor (LOF) removal algorithm and the Discrete
Wavelet Transform (DWT) are used to reduce the noise in the data, and the subcarriers that best represent the gesture data
are selected by principal component analysis. After denoising, mathematical statistics were extracted from the gesture
waveform as the eigenvalues, and the features were fused by the Deep Restricted Boltzmann Machine (DBM). Finally, the
result of gesture classification and recognition is obtained by the Gated Recurrent Unit (GRU). In this way, the prediction
model realizes as well as the classification of sign language gestures. The results show that the proposed method can effectively
recognize Chinese sign language gestures of different people in different environments and has good robustness.

1. Introduction

Wireless communication technology has evolved to the
point where WiFi and mobile devices use traffic transmis-
sion, accounting for 68% of the total global Internet infor-
mation [1]. In 2011 Halperin et al. obtained the Channel
State Information (CSI) of WiFi signals from Intel 5300
NICs. The research on human perception and indoor local-
ization based on CSI has become the focus of academic
attention [2]. Some scholars have focused on gesture
recognition and worked on real-life applications. At present,
wireless communication technology pays attention to its
application in the field of special education [3]. According
to statistics, there are about 1.57 billion people with hearing
impairment worldwide [4]. In China, the number of deaf
people exceeds 20.8 million, accounting for 1.69% of the
country’s total population. As a universal language for deaf

people, sign language is a necessary means of communica-
tion and learning for the hearing impaired and speech
impaired. With the advancement of gesture recognition
technology, wireless Internet of Things environments enable
people to interact freely with environmental devices.

In special education, deaf people learn Chinese charac-
ters through pinyin and eventually reach the purpose of
learning sign language. Meanwhile, as a special language, if
sign language can be converted into corresponding charac-
ters, it will greatly facilitate the communication between deaf
people and normal hearing people. Thus, the application of
sign recognition through wireless communication technol-
ogy to the teaching of sign language to special people such
as deaf people is a very effective way of teaching.

Sign language recognition systems based on multiple
methods can break the barrier that exists between deaf
people and people who do not know sign language. For
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example, some sign language recognition systems use cam-
eras [5–9] or Kinect [10, 11] to capture sign language gesture
data literature. However, the data acquisition equipment is
affected by the lighting conditions, while the camera
captures data in such a way that violates the privacy of the
person. Some gesture recognition systems propose the use
of somatosensory controllers for gesture data acquisition.
However, this data collection method is more sensitive to
the distance and displacement between the device and the
person. Some gesture recognition works propose that sen-
sors can be used for motion data acquisition [12–14]. How-
ever, for gesture recognition, the user needs to wear the
sensor in a position such as a finger or an arm, which will
greatly affect the user’s daily life.

Since 2013, academia has begun to pay attention to CSI-
based research on human perception and indoor position-
ing. At present, human behavior research based on CSI has
achieved good results. Currently, CSI can be used in intru-
sion detection [15–17] with gesture recognition [18–20].
Moreover, WiFi devices open new paths for gesture recogni-
tion due to their simplicity and ease of deployment. Cur-
rently, most of the gesture recognition objects using WiFi
are American sign language gestures or daily actions, num-
bers, etc. And our goal is to recognize Chinese sign language
gestures, which are large in number and complicated in
action. When different experimenters complete the gesture
actions multiple times, it causes problems such as a large
amount of data and high computational overhead, so we
should choose recognition algorithms with high recognition
accuracy and low computational overhead cost.

Although there has been some progress in gesture recog-
nition, however, CSI is very sensitive to the indoor environ-
ment, and the whole transmission process is still affected by
the multipath effect. Moreover, the feature extraction of ges-
ture recognition is challenging, and the actual application
environment greatly affects the gesture recognition results.
When the amount of gesture data is large, the calculation
cost is high. To solve the above problems, we propose a sign
language gesture recognition method based on CSI, which
can recognize Chinese deaf people’s Hanyu Pinyin sign lan-
guage, and the Hanyu Pinyin sign language gestures are
shown in Figure 1. Hanyu Pinyin differs from other lan-
guages and has a total of thirty letters. The sign language
gesture actions are described by the CSI measurements.
After denoising the raw data, Air-CSL classifies and recog-

nizes the preprocessed CSI values. We validated Air-CSL in
both laboratory and classroom environments and verified
that the method achieves good robustness in perceiving
and recognizing Pinyin sign language gestures. In summary,
we have made three contributions.

(1) Due to the multipath effect, this paper combines the
Local Outlier Factor (LOF) removal algorithm with
the Discrete Wavelet Transform (DWT) to remove
noise from gesture data

(2) Commonly used mathematical statistics such as kur-
tosis cannot fully describe the characteristics of sign
language gestures, resulting in insufficient gesture
information. There are many kinds of gestures,
which can easily lead to the misclassification of clas-
sifiers. Therefore, the Deep Restricted Boltzmann
Machine (DBM) is used to train mathematical statis-
tics and extract more abstract and comprehensive
sign language gesture features

(3) The sample size of sign language gesture data col-
lected by us is large, and the calculation time is too
long, which makes the feedback time of human-
computer interaction extremely challenging. There-
fore, the Gated Recurrent Unit (GRU) is used for
Chinese sign language gesture recognition

(4) Finally, we propose the Air-CSL model based on
commercial WiFi devices. Through a large number
of experiments, the superiority of the model in rec-
ognizing different people’s sign language gestures in
different experimental environments is verified, and
the recognition rate of the empty hall can reach
91.77%.

2. Related Work

Currently, researchers have proposed various perceptual
techniques for human action recognition, mainly based on
sensors, computer vision, and wireless devices.

The first category recognizes human actions through
sensors. Yuan et al. proposed the use of sensor-equipped
accessories as data acquisition devices to capture gestural
actions, with recognition results of more than 90% in all
cases [21]. However, wearable device-based recognition

a

g

m

s

y z zh ch sh ng

t u ü w x

n o p q r

h i j k l

b c d e f

Figure 1: Hanyu Pinyin sign language sign.
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methods require the user to wear a special device, which
affects the action description and greatly reduces the comfort
of the user.

The second category recognizes actions through com-
puter vision. The gesture recognition is through the Micro-
soft Kinect sensor [22, 23]. For instance, Liu et al. used
double and tenfold cross-validation to achieve more than
91% recognition of Arabic numerals (0-9) and English let-
ters (A-Z). In the literature [24], the projector camera sys-
tem is used to extract the spatial information of human
actions, so as to realize the control of dynamic gestures on
the Augmented Reality (AR) model. In this paper, the four
gestures are recognized and combined with the projected
AR environment construction, correction, and registration
to achieve surgical guidance. In the literature [25], the sur-
gical robot was placed on a mobile platform, and the
advantages of AR visual guidance information, surgeon’s
experience, and robotic surgery were integrated to enhance
the surgical field of vision. The eight gestures mentioned in
this paper can control the robot and AR, so as to achieve
high-quality interaction of surgical information. The litera-
ture [26] recognizes hand gestures based on video. In this
paper, by modeling the human skeleton and retaining the
key frame, the time dimension information is taken as the
classification key. For static gestures, this method achieves
a very satisfactory recognition rate. However, visual recog-
nition usually requires lighting conditions and involves per-
sonal privacy issues, which has limitations in practical use.

The third type of wireless device action recognition
method can be done by ultrabroadband radar [27], radio
frequency identification technology [28], received signal
strength indication, or CSI signal [29]. Among them, RF
technology and ultrabroadband radar require dedicated
equipment and high deployment complexity, and currently,
received signal strength indication or CSI is mostly used for
contextual awareness. Such sensing alleviates the need for
people to constantly wear sensor devices. Researchers used
WiFi for indoor person behavior detection [30, 31].

Kang et al. [32] used adversarial learning schemes and
feature de-entanglement modules to remove the influence
of irrelevant factors in gestures and used an attentional
scheme based on the output of source domain discriminator
to reflect the similarity differences between multiple source
domains and target domains, thus reducing negative trans-
fer. On Widar 3.0 data sets, their model evaluation improved
by an average of 3% to 12.7%. In 1D, WiTrace [33] used the
synthetic signal to derive the phase of the hand-reflected
signal and measured the phase change to obtain the distance
of movement. For 2D space, WiTrace proposed the Kalman
Filter to filter out the noise of tracking. The method achieved
an average accuracy of 6.23 cm for initial position estima-
tion. And WiTrace achieved the average tracking errors of
1.46 cm and 2.09 cm for 1D tracking and 2D tracking. The
DFGR used the deep network. The deep network could learn
discriminative deep features. What is more, the method
could use the transferable similarity to evaluate ability in test
conditions [34]. The WiGAN system proposed by Jiang et al.
uses generative adversarial networks to extract and generate
gesture features, fuses the features, and classifies human

activities through support vector machines with a final aver-
age recognition accuracy of over 95% [35].

Through experiments, we found that the gesture data
reaches a certain magnitude when using support vector
machines (SVM) for feature extraction, gesture recognition
requires a large overhead, and the existing gesture recogni-
tion lacks sufficient research on Chinese gestures. In this
paper, the LOF algorithm is used to remove the outliers in
sign language gesture data. Meanwhile, we use the DWT to
process the low-frequency information in gesture data. After
data preprocessing, this paper selects the subcarrier that can
best represent sign language gesture information through
the PCA, so as to effectively remove part of the environmen-
tal interference. Through the above methods, we have effec-
tively solved the problem of large computation overhead. To
solve the problems of large computational overhead and low
accuracy of gesture recognition, this paper analyzes the sta-
tistical features of CSI amplitude and fuses the features by
the DBM. Finally, the recognition results are obtained when
the gesture data are input into the model, and the GRU is
recognized.

3. Overview of the Gesture Recognition Method

Sign language gesture recognition by CSI requires four steps:
sign language gesture data sensing, noise removal, feature
extraction, and sign language gesture recognition, and the
workflow is shown in Figure 2. We used two laptops config-
ured with Intel 5300 NIC for data acquisition, one working
in IEEE 802.11n Monitor mode as the transmitter and the
other as the receiver.

3.1. Data Acquisition and Preprocessing. There are multiple
reflection paths caused by gesture actions. The traditional
CSI-based action recognition generally uses the channel fea-
tures of a single antenna and a single link as the sensed data.
However, such an approach tends to lose more action feature
data easily. Multiple antennas provide sufficient CSI, and we
collected the raw information as shown in Figure 3. The
channel impact response can be used to describe the merit
of the propagation path, expressed as

H f , tð Þ =Hs fð Þ + 〠
k∈Pd

αk tð Þej2π
Ð t

−∞
f Dk uð Þdu, ð1Þ

where Hsð f Þ denotes the static response, Pd denotes the sum
of the number of dynamic reflection paths, and αkðtÞ denotes
the complex attenuation factor. f Dk

denotes the Doppler shift
of the reflected signal.

The amplitude can describe the static response of CSI,
and since the experimenter is on the central link and there
is a strong LOS signal in the indoor environment, we choose
an antenna with a smaller amplitude. Meanwhile, different
antennas have different sensitivities to hand gesture actions.
The variance can fully describe the CSI changes caused by
gesture actions, and a larger variance indicates a better
reflection of the dynamic response. Therefore, we choose
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the antenna with the maximum variance of CSI and rela-
tively small amplitude.

The filtered antennas are affected by the multipath effect
and inherent noise, and there are spikes and burrs in the
data waveform. To remove the outliers while preserving
the gesture information as much as possible, we choose the
LOF algorithm to remove the outliers from the gesture data,
as shown in Figure 4(a). It can be expressed as

LOFk Xð Þ = ∑Y∈Nk Xð Þ Irdk Yð Þ/Irdk Xð Þð Þ
Nk Xð Þj j , ð2Þ

where NkðXÞ denotes the total number of points in the k
-distance neighborhood of the point X. IrdkðXÞ is the local
reachable density of the point X.

The principle of LOFkðXÞ anomaly removal is when
LOFkðXÞ tends to 1, it indicates that the density of neighbor-
ing points of the measured point is almost equal and belongs
to the same cluster; the more LOFkðXÞ is greater than 1,
there is a difference in the domain density of the measured
point, then the point is considered as an anomaly; if LOFkðXÞ
is much less than 1, the measured point is considered as a
dense point.

When there is more interference in the environment,
DWT is selected for multipath effect removal as in
Figure 4(b). DWT performs multiscale analysis of fine-
grained actions and uses Symlet5 for signal decomposition

into approximate coefficients and multiple detail coefficients
to remove high-frequency noise while retaining the approx-
imate characteristics and data details of the gesture wave-
form, and the detail coefficients describe the random noise
and CSI data details in the device. This can be expressed as

α
Jð Þ
k = 〠

n∈Z
X nð Þg Jð Þ

n−2 J k, J ∈ Z,

β
Lð Þ
k = 〠

n∈Z
X nð Þh Lð Þ

n−2Lk, 1 ≤ L ≤ J ,
ð3Þ

where αðJÞk is the approximation coefficient, βðLÞ
k is the detail

coefficient, and XðnÞ denotes the gesture data sample points.
A soft thresholding algorithm is applied to the detail param-
eters, and the inverse Discrete Wavelet Transform is used to
reconstruct the denoised gesture waveform X ′ðnÞ, expressed
as

X ′ nð Þ = 〠
n∈Z

α
Jð Þ
k g Jð Þ

n−2 J k + 〠
J

L=1
〠
n∈Z

β′ Lð Þ
k h Lð Þ

n−2Lk: ð4Þ

The 30 subcarriers after removing the noise contain sub-
carriers with less correlation with the gesture actions, so the
principal component analysis algorithm is used to reduce the
dimensionality and select the subcarriers with high similar-
ity to those before the reduction. Firstly, the mean value �x

Data collection

Skewness

Kurtosis

Peak-
to-peak

Standard
deviation

Send

Receive
C
DBM h IN
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= 𝛼

Local outlier factor

Discrete wavelet
transform

Principal component
analysis

Data pre-processing Feature extraction Gesture recognition

Figure 2: Sign language gesture recognition workflow diagram.
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Figure 3: Graph of raw data of sign language “e.”
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of the gesture sample set X = fx1, x2,⋯, xmg is obtained and
expressed as

�x = 1
m
〠
m

i=1
xi =

�x1

�x2

⋮

�xn

2
666664

3
777775: ð5Þ

Y = fy1, y2,⋯, ymg is the sample set after the sample
normalization process, where yi = xi − �x. The covariance
matrix C of the reconstructed sample Y is obtained and
expressed as

C =

cov X1, X1ð Þ cov X1, X1ð Þ ⋯ cov X1, Xnð Þ
cov X2, X1ð Þ cov X2, X1ð Þ ⋯ cov X2, Xnð Þ

⋮ ⋮ ⋱ ⋮

cov Xn, X1ð Þ cov Xn, X1ð Þ ⋯ cov Xn, Xnð Þ

2
666664

3
777775,

cov X, Yð Þ = ∑m
i=1 Xi − �xð Þ Yi − �yð Þ½ �

n − 1 :

ð6Þ

The eigenvalue matrix of this covariance matrix C is λ
= ½λ1, λ2,⋯, λn�. The first k eigenvalues are taken in
descending order, and Q = fq1, q2,⋯qkg is the eigenvector
matrix composed of the vectors corresponding to the eigen-

values. The eigenvector matrix is multiplied with the original
sample set to obtain the reduced-dimensional matrix R =
QTX. The first principal component is finally retained as
the CSI waveform for gesture recognition, and the results
of the subcarrier extraction by the principal component
analysis algorithm are shown in Figure 4(c).

3.2. Feature Extraction. There are differences in the way and
speed of describing different people when completing ges-
tures, and in addition, it is difficult to guarantee that the
waveforms are the same when someone performs the same
gesture. Different people perform different gestures as
shown in Figure 5. To achieve consistency in the waveform
of the same gesture and to highlight the differences between
different gestures, multiple eigenvalues can be selected, but
too many eigenvalues are likely to cause fitting problems.
Therefore, in this paper, we select the feature values: skew-
ness, kurtosis, standard deviation, and peak-to-peak value,
and the four are described in Table 1.

S = 1/n∑N
i=1 xi − �xð Þ3

1/n∑N
i=1 xi − �xð Þ2

� �3/2 , ð7Þ

where xi denotes the data points in the sample and �x denotes
the mean of the data points.

Kurtosis = ∑N
i=1 xi − �xð Þ4
Nσ4

, ð8Þ

0
0

10

20

30

2 4

Time (s)

A
m

pl
itu

de
 (d

B)

6 8 10

(a) The waveform after LOF

0
5

10

20

15

25

2 4

Time (s)

A
m

pl
itu

de
 (d

B)

6 8 10

(b) The waveform after DWT

0
–40

–20
Start

End
20

0

40

2 4

Time (s)

A
m

pl
itu

de
 (d

B)

6 8 10

(c) The waveform after PCA

Figure 4: Preprocessing diagram of gesture data.
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where ðxi − �xÞ4 represents the fourth-order central moment,
x and �x represent the sample points and sample means,
respectively, and σ represents the standard deviation.

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 xi − �xð Þ2
N

s
, �x = 1

N
x1 + x2+⋯+xnð Þ, ð9Þ

pk − pk =max xið Þ −min xj
� �

, ð10Þ

where pk − pk refers to the value of the difference between
the highest and lowest value of the signal in one cycle, which
is the range between the maximum and minimum.

When there are too many gesture data and a variety of
gesture types, it is easy to cause inadequate feature descrip-
tion. Currently, we know that existing restricted Boltzmann
machines usually perform well in extracting high-
dimensional features from the data. Stacking Restricted
Boltzmann Machines (RBM) to form the DBM can fuse
and downscale gesture features, thus compensating for the
recognition errors caused by single features. The multilayer
nonlinear transform structure of DBM can accomplish the
simulation of complex nonlinear functions. The key compo-
nent of the DBM is the RBM, which detects, identifies, and
classifies the input data by combining multiple layers of
RBMs with a final classifier. We input the raw mathematical
statistics of the data waveform into the DBM, which is
mapped to depth features through multiple feature
reconstruction.

Feature fusion through DBM-3 can be roughly divided
into the following three steps:

Step 1. Input the base feature values of the gesture data:
skewness, kurtosis, standard deviation, and kurtosis into
the DBM-1 layer for the first deep fusion to obtain the new
feature eigenvalues c1, c2, c3, c4.

Step 2. Combine the features two by two and input them into
DBM-2 for the second fusion, feature values c5, c6.

Step 3. The features are combined and input into DBM-3 to
get the final fused features, which are used as the input of
GRU in the gesture recognition stage. The feature fusion
via DBN is shown in Figure 6.

3.3. Recognition Model. Recurrent neural network (RNN) is
divided into input layer-hidden layer-output layer when
processing time-series data, and the output result is related
by the current input and previous hidden state, but it ignores
the law between information with long interval and current
input information. Based on the recurrent neural network
and its existing deficiencies, the RNN is improved and
derived from neural network models such as long short-
term memory network (LSTM) and Gated Recurrent Unit
(GRU) [36]. However, LSTM requires four linear layers for
each unit, and the training efficiency is low. Compared with
RNN and LSTM, sequence modeling with GRU involves
fewer parameters and is easier to train.

The GRU contains an update gate and a reset gate. The
update gate determines what information needs to be added
to the new state and what information needs to be removed
at the previous time t − 1. The reset gate determines the
degree of forgetting of the hidden state at the previous time
t − 1. When the time is t, the inputs of both the reset gate
and update gate are the gesture waveform timing features
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Figure 5: Different people perform different gestures.

Table 1: Description of eigenvalues.

Feature name Feature description

Skewness Measure the direction of skew, degree of skew, and asymmetry of the data distribution, expressed as Equation (7)

Kurtosis
The number of characteristics that indicate the peak height of the probability density distribution curve at the mean is

expressed as Equation (8)

Standard
deviation

The square root of the squared and averaged data deviation from the mean is expressed as Equation (9)

Peak-to-peak
value

The value of the difference between the highest and lowest values of the signal in a period is expressed as Equation (10)
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extracted by the DBM and the hidden states of the previous
time t − 1. The network structure of GRU is shown in
Figure 7, and the model is derived from the literature [37].

The hidden state ~ht processed by the reset gate rt , update
gate zt , and tanh activation function in GRU and the final
hidden state ht parameters are updated by the following
equations.

zt = sigmoid Wz ⋅ ht−1, x½ � + bzð Þ, ð11Þ

rt = sigmoid Wr ⋅ ht−1, x½ � + brð Þ, ð12Þ

~ht = tanh W
~h ⋅ rt ⋅ ht−1, x½ � + b~h

� �
, ð13Þ

ht = 1 − ztð Þ ⋅ ht−1 + zt ⋅ ~ht , ð14Þ

where x represents the feature value information input at
moment t and ht−1 is the hidden state at moment t − 1.
And sigmoid is the activation function.

After the feature information x = fx1, x2,⋯,xng enters
the GRU, it is multiplied with the hidden state of the previ-
ous moment by the activation function sigmoid to get the
gating signals rt and zt . As a result, the hidden state ht−1 of
the previous moment and the updated reset gating with x
are multiplied by the elements through the activation func-
tion tanh to get the current candidate state value ~ht . The
“updated memory” forgets some unimportant information
in ht−1, and the “enhanced memory” for some important
information to get a new sequence of hidden states ht for
the next time step. After several training sessions, the prob-
ability of the gesture action category is finally derived by the
softmax function as

pm = eym

∑m
j=1e

ym
, ð15Þ

where ym is the probability value of the classification action.
It can be calculated by Equation (16). The reason why we
choose ReLU is that the calculation speed is fast, the calcula-
tion amount is small, and the training time is shorter

yt = ReLU d ⋅Wn + bnð Þ: ð16Þ

The pseudocode of the recognition framework training
process of Air-CSL is shown in Algorithm 1. For the test
of gesture data, we use the trained model to output the
probability.

4. Experiments and Evaluation

4.1. Implementation. We collected gesture data from two
laptops with Intel 5300 NIC inside as a pair of transceivers
with one antenna at the receiving end and three at the trans-
mitting end. We consider the actual lecture environment, so
we set the horizontal distance between the devices to 2
meters. The experimental environments are an empty hall
and a classroom, and the scene schematic is shown in
Figure 8. To reduce the impact of action completion time
on the overall recognition rate, the data acquisition time
was set to 10 s. Among them, 0-3 s were stationary, the
experimenter described the gesture action in the 4th second,
the action description took about 2 s, and the action was
retracted in the 7th s. Each action was repeated 20 times.
Seventy percent of the experimental data were used for the
training of the recognition model, and 30% were used as a
test set to test the model. Twelve experimenters were ran-
domly selected. The height and weight information of volun-
teers is shown in Table 2. The experimenters numbered 1-6
are randomly selected interested people in our college who
participated in all the comparative trials involved in this
paper, where ð∗Þ represents the tester added later, namely
7∗-12∗. The experimenters in this section ð∗Þ only partici-
pated in the experiments in Section 4.4.

4.2. Influence of Different Heights. A pair of transceivers was
chosen for the experimental equipment. However, consider-
ing the practical situation, we propose that the device will
have some effect on gesture recognition when it is at differ-
ent heights. We speculate that with the height where the
average center of gravity of the experimenter is located as
the middle value, the sensitivity of the signal to the gesture
action decreases as the height of the device increases or
decreases, and when the height reaches a certain limit, the

Input

DBM-1

DBM-2

DBM-3

Feature fusion C

Figure 6: Model diagram of feature fusion by DBM-3.
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ht

tanh
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Figure 7: GRU structure diagram.
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effect of the sign language action on the CSI stream almost
disappears. The accuracy of sign language gestures decreases
with the increase or decrease of the device height. Because a
stronger signal can respond to hand movements, signal sen-
sitivity is high; conversely, sensitivity decreases. The accu-
racy rates at different heights are shown in Figure 9.

As seen in Figure 9, the sign language recognition per-
formance is best when the height of the device is 1.35m,
and the performance of gesture recognition decreases to dif-
ferent degrees as the height increases or decreases. We calcu-
lated the average of the comfortable heights considered by
the six subjects, and combined with the real-life teaching
scenarios, we finally chose the experimental device spacing
of 1.25m. In the subsequent comparison experiments, we
all used the height setting of 1.25m.

4.3. Influence of Different Packet Sending Rates. Sign lan-
guage gesture actions are fine-grained actions, and the signal
changes caused by fine-grained actions may be weak or
cause brief and fast changes in the signal. Therefore, the high
sampling rate can fully describe each sign language gesture.
When the CSI value collected is large enough, it is beneficial

to the feature extraction and classification of sign language
gestures. To evaluate the performance at different sampling
rates, we chose to vary from 400 to 1200 packets/sec. The
experimental results show that the accuracy of the method
reaches its maximum at a packet rate of 1000 packets/sec.
Therefore, the packet rate is uniformly set to 1000 packets/
sec in the subsequent experiments. At the same time, we
found that the packet rate and gesture recognition accuracy
are roughly positively correlated, but when the packet rate
reaches 1000 packets/second or more, better hardware is
needed to support the store as shown in Figure 10.

4.4. Influence of Different Experimenters

4.4.1. Influence of Different Individuals. Since different per-
sonnel differs in the method and time spent on action
description when completing sign language gestures. To
compare the recognition accuracy of different personnel in
the same environment, we compared the recognition results
of six experimental personnel in an empty hall and a confer-
ence room. The recognition rates of different experimenters
are shown in Figure 11, which shows that there are some dif-
ferences in the recognition rates of different experimenters,
and it is concluded that the recognition results of female stu-
dents are better than those of male students due to the inher-
ent difference in body size.

The recognition rate is the average value of the recogni-
tion rate of this experimenter in both scenes. We found that
the recognition rate is relatively low for slightly fat people
and people with too fast gesture description and higher for
people with proportional body and even gesture description
processes. Since the height of the device is set at 1.25m,
when the height of the experimenter is too high or too
low, it will also have some influence on the recognition
results. Overall, the average gesture recognition rate of dif-
ferent personnel in an open environment stays above

Input: ðhidden sizeÞ
Output: The loss value total loss
Initialize the model parameters, the hidden layer dimension ðhidden sizeÞ, the training rounds ðn epochsÞ, the number input size,
training loss value ðtest lossÞ
1: total loss⟵ 0
2: for i to input size do
3: use hidden size to update the reset door rt = sigmoidðWr · ½ht−1, x� + brÞ, the update door zt = sigmoidðWz · ½ht−1, x� + bzÞ, and
the hidden state ~ht = tanh ðW~h ⋅ ½rt ⋅ ht−1, x� + b~hÞ
4: forget unimportant information, update ht = ð1 − ztÞ ⋅ ht−1 + zt ⋅ ~ht
5: End for
6: pass the data to the tensor
7: for y to n epochs;
8: if the current loss < the predicted loss prev loss
9: save model parameters
10: and prev loss = loss
11: else if loss < ðtest lossÞ
12: output the training rounds n epochs and loss
13: End if
14: End for
15: Return total loss

Algorithm 1:Overall framework of Air-CSL.

8 m

6 m

12 m

7 m

Rx

Tx

Figure 8: Schematic diagram of the scenario.
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91.77%. This indicates that Air-CSL has strong adaptability
to different personnel.

4.4.2. Influence of Different Genders. To fully study the influ-
ence of different genders on the recognition rate, we added
four males and four females based on the existing experi-
menters. We conducted data collection for the additional
six people under the same experimental scenario. Each ges-
ture was repeated 10 times in each scene. This shows that
Air-CSL data can present good recognition rates even for
untrained personnel. At the same time, it can also reflect
the influence of gender differences on gesture recognition
rate.

As can be seen from Figure 12, compared with the
trained sample, the gesture sample of the untrained sample

also achieved good recognition results. The average recogni-
tion rate of people without sample training was 88.27%.
Figure 12(a) shows the recognition rate of different females.
By comparing with Figure 12(b), we can get the following
results: Among several randomly selected experimental per-
sonnel, the recognition rate of females is better than that of
males. The average recognition rate was 88.89% for females
and 87.66% for males. Our discussion leads to the following
conclusion: women with the same body mass index (BMI)
have a slower motion description process than men. In addi-
tion, among the subjects we selected, women had less fat dis-
tribution in their hands than men, so their fingers were
thinner, which is conducive to sign language gesture
recognition.

4.5. Influence of Different Experimental Environments. To
verify the robustness of the method in this paper, we added
static interference and dynamic interference to the two exist-
ing experimental environments. The static interference (I) is
set as follows: a chair is placed at a horizontal distance of
0.5m from the transmitting end and the receiving end,
respectively; the dynamic interference (I) is set as follows:
an experimenter is allowed to walk at a uniform speed at a
place parallel to the line-of-sight path distance of 1m; the
dynamic interference (II) is set as follows: the door of the
room is artificially flapped to simulate a door disturbed by
external factors in the teaching environment. The recogni-
tion rates of different environments are shown in Figure 13.

The experimental results show that static interference (I)
has relatively little effect on both environments. The average
recognition rate in the empty hall can still reach 90.78% on
the other hand because the classroom has been arranged
with more furniture thus leading to a decrease in the recog-
nition rate in the classroom. When dynamic interference (I)
was added to the environment, the gesture recognition rate
in both environments decreased significantly to 88.38%
and 84.32%, respectively, due to the large gait motion ampli-
tude that interfered with CSI. However, these values are
within the acceptable range. Dynamic interference (II) in
the two environments caused a more obvious impact, due
to the human control of the door swing amplitude being
larger, and each swing speed cannot be determined; there-
fore, gesture recognition accuracy decreased significantly
were 85.7% and 81.8%. From Figures 13(b) and 13(c), it
can be seen that, when the interference in the environment
increases, the original gesture recognition rate of low exper-
imental personnel is affected more seriously.

4.6. Influence of Different Feature Values on Gesture
Recognition. Feature extraction directly affects the gesture

Table 2: Information table of physical signs of experimental personnel.

Number 1 2 3 4 5 6 7∗ 8∗ 9∗ 10∗ 11∗ 12∗
Gender M F M F M F M F M F M F

Height/cm 175 158 170 173 182 168 169 172 183 159 173 162

Weight/kg 71 54 67 63 93 51 63 57 71 60 67 48

BMI 23.18 21.63 23.18 21.05 28.08 18.07 22.06 19.27 21.20 23.73 22.39 18.29
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Figure 9: Impact of different heights.
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Figure 10: Impact of different transmission rates.
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recognition results. To verify the effectiveness of the feature
extraction method selected, we use the unfused mathemati-
cal statistics-valued features and the fused feature values to
test in different environments, respectively. Figure 14 shows
the average recognition rate of the original feature combina-
tion in two different experimental scenarios. It can be seen
that the recognition accuracy is lower when a single
mathematical-statistical value is used as a feature. And the
recognition rate is distributed in [84.24,89.36], which is
because the original statistics contain errors. Figure 15 shows
the average recognition rate of the features fused by the
method of this paper in two different experimental scenar-
ios. We can find after the fusion of feature values that the
gesture recognition rate is significantly improved in both,
and the average recognition rate can reach 89.85% in the
two experimental environments, which indicates the effec-
tiveness of feature fusion.

4.7. Influence of Different Data Preprocessing Methods. Due
to the large amount of noise contained in the original data
and to facilitate the extraction of gesture features, we pro-
pose to combine LOF, DWT, and PCA data processing
schemes. To prove the effectiveness of the method, we
remove each data preprocessing scheme separately. In addi-
tion, existing gesture data processing schemes were added

for comparison after removing some data preprocessing
schemes. In the following, we use the initial six experimenter
gesture recognition data to do the evaluation.

(a) We compare the previous methods after removing
the LOF algorithm, and the results are shown in
Figure 16. From Figure 16, it can be concluded that
the overall recognition rate of gestures decreases
after the LOF algorithm is removed. Because the data
collection is random and the external environment is
variable, there are unknown outliers in the collected
CSI data, and these outliers are scattered for various
reasons and are far from the normal data set. The
core of the LOF algorithm is to calculate and com-
pare the density of data distribution to detect the
scattered outliers. Therefore, we use the LOF algo-
rithm to preprocess the data to facilitate the recogni-
tion of gestures

(b) The DWT algorithm is removed and compared with
the previous method, and the results are shown in
Figure 16. From Figure 16, it can be seen that the
gesture recognition rate decreases in different envi-
ronments after the DWT algorithm is removed.
The decrease in recognition rate is more obvious in
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(a) Accuracy of experimenters in an empty hall
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Figure 11: The accuracy of different experimenters in different scenarios.
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Figure 12: Accuracy of different experimenters.
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the classroom compared to the empty hall. This is
because the gesture data is low-frequency informa-
tion, and the data without DWT processing has
mixed low-frequency signals and high-frequency
signals. The high-frequency information includes
those caused by hand gestures and those caused by
environmental factors. In order to effectively distin-
guish the above information, DWT is chosen to
retain the peak and abrupt change parts of the useful

signal needed in the original signal. Detail coeffi-
cients and approximation coefficients in DWT can
filter out the high-frequency information caused by
environmental noise while retaining the signal
abrupt change caused by gestures

(c) The PCA algorithm is removed and compared with
the previous method, and the results are shown in
Figure 16. From Figure 16, it can be seen that the
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Figure 13: Accuracy of different experimental environment variables.
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recognition rate of gestures has significantly
decreased after removing the PCA algorithm. This
is because environmental factors cannot be avoided
in the gesture data collection process, and PCA can
eliminate the influence between CSI data caused by
different factors as much as possible by using covari-
ance matrix. And in the actual data processing stage,
we tried to select different numbers of principal
components, and the results showed that the higher
the number of selected principal components, the
higher the cumulative contribution rate, but it also
contains the interference factors in the environment,
and at the same time will increase the computational
cost. After several attempts, we finally selected the
first ten principal components

(d) In addition to self-comparison, we added compari-
son with other data pretreatment methods. It uses
a Butterworth low-pass filter and sets the cutoff
frequency to 100Hz (we will abbreviate it as “B”)
[38]. In actual comparison, we need to set the cut-
off frequency of the Butterworth low-pass filter
lower to conform to the frequency of the gesture
(we will abbreviate it as “B+ I+P”) [39]. There are
studies on linear interpolation of the original data
and then Butterworth low-pass filter for filtering
and finally PCA processing of the data. The compar-
ison results are shown in Figure 16, indicating that
LOF+DWT+PCA is more suitable for gesture data
preprocessing. We think that only one filter can
roughly filter the data, and linear interpolation of
the original data is easy to cause problems such as
low interpolation accuracy and poor smoothness of
the data curve. To sum up, the combination of
LOF+DWT+PCA can better process the data

4.8. Influence of Different Algorithms. In recent years,
scholars have proposed a variety of recognition methods
for gesture recognition, such as LSTM, SVM, and convolu-
tional neural network (CNN). To fully demonstrate the per-
formance of Air-CSL, Air-CSL (GRU) is compared with the
existing CNN, LSTM, SVM, k-NN, and random forest (RF).
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Figure 16: The recognition rate of different preprocessing algorithms
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Figure 17: Recognition rate of different recognition algorithms.

Table 3: Performance comparison table of different algorithms.

Algorithm Accuracy rate (%) F1-score (%) Time (s)

Air-CSL(GRU) 91.77 95.32 342.37

LSTM 86.91 90.19 328.48

CNN 81.63 85.19 374.63

SVM 83.75 86.68 412.29

k-NN 81.59 86.34 394.82

Random forests 83.06 87.14 425.38
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Figure 18: The Loss and Acc curves during model training.
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The above methods are used to identify the data collected in
the two scenarios, as shown in Figure 17.

We evaluate different algorithms by the cumulative dis-
tribution functions (CDF). In Figure 17, x-axis represents
the recognition error rate and y-axis represents CDF. We
chose the initial device height of 1.25m. Figure 17 shows
that about 85% of the Air-CSL test data have an error rate
less than 10%. When CNN was selected as the recognition
algorithm, the performance was poor, and the error rate of
about 57% of the test data was less than 20%. This indicates
that Air-CSL can maintain high accuracy in the recognition
of human sign language gestures in the two scenes selected
by us.

To further compare the performance of the Air-CSL
method with other gesture recognition models, we perform
cross-validation of the above models. In this paper, we com-
pare the performance of the four different methods in the

empty hall by accuracy, recall, and F1-score values, as shown
in the performance comparison table of different algorithms
in Table 2. F1-score is the weighted average of accuracy and
recall, and the larger the F1 value is, the better the model
performance is. From Table 3, we can conclude that the rec-
ognition rate and F1-score of the Air-CSL method are higher
than other methods. It is proved that Air-CSL can effectively
recognize the sign language gestures of deaf people and has
better overall performance.

In order to fully the superiority and robustness of the
proposed method in this paper, we evaluate the algorithm
performance in terms of the processing time dimension of
the algorithm. The number of training samples is 3200,
and the number of testing samples is 960. As can be seen
from Section 4.7, the recognition of gestures by multiple
methods shows better recognition in open environments,
while at the same time, the recognition results in classrooms
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Figure 19: Confusion matrix with different sign language gestures.
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are generally lower. In terms of computation time, the best
algorithm is LSTM, followed by GRU, followed by CNN
and SVM. Compared to the GRU model chosen in this
paper, the LSTM algorithm performs better in terms of
computation time, but combined with its recognition rate
in different environments, we believe that the GRU model
is more suitable for the sign language gestures recognized
in this paper.

4.9. System Performance Evaluation. The core of Air-CSL is
essentially a feature fusion recognition algorithm. It carries
out feature fusion on commonly used mathematical statistics
through the DBM and transforms the feature matching in a
general gesture recognition scheme into the feature fusion
problem. The curves of Loss and Acc of model training are
shown in Figure 18. It can be seen from Figure 18 that with
the increase of the training cycle, the loss value gradually
decreases, which proves that the model we trained tends to
converge, and the Acc value gradually increases, which
proves that the accuracy of training gradually improves
and reaches the expected value of model training.

We used data sets collected from 6 experimentarians in
two different environments to conduct multiple sets of com-
parison tests for evaluation and combined with multiple sets
of comparison tests. Finally, we obtained the recognition
rate of the empty hall which can reach 91.77%, and the aver-
age recognition rate of the classroom is 87.97%. In order to
fully describe the recognition accuracy of the sign language
gesture recognition method proposed in this paper, we
describe the comprehensive recognition results of 30 sign
language gestures by confounding evidence, as shown in
Figure 19. In general, the recognition results of all gestures
were satisfactory, but due to similar gestures, such as “M”
and “N” or “CH” and “C,” the misjudgment rate of these
gestures was relatively high.

5. Conclusion

This paper proposes a CSI-based sign language gesture rec-
ognition method, combining real-life applications and the
influence of environmental factors on the gesture features
of people, using the LOF algorithm for outlier removal and
noise reduction and filtering of the collected gesture data
by DWT and PCA, and extracting and fusing the time-
domain information by DBM. Finally, the gesture data
feature values are put into the GRU network for gesture
classification and recognition. After various comparison
tests, the results show that the average recognition rate of
Air-CSL for sign language gestures is 88.93%.

Although we achieved satisfactory accuracy, there were
still some limitations. The follow-up work of this paper
mainly focuses on the following aspects: (1) improve the
robustness of this method and apply it to continuous sign
language gesture recognition in different environments; (2)
add gesture features with frequency-domain information
on the existing basis to describe human gesture features as
comprehensively as possible; (3) based on the existing recog-
nition models such as CNN, LSTM, K-NN [40], and SVM,

we will try to use their upgraded versions to compare with
our recognition model in the future work.
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